1
|
Chu Y, Chen J, Cui H, Xie Q, Mei S. The diagnostic value and molecular mechanisms of LncRNA ZFAS1 in neuropathic pain. Neurosci Lett 2025; 846:138097. [PMID: 39719179 DOI: 10.1016/j.neulet.2024.138097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024]
Abstract
OBJECTIVE Long non-coding RNA (lncRNA) has been playing an increasingly significant role in neuropathic pain (NP). This study aimed to investigate the clinical significance and mechanism of LncRNA ZNFX1 antisense RNA 1 (ZFAS1) in NP. METHODS 92 patients with NP and 85 healthy controls were enrolled, and a rat NP model was constructed by chronic constrictive injury (CCI). LPS-induced microglia BV2 cells were used to construct an in vitro cellular model. RT-qPCR analysis of the mRNA levels of ZFAS1, miR-421, and Iba-1 (markers of microglia activation). Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used to assess mechanosensitive and thermal nociceptive allergic responses. ELISA assay for pro-inflammatory factors and anti-inflammatory factors expression. ROC assay for the diagnostic value of ZFAS1. Validation of the targeting between ZFAS1 and miR-421 by dual luciferase reporter assay. RESULTS ZFAS1 significantly increased while miR-421 significantly decreased in individuals with NP, in a rat model of CCI, and in LPS-induced microglial cells. Functionally, miR-421 directly targeted ZFAS1. ZFAS1 levels could significantly differentiate between NP patients and control (AUC = 0.910). Low expression of ZFAS1 significantly alleviated PWL and PWT in CCI rats. Elevated neuro-proinflammatory factors and decreased anti-inflammatory factors in CCI rats were significantly reversed by low expression of ZFAS1, but this is partially weakened by low expression of miR-421. Moreover, silencing ZFAS1 hindered the upregulation of Iba-1 expression induced by LPS, which was rescued significantly by miR-421. CONCLUSION Elevated ZFAS1 is a potential bio-diagnostic marker for NP. Inhibition of ZFAS1 may alleviate NP progression by inhibiting microglia activation and neuro-inflammatory responses.
Collapse
Affiliation(s)
- Yunchao Chu
- Department of Pain, Shengli Oilfield Central Hospital, Dongying 257034, China
| | - Jing Chen
- Department of Pain, Shengli Oilfield Central Hospital, Dongying 257034, China
| | - Huaqing Cui
- Department of Anesthesiology, Dongying Hospital of Traditional Chinese Medicine, Dongying 257055, China
| | - Qiuyi Xie
- Department of Pain, Shengli Oilfield Central Hospital, Dongying 257034, China; Shandong Second Medical University, Weifang 261042, China
| | - Shasha Mei
- Department of Anesthesiology and Surgery, Shengli Oilfield Central Hospital, Dongying 257034, China.
| |
Collapse
|
2
|
Liu X, Ma Z, Zhang X, Li S, An J, Luo Z. Research Progress of Long Non-coding RNA-ZFAS1 in Malignant Tumors. Cell Biochem Biophys 2024; 82:3145-3156. [PMID: 39060915 DOI: 10.1007/s12013-024-01441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Long non-coding RNAs (lncRNAs), although incapable of encoding proteins, play crucial roles in multiple layers of gene expression regulation, epigenetic modifications, and post-transcriptional regulation. Zinc finger antisense 1 (ZFAS1), a lncRNA located in the 20q13 region of the human genome, exhibits dual functions as an oncogene or tumor suppressor in various human malignancies. ZFAS1 plays a crucial role in cancer progression, metastasis, invasion, apoptosis, cell cycle regulation, and drug resistance through complex molecular mechanisms. Additionally, ZFAS1 has a long half-life of over 16 h, demonstrating exceptional stability, and making it a potential biomarker. This review integrates recent studies on the role and molecular mechanisms of ZFAS1 in malignancies and summarizes its clinical significance. By summarizing the role of ZFAS1 in cancer, we aim to highlight its potential as an anti-cancer biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Provincial, Lanzhou, 730030, Gansu, China
| | - Zhong Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Provincial, Lanzhou, 730030, Gansu, China
| | - Xianxu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Provincial, Lanzhou, 730030, Gansu, China
| | - Shicheng Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Provincial, Lanzhou, 730030, Gansu, China
| | - Jiangdong An
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Zhiqiang Luo
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
3
|
Wang M, Xu B, Xie Y, Yao G, Chen Y. Mir155hg Accelerates Hippocampal Neuron Injury in Convulsive Status Epilepticus by Inhibiting Microglial Phagocytosis. Neurochem Res 2024; 49:1782-1793. [PMID: 38555337 DOI: 10.1007/s11064-024-04131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 04/02/2024]
Abstract
Convulsive status epilepticus (CSE) is a common critical neurological condition that can lead to irreversible hippocampal neuron damage and cognitive dysfunction. Multiple studies have demonstrated the critical roles that long non-coding RNA Mir155hg plays in a variety of diseases. However, less is known about the function and mechanism of Mir155hg in CSE. Here we investigate and elucidate the mechanism underlying the contribution of Mir155hg to CSE-induced hippocampal neuron injury. By applying high-throughput sequencing, we examined the expression of differentially expressed genes in normal and CSE rats. Subsequent RT-qPCR enabled us to measure the level of Mir155hg in rat hippocampal tissue. Targeted knockdown of Mir155hg was achieved by the AAV9 virus. Additionally, we utilized HE and Tunel staining to evaluate neuronal injury. Immunofluorescence (IF), Golgi staining, and brain path clamping were also used to detect the synaptic plasticity of hippocampal neurons. Finally, through IF staining and Sholl analysis, we assessed the degree of microglial phagocytic function. It was found that the expression of Mir155hg was elevated in CSE rats. HE and Tunel staining results showed that Mir155hg knockdown suppressed the hippocampal neuron loss and apoptosis followed CSE. IF, Golgi staining and brain path clamp data found that Mir155hg knockdown enhanced neuronal synaptic plasticity. The results from IF staining and Sholl analysis showed that Mir155hg knockdown enhanced microglial phagocytosis. Our findings suggest that Mir155hg promotes CSE-induced hippocampal neuron injury by inhibiting microglial phagocytosis.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Binyuan Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yangmei Xie
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ge Yao
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yinghui Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
4
|
Yang L, Liu S, He Y, Gan L, Ni Q, Dai A, Mu C, Liu Q, Chen H, Lu H, Sun R. Exosomes regulate SIRT3-related autophagy by delivering miR-421 to regulate macrophage polarization and participate in OSA-related NAFLD. J Transl Med 2024; 22:475. [PMID: 38764033 PMCID: PMC11103849 DOI: 10.1186/s12967-024-05283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
PURPOSE To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.
Collapse
Affiliation(s)
- Li Yang
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China.
