1
|
López-Rosas CA, González-Periañez S, Pawar TJ, Zurutuza-Lorméndez JI, Ramos-Morales FR, Olivares-Romero JL, Saavedra Vélez MV, Hernández-Rosas F. Anticonvulsant Potential and Toxicological Profile of Verbesina persicifolia Leaf Extracts: Evaluation in Zebrafish Seizure and Artemia salina Toxicity Models. PLANTS (BASEL, SWITZERLAND) 2025; 14:1078. [PMID: 40219149 PMCID: PMC11991391 DOI: 10.3390/plants14071078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
Epilepsy is a chronic neurological disorder with significant treatment challenges, necessitating the search for alternative therapies. This study evaluates the anticonvulsant activity and toxicological profile of Verbesina persicifolia leaf extracts. Methanolic and sequential fractions (hexane, dichloromethane, ethyl acetate, and methanol) were tested using a pentylenetetrazole (PTZ)-induced seizure model in zebrafish (Danio rerio), measuring seizure latency, severity, and survival rates. Phytochemical screening confirmed the presence of flavonoids, alkaloids, and steroids, suggesting potential neuroactive properties. The hexane extracts significantly increased seizure latency and survival rates, with co-administration of hexane extract (5 µg/mL) and diazepam (35.5 µM) further enhancing these effects. Toxicity assessment in Artemia salina indicated low to moderate toxicity in methanolic extracts, while sequential fractions exhibited higher toxicity, particularly in hexane and ethyl acetate extracts. These findings suggest that V. persicifolia extracts exert anticonvulsant effects, likely through GABAergic modulation, and exhibit a favorable safety profile at therapeutic doses. The results support further investigations to isolate active constituents, confirm their mechanisms of action, and explore their potential as plant-derived anticonvulsant agents.
Collapse
Affiliation(s)
- Carlos Alberto López-Rosas
- Instituto de Química Aplicada, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico; (C.A.L.-R.); (S.G.-P.); (F.R.R.-M.)
- Instituto de Neuroetología, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Col. Zona UV, Xalapa 91090, Mexico
| | - Santiago González-Periañez
- Instituto de Química Aplicada, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico; (C.A.L.-R.); (S.G.-P.); (F.R.R.-M.)
| | - Tushar Janardan Pawar
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, Xalapa 91073, Mexico; (T.J.P.); (J.L.O.-R.)
| | - Jorge Iván Zurutuza-Lorméndez
- Centro de Salud Urbano José A. Maraboto Carreón, Servicios de Salud de Veracruz, Santiago Bonilla No 85, Col. Obrero Campesino, Xalapa 91020, Mexico;
| | - Fernando Rafael Ramos-Morales
- Instituto de Química Aplicada, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico; (C.A.L.-R.); (S.G.-P.); (F.R.R.-M.)
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Col. Zona UV, Xalapa 91090, Mexico
| | - José Luís Olivares-Romero
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, Xalapa 91073, Mexico; (T.J.P.); (J.L.O.-R.)
| | - Margarita Virginia Saavedra Vélez
- Instituto de Neuroetología, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Col. Zona UV, Xalapa 91090, Mexico
| | - Fabiola Hernández-Rosas
- Centro de Investigación, Universidad Anahuac Querétaro, El Marqués, Querétaro 76246, Mexico
- Escuela de Ingeniería Biomédica, División de Ingenierías, Universidad Anahuac Querétaro, El Marqués, Querétaro 76246, Mexico
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| |
Collapse
|
2
|
Grabarczyk M, Justyńska W, Czpakowska J, Smolińska E, Bielenin A, Glabinski A, Szpakowski P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024; 13:1364. [PMID: 39594506 PMCID: PMC11591432 DOI: 10.3390/antiox13111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols are an important group of biologically active compounds present in almost all food sources of plant origin and are primarily known for their anti-inflammatory and antioxidative capabilities. Numerous studies have indicated their broad spectrum of pharmacological properties and correlations between their increased supply in the human diet and lower prevalence of various disorders. The positive effects of polyphenols application are mostly discussed in terms of cardiovascular system well-being. However, in recent years, they have also increasingly mentioned as prophylactic and therapeutic factors in the context of neurological diseases, being able to suppress the progression of such disorders and soothe accompanying symptoms. Among over 8000 various compounds, that have been identified, the most widely examined comprise resveratrol, curcumin, luteolin and quercetin. This review focuses on in vitro assessments, animal models and clinical trials, reflecting the most actual state of knowledge, of mentioned polyphenols' medicinal capabilities in epilepsy, demyelinating and neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Mikołaj Grabarczyk
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Weronika Justyńska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Ewa Smolińska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Aleksandra Bielenin
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| |
Collapse
|
3
|
Zylberberg B, Poodts M, Roncoroni J, Coronel MF, Mazzone GL. Resveratrol evokes neuroprotective effects and improves foot stance following kainate-induced excitotoxic damage to the mouse spinal cord. Neuropharmacology 2024; 250:109906. [PMID: 38494123 DOI: 10.1016/j.neuropharm.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Excitotoxicity, characterized by over-activation of glutamate receptors, is a major contributor to spinal cord injury (SCI) pathophysiology, resulting in neuronal death and loss of locomotor function. In our previous in vitro studies, we showed that excitotoxicity induced by the glutamate analogue kainate (KA) leads to a significant reduction in the number of neurons, providing a model for SCI. Our current objective was to assess the neuroprotective role of resveratrol (RESV), a natural polyphenol, following KA-induced SCI. In vivo excitotoxicity was induced by intraspinal injection of KA immediately followed by RESV administration to Balb/C adult male mice. In neonatal mouse spinal cord preparations, excitotoxicity was transiently induced by bath-applied KA, either with or without RESV. KA administration resulted in a significant deterioration in hindlimb motor coordination and balance during locomotion, which was partially reverted by RESV. Additionally, RESV preserved neurons in both dorsal and ventral regions. Sirtuin 2 (SIRT2) immunoreactive signal was increased by RESV, while the selective SIRT1 inhibitor 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide (EX-527) attenuated RESV neuroprotective effects. These findings suggest that RESV attenuation of excitotoxic-induced neuronal loss and locomotor deficits is mediated, at least in part, through the activation of SIRT1, potentially involving SIRT2 as well. Indeed, our results highlight the potential use of RESV to enhance neuroprotective strategies for SCI.