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China.
| | - Shijie Liu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Yan He
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Lulu Gan
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Qing Ni
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Anni Dai
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Changhuan Mu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Qian Liu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Hongyan Chen
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Hongying Lu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Ruixue Sun
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| |
Collapse
|
5
|
Qiu J, Gu R, Shi Q, Zhang X, Gu J, Xiang J, Xu J, Yang Y, Shan K. Long noncoding RNA ZFAS1: A novel anti-apoptotic target in Fuchs endothelial corneal dystrophy. Exp Eye Res 2024; 241:109832. [PMID: 38369232 DOI: 10.1016/j.exer.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the leading cause of endothelial keratoplasty without efficacious drug treatment. Recent studies have emphasized the involvement of epigenetic regulation in FECD development. Long non-coding RNAs (lncRNAs) are recognized as crucial epigenetic regulators in diverse cellular processes and ocular diseases. In this study, we revealed the expression patterns of lncRNAs using high-throughput sequencing technology in FECD mouse model, and identified 979 significantly dysregulated lncRNAs. By comparing the data from FECD human cell model, we obtained a series of homologous lncRNAs with similar expression patterns, and revealed that these homologous lncRNAs were enriched in FECD related biological functions, with apoptosis (mmu04210) showing the highest enrichment score. In addition, we investigated the role of lncRNA zinc finger antisense 1 (ZFAS1) in apoptotic process. This study would broaden our understanding of epigenetic regulation in FECD development, and provide potential anti-apoptotic targets for FECD therapy.
Collapse
Affiliation(s)
- Jini Qiu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Ruiping Gu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Qian Shi
- Yixing Eye Hospital, Yixing, Jiangsu, China
| | - Xueling Zhang
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Jiayu Gu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Jun Xiang
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Jianjiang Xu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Yujing Yang
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| | - Kun Shan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
6
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
7
|
Tokunaga M, Imamura T. Emerging concepts involving inhibitory and activating RNA functionalization towards the understanding of microcephaly phenotypes and brain diseases in humans. Front Cell Dev Biol 2023; 11:1168072. [PMID: 37408531 PMCID: PMC10318543 DOI: 10.3389/fcell.2023.1168072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Microcephaly is characterized as a small head circumference, and is often accompanied by developmental disorders. Several candidate risk genes for this disease have been described, and mutations in non-coding regions are occasionally found in patients with microcephaly. Various non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), SINEUPs, telomerase RNA component (TERC), and promoter-associated lncRNAs (pancRNAs) are now being characterized. These ncRNAs regulate gene expression, enzyme activity, telomere length, and chromatin structure through RNA binding proteins (RBPs)-RNA interaction. Elucidating the potential roles of ncRNA-protein coordination in microcephaly pathogenesis might contribute to its prevention or recovery. Here, we introduce several syndromes whose clinical features include microcephaly. In particular, we focus on syndromes for which ncRNAs or genes that interact with ncRNAs may play roles. We discuss the possibility that the huge ncRNA field will provide possible new therapeutic approaches for microcephaly and also reveal clues about the factors enabling the evolutionary acquisition of the human-specific "large brain."
Collapse
|
8
|
Salman IT, Abulsoud AI, Abo-Elmatty DM, Fawzy A, Mesbah NM, Saleh SM. The long non-coding RNA ZFAS1 promotes colorectal cancer progression via miR200b/ZEB1 axis. Pathol Res Pract 2023; 247:154567. [PMID: 37245266 DOI: 10.1016/j.prp.2023.154567] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common tumor worldwide. CRC is influenced by several types of miRNAs and long non-coding RNAs. This study aims to evaluate the correlation of lncRNA ZFAS1/ miR200b/ ZEB1 protein with presence of CRC. METHODS Quantitative real-time polymerase chain reaction was used to measure serum expression of lncRNA ZFAS1 and microRNA-200b in 60 CRC patients and 28 control subjects. ZEB1 protein in serum was measured by ELISA. RESULTS Lnc ZFAS1 and ZEB1 were up-regulated in CRC patients in compare to control subjects while miR-200b was down-regulated. There was a linear correlation between ZAFS1 expression and miR-200b and ZEB1 in CRC. CONCLUSION ZFAS1 is a key player of CRC progression and could be a potential therapeutic target by sponging miR-200b. In-addition the association between ZFAS1, miR-200b and ZEB1 highlights their potential value as a novel diagnostic biomarker in human CRC.
Collapse
Affiliation(s)
- Islam T Salman
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amal Fawzy
- Department of Clinical and Chemical Pathology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Samy M Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
9
|
Urdánoz-Casado A, Sánchez-Ruiz de Gordoa J, Robles M, Roldan M, Macías Conde M, Acha B, Blanco-Luquin I, Mendioroz M. circRNA from APP Gene Changes in Alzheimer's Disease Human Brain. Int J Mol Sci 2023; 24:ijms24054308. [PMID: 36901741 PMCID: PMC10002054 DOI: 10.3390/ijms24054308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of age-related dementia. Amyloid precursor protein (APP) is the precursor of Aβ peptides, and its role in AD has been widely investigated. Recently, it has been reported that a circular RNA (circRNA) originated from APP gene can serve as a template for Aβ synthesis, postulating it as an alternative pathway for the Aβ biogenesis. Moreover, circRNAs play important roles in brain development and in neurological diseases. Therefore, our aim was to study the expression of a circAPP (hsa_circ_0007556) and its linear cognate in AD human entorhinal cortex, a brain region most vulnerable to AD pathology. First, we confirmed the presence of circAPP (hsa_circ_0007556) in human entorhinal cortex samples using RT-PCR and Sanger sequencing of PCR products. Next, a 0.49-fold decrease in circAPP (hsa_circ_0007556) levels was observed in entorhinal cortex of AD cases compared to controls (p-value < 0.05) by qPCR. In contrast, APP mRNA expression did not show changes in the entorhinal cortex between AD cases and controls (Fold-change = 1.06; p-value = 0.81). A negative correlation was found between Aβ deposits and circAPP (hsa_circ_0007556) and APP expression levels (Rho Spearman = -0.56, p-value < 0.001 and Rho Spearman = -0.44, p-values < 0.001, respectively). Finally, by using bioinformatics tools, 17 miRNAs were predicted to bind circAPP (hsa_circ_0007556), and the functional analysis predicted that they were involved in some pathways, such as the Wnt-signaling pathway (p = 3.32 × 10-6). Long-term potentiation (p = 2.86 × 10-5), among others, is known to be altered in AD. To sum up, we show that circAPP (hsa_circ_0007556) is deregulated in the entorhinal cortex of AD patients. These results add to the notion that circAPP (hsa_circ_0007556) could be playing a role in the pathogenesis of AD disease.
Collapse
Affiliation(s)
- Amaya Urdánoz-Casado
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Javier Sánchez-Ruiz de Gordoa
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
- Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain
| | - Maitane Robles
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Miren Roldan
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Mónica Macías Conde
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
- Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain
| | - Blanca Acha
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Maite Mendioroz
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
- Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain
- Correspondence: ; Tel.: +34-848422677
| |
Collapse
|
10
|
The regulatory function of lncRNA and constructed network in epilepsy. Neurol Sci 2023; 44:1543-1554. [PMID: 36781564 DOI: 10.1007/s10072-023-06648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Epilepsy is a neurological disease characterized by neural network dysfunction. Although most reports indicate that the pathological process of epilepsy is related to inflammation, synaptic plasticity, cell apoptosis, and ion channel dysfunction, the underlying molecular mechanisms of epilepsy are not fully understood. METHODS This review summarizes the latest literature on the roles and characteristics of long noncoding RNAs (lncRNAs) in the pathogenesis of epilepsy. RESULTS lncRNAs are a class of long transcripts without protein-coding functions that perform important regulatory functions in various biological processes. lncRNAs are involved in the regulation of the pathological process of epilepsy and are abnormally expressed in both patients and animal models. This review provides an overview of research progress in epilepsy, the multifunctional features of lncRNAs, the lncRNA expression pattern related to epileptogenesis and status epilepticus, and the potential mechanisms for the two interactions contributing to epileptogenesis and progression. CONCLUSION lncRNAs can serve as new diagnostic markers and therapeutic targets for epilepsy in the future.
Collapse
|
11
|
Ghafouri-Fard S, Hussen BM, Jamali E, Branicki W, Taheri M, Akbari Dilmaghani N. Role of lncRNAs and circRNAs in epilepsy. Ageing Res Rev 2022; 82:101749. [PMID: 36216292 DOI: 10.1016/j.arr.2022.101749] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 02/09/2023]
Abstract
Epilepsy is a chronic disorder of with a high prevalence and extensive health burden in almost all age groups of the population. This condition is resulted from disturbance in the balance between excitatory and inhibitory factors in the brain. Genetic elements that affect synaptic connectivity, receptors functions or ion channels have been shown to predispose individuals to the epilepsy. More recently, a body of evidence points to the role of non-coding part of the transcriptome in the pathology of epilepsy. Expression levels of NEAT1, H19, PVT1, ILF3-AS1, GAS5, ZFAS1, UCA1, MALAT1 and SNHG1 have been changed in epileptic patients or animal models of epilepsy. Moreover, circ_ANKMY2, circRNA-0067835 and circHivep2 are among circRNAs which are involved in the pathogenesis of epilepsy. Although the mechanistical impact of these transcripts in the pathogenesis of epilepsy has not been fully explored, disturbances in neuron plasticity, apoptosis or differentiation might be implicated in this process. Expression levels of lncRNAs can be used for discrimination of epileptic patients from normal controls or refractory patients from non-refractory ones. JAK/STAT, Wnt, PI3K/AKT and NF-κB signaling pathways are among the regulated pathways by lncRNAs in the context of epilepsy. In the present review, we summarize the role of lncRNAs and circRNAs in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Chen Y, Hou X, Pang J, Yang F, Li A, Lin S, Lin N, Lee TH, Liu H. The role of peptidyl-prolyl isomerase Pin1 in neuronal signaling in epilepsy. Front Mol Neurosci 2022; 15:1006419. [PMID: 36304997 PMCID: PMC9592815 DOI: 10.3389/fnmol.2022.1006419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common symptom of many neurological disorders and can lead to neuronal damage that plays a major role in seizure-related disability. The peptidyl-prolyl isomerase Pin1 has wide-ranging influences on the occurrence and development of neurological diseases. It has also been suggested that Pin1 acts on epileptic inhibition, and the molecular mechanism has recently been reported. In this review, we primarily focus on research concerning the mechanisms and functions of Pin1 in neurons. In addition, we highlight the significance and potential applications of Pin1 in neuronal diseases, especially epilepsy. We also discuss the molecular mechanisms by which Pin1 controls synapses, ion channels and neuronal signaling pathways to modulate epileptic susceptibility. Since neurotransmitters and some neuronal signaling pathways, such as Notch1 and PI3K/Akt, are vital to the nervous system, the role of Pin1 in epilepsy is discussed in the context of the CaMKII-AMPA receptor axis, PSD-95-NMDA receptor axis, NL2/gephyrin-GABA receptor signaling, and Notch1 and PI3K/Akt pathways. The effect of Pin1 on the progression of epilepsy in animal models is discussed as well. This information will lead to a better understanding of Pin1 signaling pathways in epilepsy and may facilitate development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Chen
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojun Hou
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Jiao Pang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fan Yang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Angcheng Li
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Suijin Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Na Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hekun Liu
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- *Correspondence: Hekun Liu,
| |
Collapse
|
13
|
Zhou JY, Liu JY, Tao Y, Chen C, Liu SL. LINC01526 Promotes Proliferation and Metastasis of Gastric Cancer by Interacting with TARBP2 to Induce GNG7 mRNA Decay. Cancers (Basel) 2022; 14:cancers14194940. [PMID: 36230863 PMCID: PMC9562272 DOI: 10.3390/cancers14194940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Many long noncoding RNAs play an important role in gastric cancer progression. In this study, we focused on LINC01526. Through expression and functional analyses, we obtained a preliminary understanding of the pro-cancer role of LINC01526 in gastric cancer. Furthermore, RNA pull-down and RNA immunoprecipitation chip assays demonstrated that LINC01526 interacts with TARBP2, an RNA-binding protein controlling mRNA stability. Moreover, TARBP2 could bind and destabilize GNG7 transcripts. Finally, the rescue assay disclosed that LINC01526 promoted gastric cancer progression by interacting with TARBP2, leading to the degradation of GNG7 mRNA. Abstract Gastric cancer is the most common malignancy of the human digestive system. Long noncoding RNAs (lncRNAs) influence the occurrence and development of gastric cancer in multiple ways. However, the function and mechanism of LINC01526 in gastric cancer remain unknown. Herein, we investigated the function of LINC01526 with respect to the malignant progression of gastric cancer. We found that LINC01526 was upregulated in gastric cancer cells and tissues. The function experiments in vitro and the Xenograft mouse model in vivo proved that LINC01526 could promote gastric cancer cell proliferation and migration. Furthermore, LINC01526 interacted with TAR (HIV-1) RNA-binding protein 2 (TARBP2) and decreased the mRNA stability of G protein gamma 7 (GNG7) through TARBP2. Finally, the rescue assay showed that downregulating GNG7 partially rescued the cell proliferation inhibited by LINC01526 or TARBP2 silencing. In summary, LINC01526 promoted gastric cancer progression by interacting with TARBP2, which subsequently degraded GNG7 mRNA. This study not only explores the role of LINC01526 in gastric cancer, but also provides a laboratory basis for its use as a new biomarker for diagnosis and therapeutic targets.
Collapse
Affiliation(s)
- Jin-Yong Zhou
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Correspondence: (J.-Y.Z.); (S.-L.L.)
| | - Jin-Yan Liu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yu Tao
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Chen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shen-Lin Liu
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Correspondence: (J.-Y.Z.); (S.-L.L.)
| |
Collapse
|
14
|
Liu S, Fan M, Ma MD, Ge JF, Chen FH. Long non-coding RNAs: Potential therapeutic targets for epilepsy. Front Neurosci 2022; 16:986874. [PMID: 36278003 PMCID: PMC9582525 DOI: 10.3389/fnins.2022.986874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a common and disastrous neurological disorder characterized by abnormal firing of neurons in the brain, affecting about 70 million people worldwide. Long non-coding RNAs (LncRNAs) are a class of RNAs longer than 200 nucleotides without the capacity of protein coding, but they participate in a wide variety of pathophysiological processes. Alternated abundance and diversity of LncRNAs have been found in epilepsy patients and animal or cell models, suggesting a potential role of LncRNAs in epileptogenesis. This review will introduce the structure and function of LncRNAs, summarize the role of LncRNAs in the pathogenesis of epilepsy, especially its linkage with neuroinflammation, apoptosis, and transmitter balance, which will throw light on the molecular mechanism of epileptogenesis, and accelerate the clinical implementation of LncRNAs as a potential therapeutic target for treatment of epilepsy.
Collapse
Affiliation(s)
- Sen Liu
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Meng-Die Ma
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
- *Correspondence: Jin-Fang Ge,
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
- Fei-Hu Chen,
| |
Collapse
|
15
|
Wang Z, Na Z, Cui Y, Wei C, Wang S. LncRNA ZFAS1 regulates the hippocampal neurons injury in epilepsy through the miR-15a-5p/OXSR1/NF-κB pathway. Metab Brain Dis 2022; 37:2277-2290. [PMID: 35751788 DOI: 10.1007/s11011-022-01013-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/21/2022] [Indexed: 10/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been confirmed to be involved in epilepsy development. It has been reported that lncRNA ZFAS1 plays a vital regulatory role in epilepsy progression. Therefore, the role and molecular mechanism of ZFAS1 in epilepsy progression deserve further investigation. Mice status epilepticus (SE) model was constructed, and hippocampal neurons were isolated from mice hippocampus tissues. The expression of ZFAS1, miR-15a-5p and oxidative stress responsive 1 (OXSR1) were determined by quantitative real-time PCR. ELISA assay was used to detect the concentrations of inflammation factors. Cell viability and apoptosis were examined by MTT assay, EdU staining and flow cytometry. Western blot analysis was conducted to measure protein levels, and the productions of SOD and MDA were measured to assess cell oxidative stress. Dual-luciferase reporter assay and RIP assay were employed to validate the relationship between miR-15a-5p and ZFAS1 or OXSR1. LncRNA ZFAS1 was highly expressed in SE mice and SE-stimulated hippocampal neurons. Silenced ZFAS1 promoted viability, while inhibited inflammation, apoptosis and oxidative stress in SE-induced hippocampal neurons. MiR-15a-5p could be targeted by ZFAS1, and its inhibitor also reversed the suppressive effect of ZFAS1 knockdown on SE-induced hippocampal neurons injury. In addition, OXSR1 was a target of miR-15a-5p, and its silencing also could relieve SE-induced hippocampal neurons injury. OXSR1 overexpression reversed the inhibition effect of miR-15a-5p on SE-induced hippocampal neurons injury. Moreover, ZFAS1 positively regulated OXSR1 expression by sponging miR-15a-5p, thereby activating the NF-κB pathway. LncRNA ZFAS1 might contribute to the progression of epilepsy by regulating the miR-15a-5p/OXSR1/NF-κB pathway.
Collapse
Affiliation(s)
- Zengmian Wang
- School of Basic Medicine, Jiamusi University, 148-Xuefu Street, Jiamusi, Heilongjiang, 154007, People's Republic of China
| | - Zhimin Na
- Department of Respiratory and Critical Care Medicine, Mudanjiang First People's Hospital, No. 76 Jianwei Road, Aimin District, Mudanjiang, Heilongjiang, China
| | - Ying Cui
- Department of Internal Medicine, Tangyuan Hospital of Traditional Chinese Medicine, West of Hazhao Road, Tangyuan, Jiamusi, Heilongjiang, China
| | - Chunjie Wei
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Xiangyang District, Dexiang Street No.348, Jiamusi, Heilongjiang, 154007, China
| | - Shuqiu Wang
- Department of Pathophysiology, School of Basic Medicine, Jiamusi University, 148-Xuefu Street, Jiamusi, Heilongjiang, 154007, People's Republic of China.
| |
Collapse
|
16
|
Molecular Mechanism and Regulation of Autophagy and Its Potential Role in Epilepsy. Cells 2022; 11:cells11172621. [PMID: 36078029 PMCID: PMC9455075 DOI: 10.3390/cells11172621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an evolutionally conserved degradation mechanism for maintaining cell homeostasis whereby cytoplasmic components are wrapped in autophagosomes and subsequently delivered to lysosomes for degradation. This process requires the concerted actions of multiple autophagy-related proteins and accessory regulators. In neurons, autophagy is dynamically regulated in different compartments including soma, axons, and dendrites. It determines the turnover of selected materials in a spatiotemporal control manner, which facilitates the formation of specialized neuronal functions. It is not surprising, therefore, that dysfunctional autophagy occurs in epilepsy, mainly caused by an imbalance between excitation and inhibition in the brain. In recent years, much attention has been focused on how autophagy may cause the development of epilepsy. In this article, we overview the historical landmarks and distinct types of autophagy, recent progress in the core machinery and regulation of autophagy, and biological roles of autophagy in homeostatic maintenance of neuronal structures and functions, with a particular focus on synaptic plasticity. We also discuss the relevance of autophagy mechanisms to the pathophysiology of epileptogenesis.
Collapse
|
17
|
lncRNA ZFAS1 Promotes HMGCR mRNA Stabilization via Binding U2AF2 to Modulate Pancreatic Carcinoma Lipometabolism. J Immunol Res 2022; 2022:4163198. [PMID: 35846429 PMCID: PMC9286883 DOI: 10.1155/2022/4163198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Being one of the most lethal malignant tumors worldwide, pancreatic carcinoma (PC) shows strong invasiveness and high mortality. In tumorigenesis and progression, the role played by long-chain noncoding RNAs (lncRNAs) cannot be ignored. This article mainly probes into the function of lncRNA ZFAS1 in PC. ZFAS1 expression in PC and normal counterparts retrieved from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Atlas (TCGA) database was analysed by GEPIA2. Its expression profile in clinical specimens and human PC cell strains was quantified using qRT-PCR. Measurements of BxPC-3 cell multiplication and invasiveness employed CCK-8, plate clone formation test, and Transwell chamber assay. ZFAS1's impact on lipid content in BxPC-3 cells was detected. RNA pulldown and RIP assays analyzed the interaction of ZFAS1 with U2AF2 and HMGCR in BxPC-3 cells. Finally, the impacts of U2AF2 and HMGCR on the biological behavior of BxPC-3 were observed. ZFAS1 was kept at a high level in PC tissues versus the normal counterparts. ZFAS1 gene knockout remarkably suppressed PC cell multiplication and invasiveness and decreased the contents of free fatty acids, total cholesterol, triglycerides, and phospholipids. Mechanistically, ZFAS1 stabilized HMGCR mRNA through U2AF2, thus increasing HMGCR expression and promoting PC lipid accumulation. Meanwhile, reduced PC cell viability and invasiveness were observed after downregulating U2AF2 and HMGCR. As an oncogene of PC, ZFAS1 can modulate lipometabolism and stabilize HMGCR mRNA expression by binding with U2AF2 in PC, which is a candidate target for PC diagnosis and treatment.
Collapse
|
18
|
Arruri V, Vemuganti R. Role of autophagy and transcriptome regulation in acute brain injury. Exp Neurol 2022; 352:114032. [PMID: 35259350 PMCID: PMC9187300 DOI: 10.1016/j.expneurol.2022.114032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular system that routes distinct cytoplasmic cargo to lysosomes for degradation and recycling. Accumulating evidence highlight the mechanisms of autophagy, such as clearance of proteins, carbohydrates, lipids and damaged organelles. The critical role of autophagy in selective degradation of the transcriptome is still emerging and could shape the total proteome of the cell, and thus can regulate the homeostasis under stressful conditions. Unregulated autophagy that potentiates secondary brain damage is a key pathological features of acute CNS injuries such as stroke and traumatic brain injury. This review discussed the mutual modulation of autophagy and RNA and its significance in mediating the functional consequences of acute CNS injuries.
Collapse
Affiliation(s)
- Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
19
|
Gu Y, Wang G, Xu H. Long non-coding RNA ZNFX1 antisense 1 (ZFAS1) suppresses anti-oxidative stress in chondrocytes during osteoarthritis by sponging microRNA-1323. Bioengineered 2022; 13:13188-13200. [PMID: 35635081 PMCID: PMC9276043 DOI: 10.1080/21655979.2022.2074770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
LncRNAs play a regulatory role in osteoarthritis (OA); however, the detailed mechanism remains to be elucidated. This study aimed to investigate the role of lncRNA zinc finger NFX1-type containing 1 (ZNFX1) antisense 1 (ZFAS1) in OA progression and explore its possible mechanismsagainst oxidative stress. Human cartilage specimens were obtained from 10 patients without OA who underwent traumatic amputation and 25 patients with OA who underwent total knee replacement surgery. Chondrocytes were prepared from harvested articular cartilage. ZFAS1, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) expression levels were analyzed using quantitative reverse transcription PCR and WB. The chondrocyte growth was indicated by MTT and colony formation assays. Chondrocyte apoptosis, reactive oxygen species generation, and anti-oxidative enzymes activities were also measured. ZFAS1 expression was reduced in OA samples and lipopolysaccharide (LPS)-treated chondrocytes used as an OA cell model mimic. ZFAS1 overexpression facilitated proliferation and repressed oxidative stress, inflammation, and apoptosis in LPS-induced chondrocytes. ZFAS1 also activated the anti-oxidative Nrf2-HO-1 pathway. ZFAS1 directly targeted miR-1323, which partially reversed the effects of ZFAS1 on chondrocyte proliferation, oxidative stress, inflammation, and apoptosis. Furthermore, Nrf2 was negatively regulated by miR-1323. The effect of miR-1323 inhibition was partly abrogated by the administration of brusatol, an Nrf2 inhibitor. Collectively, the results showed that ZFAS1 promoted chondrocyte proliferation and repressed oxidative stress, possibly by regulating the novel miR-1323-Nrf2 axis of the inflammation and apoptosis triggered by LPS, indicating that ZFAS1 is a promising therapeutic target for OA.
Collapse
Affiliation(s)
- Yanglin Gu
- Department of Orthopedics, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Guangchang Wang
- Department of Orthopedics, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Huazhong Xu
- Department of Orthopedics, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, P.R. China
| |
Collapse
|
20
|
Dong X, He X, Yang L, Li Q, Xu Y. Inhibition of miR-421 Preserves Mitochondrial Function and Protects against Parkinson's Disease Pathogenesis via Pink1/Parkin-Dependent Mitophagy. DISEASE MARKERS 2022; 2022:5186252. [PMID: 35664430 PMCID: PMC9162809 DOI: 10.1155/2022/5186252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 02/05/2023]
Abstract
Mutations in PINK1 and Parkin are a major cause of Parkinson's disease (PD) pathogenesis. In addition, PINK1 and Parkin are two mitochondrial proteins that jointly contribute to mitochondrial homeostasis via mitophagy. Mitochondrial dysfunction is the most significant mechanism underlying PD pathogenesis. Thus, understanding the regulatory mechanism of PINK1 and Parkin expression is beneficial to the treatment of PD. In this study, we found that miR-421 expression was upregulated in mice treated with MPTP, as well as in SH-SY5Y cells treated with methyl-4-phenylpyridine (MPP+). Inhibition of miR-421 alleviated neurodegeneration in MPTP-treated mice and promoted mitophagy in MPP+-treated SH-SY5Y cells. Bioinformatics software predicted that Pink1 is a downstream target protein of miR-421. In addition, miR-421-induced Pink1 and Parkin inhibition negatively modulates mitophagy in MPP+-treated SH-SY5Y cells. In addition, our study confirmed that Pink1/Parkin is responsible for miR-421-regulated cell mitophagy. Overall, this study revealed that miR-421 regulates nerve cell mitophagy through the Pink1/Parkin pathway.
Collapse
Affiliation(s)
- Xiaolin Dong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghua He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingyun Li
- Department of Neurology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Long Noncoding RNAs Regulate Hyperammonemia-Induced Neuronal Damage in Hepatic Encephalopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7628522. [PMID: 35464767 PMCID: PMC9021992 DOI: 10.1155/2022/7628522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
Background. Hyperammonemia can result in various neuropathologies, including sleep disturbance, memory loss, and motor dysfunction in hepatic encephalopathy. Long noncoding RNA (lncRNA) as a group of noncoding RNA longer than 200 nucleotides is emerging as a promising therapeutic target to treat diverse diseases. Although lncRNAs have been linked to the pathogenesis of various diseases, their function in hepatic encephalopathy has not yet been elucidated. Research Design and Methods. To identify the roles of lncRNAs in hepatic encephalopathy brain, we used a bile duct ligation (BDL) mouse model and examined the alteration of neuronal cell death markers and neuronal structure-related proteins in BDL mouse cortex tissue. Furthermore, analysis of the transcriptome of BDL mouse brain cortex tissues revealed several lncRNAs critical to the apoptosis and neuronal structural changes associated with hepatic encephalopathy. Results. We confirmed the roles of the lncRNAs, ZFAS1, and GAS5 as strong candidate lncRNAs to regulate neuropathologies in hepatic encephalopathy. Our data revealed the roles of lncRNAs, ZFAS1, and GAS5, on neuronal cell death and neural structure in hyperammonemia in in vivo and in vitro conditions. Conclusion. Thus, we suggest that the modulation of these lncRNAs may be beneficial for the treatment of hepatic encephalopathy.
Collapse
|
22
|
Bonilauri B, Dallagiovanna B. Microproteins in skeletal muscle: hidden keys in muscle physiology. J Cachexia Sarcopenia Muscle 2022; 13:100-113. [PMID: 34850602 PMCID: PMC8818594 DOI: 10.1002/jcsm.12866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Recent advances in the transcriptomics, translatomics, and proteomics have led us to the exciting new world of functional endogenous microproteins. These microproteins have a small size and are derived from small open reading frames (smORFs) of RNAs previously annotated as non-coding (e.g. lncRNAs and circRNAs) as well as from untranslated regions and canonical mRNAs. The presence of these microproteins reveals a much larger translatable portion of the genome, shifting previously defined dogmas and paradigms. These findings affect our view of organisms as a whole, including skeletal muscle tissue. Emerging evidence demonstrates that several smORF-derived microproteins play crucial roles during muscle development (myogenesis), maintenance, and regeneration, as well as lipid and glucose metabolism and skeletal muscle bioenergetics. These microproteins are also involved in processes including physical activity capacity, cellular stress, and muscular-related diseases (i.e. myopathy, cachexia, atrophy, and muscle wasting). Given the role of these small proteins as important key regulators of several skeletal muscle processes, there are rich prospects for the discovery of new microproteins and possible therapies using synthetic microproteins.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Laboratory of Basic Biology of Stem Cells (LABCET)Carlos Chagas Institute ‐ Fiocruz‐PRCuritibaParanáBrazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET)Carlos Chagas Institute ‐ Fiocruz‐PRCuritibaParanáBrazil
| |
Collapse
|
23
|
Clinical significance and biological effect of ZFAS1 in Hirschsprung's disease and preliminary exploration of its underlying mechanisms using integrated bioinformatics analysis. Ir J Med Sci 2022; 191:2669-2675. [PMID: 34993837 DOI: 10.1007/s11845-021-02906-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The pathogenesis of Hirschprung's disease (HSCR) remains largely unknown. The lncRNA ZNFX1 antisense RNA 1 (ZFAS1) has been found to have vital regulatory roles in a number of diseases. However, the association between ZFAS1 and HSCR has not been reported. AIMS The present study was aimed at investigating the expression pattern and biological function and underlying mechanisms of ZFAS1 in HSCR. METHODS The expression of ZFAS1 was detected in surgical excision samples of 30 children diagnosed with HSCR and 30 control cases. Functional experiments were conducted after over-expression or knockdown of ZFAS1 in human neuronal cell line SH-SY-5Y. Multiple bioinformatics databases and tools were used to explore the potential regulatory mechanisms of ZFAS1 in HSCR. RESULTS Compared with the control group, the HSCR group has a significantly higher level of ZFAS1(P = 0.0012). The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was 0.7133 (P = 0.0045), which indicated good biomarker potency of ZFAS1 in HSCR. Functionally, over-expression of ZFAS1 significantly inhibited cell proliferation, whereas knockdown of ZFAS1 promoted cell proliferation and colony formation of SH-SY-5Y cells. Using multiple databases, a competing endogenous RNA (ceRNA) network, containing ZFAS1,13 candidate miRNAs, and 110 potential gene targets, was established. Further enrichment analysis suggested that ZFAS1 may regulate a number of genes and signaling pathways that were crucial for neuron development. CONCLUSIONS Our findings revealed that ZFAS1 may participate in the pathogenesis of HSCR through regulating neuron functions. Bioinformatics analysis highlighted an important perspective for the following mechanical researches.
Collapse
|
24
|
Li T, Qing BL, Deng Y, Que XT, Wang CZ, Lu HW, Wang SH, Wang ZJ. Inhibition of Long non-coding RNA zinc finger antisense 1 improves functional recovery and angiogenesis after focal cerebral ischemia via microRNA-144-5p/fibroblast growth factor 7 axis. Bioengineered 2022; 13:1702-1716. [PMID: 35012442 PMCID: PMC8805975 DOI: 10.1080/21655979.2021.2018093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
Long non-coding RNA zinc finger antisense 1 (ZFAS1) has been probed in cerebral ischemia, while the regulatory mechanism of ZFAS1 in focal cerebral ischemia (FCI) via binding to microRNA (miR)-144-5p remains rarely explored. This study aims to decipher the function of ZFAS1 on FCI via sponging miR-144-5p to modulate fibroblast growth factor 7 (FGF7). The focal cerebral ischemia rat model was established by occlusion of the middle cerebral artery (MCAO) Lentivirus vectors altering ZFAS1, miR-144-5p or FGF7 expression were injected into rats before MCAO. Then, ZFAS1, miR-144-5p, and FGF7 levels were detected, the inflammatory factor level, oxidative stress level, angiogenesis, neurological function injury and neuronal apoptosis were assessed. The binding relations among ZFAS1, miR-144-5p and FGF7 were validated. ZFAS1 and FGF7 expression was elevated, while miR-144-5p expression was reduced in FCI rats. Decreased ZFAS1 or FGF7 or enriched miR-144-5p repressed the inflammatory response, oxidative stress, neuronal apoptosis, while it improved angiogenesis, and neurological function recovery; while up-regulated ZFAS1 exerted opposite effects. The augmented miR-144-5p or silenced FGF7 reversed the effects of enriched ZFAS1. ZFAS1 sponged miR-144-5p that targeted FGF7. Inhibition of lncRNA ZFAS1 improves functional recovery and angiogenesis after FCI via miR-144-5p/FGF7 axis. This study provides novel therapeutic targets for FCI treatment.
Collapse
Affiliation(s)
- Tong Li
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Bai Ling Qing
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Yan Deng
- Department of Medical Records, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Xian Ting Que
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Cheng Zhi Wang
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Hua Wen Lu
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Shao Hua Wang
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Zi Jun Wang
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| |
Collapse
|
25
|
Bazhanova E, Kozlov A. Mechanisms of apoptosis in drug-resistant epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:43-50. [DOI: 10.17116/jnevro202212205143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Wang G, Zhou Y, Zhong T, Song A, Xue Q. The role of blood lnc-ZFAS1 in acute ischemic stroke: correlation with neurological impairment, inflammation, and survival profiles. J Clin Lab Anal 2021; 36:e24219. [PMID: 34970793 PMCID: PMC8841186 DOI: 10.1002/jcla.24219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Background Long non‐coding RNA zinc finger antisense 1 (lnc‐ZFAS1) has been reported to inhibit neuronal damage in acute ischemic stroke (AIS). However, the role of lnc‐ZFAS1 in AIS patients remains unclear. Therefore, we assessed the relationship of lnc‐ZFAS1 with neurological impairment, inflammation, and prognosis in AIS patients. Methods Totally, 241 AIS patients and 120 controls were enrolled. lnc‐ZFAS1 in peripheral blood mononuclear cells was evaluated using reverse transcription‐quantitative polymerase chain reaction. Besides, a 3‐year follow‐up was conducted to assess recurrence‐free survival (RFS) and overall survival (OS) in AIS patients. Results lnc‐ZFAS1 was reduced in AIS patients compared to that in controls (Z = −10.693, p < 0.001). In AIS patients, lnc‐ZFAS1 was negatively correlated with National Institutes of Health Stroke Scale score (rs = −0.335, p < 0.001), C‐reactive protein (rs = −0.284, p < 0.001), tumor necrosis factor‐alpha (rs = −0.293, p < 0.001), interleukin‐1β (rs = −0.149, p = 0.021), and interleukin‐6 (rs = −0.161, p = 0.012), but not underlying diseases (all p > 0.05). Besides, lnc‐ZFAS1 was divided into high and low levels based on the median expression in AIS patients. Indeed, high lnc‐ZFAS1 predicted better RFS (χ2 = 6.222, p = 0.013); the 1‐year, 2‐year, and 3‐year RFS rates were 94.2%, 88.3%, and 85.5%, respectively, in patients with high lnc‐ZFAS1, then 87.5%, 79.2%, and 71.6%, respectively, in those with low lnc‐ZFAS1. However, lnc‐ZFAS1 was not correlated with OS (χ2 = 1.404, p = 0.236); the 1‐year, 2‐year, and 3‐year OS rates were 98.3%, 95.8%, and 94.0%, respectively, in patients with high lnc‐ZFAS1, then 96.7%, 93.9%, and 89.6%, respectively, in those with low lnc‐ZFAS1. Conclusion Lower lnc‐ZFAS1 expression is connected with increased neurological impairment and inflammation as well as worse RFS in AIS patients.
Collapse
Affiliation(s)
- Gang Wang
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Ying Zhou
- Department of ICU, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Tingting Zhong
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Aixia Song
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Qian Xue
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
27
|
Ebrahimi R, Golestani A. The emerging role of noncoding RNAs in neuroinflammation: Implications in pathogenesis and therapeutic approaches. J Cell Physiol 2021; 237:1206-1224. [PMID: 34724212 DOI: 10.1002/jcp.30624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Noncoding RNAs (ncRNAs) are important regulators of gene expression in different cell processes. Due to their ability in monitoring neural development genes, these transcripts confer neurons with the potential to exert broad control over the expression of genes for performing neurobiological functions. Although the change of ncRNA expression in different neurodegenerative diseases has been reviewed elsewhere, only recent evidence drove our attention to unravel the involvement of these molecules in neuroinflammation within these devastating disorders. Remarkably, the interactions between ncRNAs and inflammatory pathways are not fully recognized. Therefore, this review has focused on the interplay between diverse inflammatory pathways and the related ncRNAs, including microRNAs, long noncoding RNAs, and competing endogenous RNAs in Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, multiple sclerosis, Huntington's disease, and prion diseases. Providing novel insights in the field of combining biomarkers is a critical step for using them as diagnostic tools and therapeutic targets in clinical settings.
Collapse
Affiliation(s)
- Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Yuan L, Xu H, Guo R, Lu T, Li X. Long non-coding RNA ZFAS1 alleviates bupivacaine-induced neurotoxicity by regulating the miR-421/zinc finger protein564 (ZNF564) axis. Bioengineered 2021; 12:5231-5240. [PMID: 34414857 PMCID: PMC8806570 DOI: 10.1080/21655979.2021.1960776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This research aimed to explore the biological role of long non-coding RNA (lncRNA) ZFAS1 in bupivacaine-induced neurotoxicity. The levels of lncRNA ZFAS1, miR-421, and zinc finger protein 564 (ZNF564) were detected by RT-qPCR. MTT and TUNEL assays were utilized to evaluate cell viability and apoptosis, respectively. Caspase-3 activity was measured by the caspase-3 activity assay kit. The binding ability between miR-421 and ZFAS1 or ZNF564 was confirmed by Rip and dual-luciferase reporter assays. In this study, it was found that the levels of ZFAS1 and ZNF564 were gradually upregulated and miR-421 expression was downregulated with increasing concentrations of bupivacaine. Functional assays indicated that the silencing of ZFAS1 suppressed cell viability and facilitated cell apoptosis of SH-SY5Y cells, while overexpression of ZFAS1 had the opposite effects. Moreover, it was identified that miR-421 was a target of ZFAS1, and ZFAS1 regulated the bupivacaine-induced neurotoxicity via miR-421. In addition, we confirmed that ZNF564 was a downstream target of miR-421. The upregulation of miR-421 decreased the cell viability, and increased the cell apoptosis rate and caspase-3 activity, while the upregulation of ZND564 partially abolished these effects. Finally, it was demonstrated that ZFAS1 could upregulate the expression of ZNF564 by targeting miR-421. In conclusion, our results demonstrated that ZFAS1 alleviated bupivacaine-induced neurotoxicity through the miR-421/ZNF564 axis, suggesting a new strategy for the amelioration of bupivacaine-induced neurotoxicity.
Collapse
Affiliation(s)
- Liuqing Yuan
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Houren Xu
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Rui Guo
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Ting Lu
- Department of Anesthesiology, Jiangsu Province Hospital, Nanjing, Jiangsu, P.R. China
| | - Xiaoling Li
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| |
Collapse
|
29
|
Ghafouri-Fard S, Kamali MJ, Abak A, Shoorei H, Taheri M. LncRNA ZFAS1: Role in tumorigenesis and other diseases. Biomed Pharmacother 2021; 142:111999. [PMID: 34385106 DOI: 10.1016/j.biopha.2021.111999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 12/28/2022] Open
Abstract
Residing on chromosome 20q13.13, Zinc Finger NFX1-Type Containing 1 (ZNFX1) antisense RNA 1 (ZFAS1) is a transcript which has been primarily recognized as a modulator of differentiation of alveolar and epithelial cell in the mammary gland. This long non-coding RNA (lncRNA) partakes in the molecular cascades leading to several non-neoplastic conditions such as osteoarthritis, epilepsy, rheumatoid arthritis, atherosclerosis, pulmonary fibrosis, myocardial infarction, and cardiac dysfunction. More importantly, ZFAS1 is considered as an oncogene in almost all types of cancers. Using expression amounts of ZFAS1, it is possible to forecast the clinical outcome of patients with different neoplasms such as colorectal cancer, gastric cancer, cholangiocarcinoma, hepatoblastoma, and other types of cancer. We describe the role of ZFAS1 in the development of neoplastic and non-neoplastic disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Chen Y, Wei Z, Liu J, Xie H, Wang B, Wu J, Zhu Z, Fan Y. Long noncoding RNA ZFAS1 aggravates spinal cord injury by binding with miR-1953 and regulating the PTEN/PI3K/AKT pathway. Neurochem Int 2021; 147:104977. [PMID: 33524472 DOI: 10.1016/j.neuint.2021.104977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/22/2023]
Abstract
Multiple evidence has shown that long non-coding RNAs (lncRNAs) are novel modulators in the development of many neurological diseases, including spinal cord injury (SCI). Recently, a novel lncRNA zinc finger antisense 1 (ZFAS1) has been found to facilitate the development of many human diseases. However, the effect of ZFAS1 in SCI has not been explored. In the present study, we used the SCI mouse models and LPS-treated BV-2 cellular models to explore the role of ZFAS1 in SCI. Basso Mouse Scale score was applied to reveal locomotor function. Cresyl violet staining was used to reveal volume of spared myelin around the lesion in the injured cord. RIP and luciferase reporter assay were applied to detect binding capacity among RNAs. Next, ZFAS1 was identified to be upregulated in spinal cord tissues of SCI mice. ZFAS1 knockdown promoted functional recovery and inhibited cell apoptosis and the inflammatory response in SCI mice. ZFAS1 bound with microRNA 1953 (miR-1953), and miR-1953 was downregulated in spinal cord tissues of SCI mice. Furthermore, we confirmed that ZFAS1 promoted SCI progression via binding with miR-1953. In addition, phosphatase and tensin homolog (PTEN) was verified to be a downstream target for miR-1953 in vitro, and PTEN was upregulated in spinal cord tissues of SCI mice. Finally, we illustrated that ZFAS1 inactivated the PI3K/AKT pathway through upregulation of PTEN. In conclusion, our study revealed that ZFAS1 facilitated SCI by binding with miR-1953 and regulating the PTEN/PI3K/AKT pathway, which may provide a potential novel insight for treatment of SCI.
Collapse
Affiliation(s)
- Yunxiang Chen
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine (Jinhua Municipal Central Hospital), Jinhua, 321000, Zhejiang, China
| | - Zijian Wei
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China; Department of Spine Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Jun Liu
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China; Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hao Xie
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Binbin Wang
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Ji Wu
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Zezhang Zhu
- Department of Spine Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China; Department of Spine Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Yuejun Fan
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine (Jinhua Municipal Central Hospital), Jinhua, 321000, Zhejiang, China.
| |
Collapse
|
31
|
Silencing long non-coding RNA zinc finger antisense 1 restricts secondary cerebral edema and neuron injuries after traumatic brain injury. Neurosci Lett 2021; 756:135958. [PMID: 34000346 DOI: 10.1016/j.neulet.2021.135958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the interaction of long non-coding RNA zinc finger antisense 1 (lncRNA ZFAS1) in secondary cerebral edema (CE) and neuron injuries after traumatic brain injury (TBI) in a mouse model. METHODS TBI mouse models was established by free-fall strike. Adeno-associated virus-short hairpin-ZFAS1 was administrated into mice via intracerebral injection to downregulate lncRNA ZFAS1. LncRNA ZFAS1 in mouse brain was examined. Neurological severity score (NSS), cerebral water content (CWC) and lesion volume were measured. The number of TUNEL-positive cells in brain tissue was accessed. Bax and cleaved caspase-3 in brain tissues were measured by western blot analysis, and pro-inflammatory factor levels were detected. RESULTS LncRNA ZFAS1 expression was upregulated in mouse brain tissues 3 days after TBI modelling. After the knockdown of lncRNA ZFAS1, NSS, CWC and lesion volume were decreased, apoptotic gene levels were decreased and pro-inflammatory cytokine levels were reduced, suggesting that lncRNA ZFAS1 knockdown could alleviate TBI-induced brain injuries in mice. CONCLUSION This study demonstrated that silencing lncRNA ZFAS1 inhibited TBI by quenching apoptosis, reducing inflammatory response and improving the recovery of neurological function in TBI mice. LncRNA ZFAS1 might function as a possible curative management in secondary CE and neuron injury in TBI mice.
Collapse
|
32
|
Mingione A, Ottaviano E, Barcella M, Merelli I, Rosso L, Armeni T, Cirilli N, Ghidoni R, Borghi E, Signorelli P. Cystic Fibrosis Defective Response to Infection Involves Autophagy and Lipid Metabolism. Cells 2020; 9:cells9081845. [PMID: 32781626 PMCID: PMC7463682 DOI: 10.3390/cells9081845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease, with 70% of patients developing a proteinopathy related to the deletion of phenylalanine 508. CF is associated with multiple organ dysfunction, chronic inflammation, and recurrent lung infections. CF is characterized by defective autophagy, lipid metabolism, and immune response. Intracellular lipid accumulation favors microbial infection, and autophagy deficiency impairs internalized pathogen clearance. Myriocin, an inhibitor of sphingolipid synthesis, significantly reduces inflammation, promotes microbial clearance in the lungs, and induces autophagy and lipid oxidation. RNA-seq was performed in Aspergillusfumigatus-infected and myriocin-treated CF patients’ derived monocytes and in a CF bronchial epithelial cell line. Fungal clearance was also evaluated in CF monocytes. Myriocin enhanced CF patients’ monocytes killing of A. fumigatus. CF patients’ monocytes and cell line responded to infection with a profound transcriptional change; myriocin regulates genes that are involved in inflammation, autophagy, lipid storage, and metabolism, including histones and heat shock proteins whose activity is related to the response to infection. We conclude that the regulation of sphingolipid synthesis induces a metabolism drift by promoting autophagy and lipid consumption. This process is driven by a transcriptional program that corrects part of the differences between CF and control samples, therefore ameliorating the infection response and pathogen clearance in the CF cell line and in CF peripheral blood monocytes.
Collapse
Affiliation(s)
- Alessandra Mingione
- Biochemistry and Molecular Biology Laboratory, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (A.M.); (R.G.)
| | - Emerenziana Ottaviano
- Laboratory of Clinical Microbiology, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (E.O.); (M.B.); (E.B.)
| | - Matteo Barcella
- Laboratory of Clinical Microbiology, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (E.O.); (M.B.); (E.B.)
| | - Ivan Merelli
- National Research Council of Italy, Institute for Biomedical Technologies, Via Fratelli Cervi 93, 20090 Milan, Italy;
| | - Lorenzo Rosso
- Health Sciences Department, University of Milan, Thoracic surgery and transplantation Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Natalia Cirilli
- Cystic Fibrosis Referral Care Center, Mother-Child Department, United Hospitals Le Torrette, 60126 Ancona, Italy;
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (A.M.); (R.G.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Elisa Borghi
- Laboratory of Clinical Microbiology, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (E.O.); (M.B.); (E.B.)
| | - Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (A.M.); (R.G.)
- Correspondence:
| |
Collapse
|