Collapse
Affiliation(s)
- Benjamín Zylberberg
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| | - Martina Poodts
- Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| | - Julieta Roncoroni
- Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| | - M Florencia Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| | - Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Socała K, Żmudzka E, Lustyk K, Zagaja M, Brighenti V, Costa AM, Andres-Mach M, Pytka K, Martinelli I, Mandrioli J, Pellati F, Biagini G, Wlaź P. Therapeutic potential of stilbenes in neuropsychiatric and neurological disorders: A comprehensive review of preclinical and clinical evidence. Phytother Res 2024; 38:1400-1461. [PMID: 38232725 DOI: 10.1002/ptr.8101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Neuropsychiatric disorders are anticipated to be a leading health concern in the near future, emphasizing an outstanding need for the development of new effective therapeutics to treat them. Stilbenes, with resveratrol attracting the most attention, are an example of multi-target compounds with promising therapeutic potential for a broad array of neuropsychiatric and neurological conditions. This review is a comprehensive summary of the current state of research on stilbenes in several neuropsychiatric and neurological disorders such as depression, anxiety, schizophrenia, autism spectrum disorders, epilepsy, traumatic brain injury, and neurodegenerative disorders. We describe and discuss the results of both in vitro and in vivo studies. The majority of studies concentrate on resveratrol, with limited findings exploring other stilbenes such as pterostilbene, piceatannol, polydatin, tetrahydroxystilbene glucoside, or synthetic resveratrol derivatives. Overall, although extensive preclinical studies show the potential benefits of stilbenes in various central nervous system disorders, clinical evidence on their therapeutic efficacy is largely missing.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
5
|
Boopathi S, Haridevamuthu B, Gandhi A, Nayak SPRR, Sudhakaran G, Rajagopal R, Arokiyaraj S, Arockiaraj J. Neurobehavioral impairments from chromium exposure: Insights from a zebrafish model and drug validation. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109780. [PMID: 37884255 DOI: 10.1016/j.cbpc.2023.109780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
We have developed a zebrafish model to explore the alterations in neurobehaviors resulting from both acute and chronic exposure to chromium (Cr). Zebrafish exposed to half (HC group: 19.7 mg/L) and a quarter (LC group: 9.85 mg/L) of the LD50 concentration of Cr for a span of 2 weeks exhibited aberrant locomotion, heightened anxiety, cognitive impairment, and reduced aggression - hallmark traits reminiscent of an Alzheimer's Disease (AD)-like syndrome. Furthermore, zebrafish exposed to an environmentally relevant concentration of Cr (EC group: 100 μg/L) for an extended period of 9 weeks exhibited behaviors comparable to those observed in the HC group. Moreover, the study investigated the neuroprotective effects of donepezil (Don), galantamine (Gal) and resveratrol (Res) drugs in response to neurobehavioral impairments induced by Cr (VI) exposure in zebrafish. Don and Res effectively protect the zebrafish from Cr (VI)-induced anxiety, and memory impairment. Furthermore, Cr (VI) exposure induced heightened oxidative stress while simultaneously diminishing antioxidant enzyme levels. Remarkably, these effects were counteracted in the drug-treated groups. Likewise, exposure to Cr (VI) led to an increase in the expression of genes linked to AD and neuroinflammation. Nevertheless, drug treatment reversed this effect in Cr (VI)-exposed fish. The results of our study highlight the potentials of zebrafish model in demonstrating neurobehavioral impairments induced by Cr (VI), thereby paving the way for its utilization in vivo neurobehaviors investigations and pharmaceutical screening.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India. https://twitter.com/@iamboopathi
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Akash Gandhi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
6
|
Chitolina R, Gallas-Lopes M, Reis CG, Benvenutti R, Stahlhofer-Buss T, Calcagnotto ME, Herrmann AP, Piato A. Chemically-induced epileptic seizures in zebrafish: A systematic review. Epilepsy Res 2023; 197:107236. [PMID: 37801749 DOI: 10.1016/j.eplepsyres.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.
Collapse
Affiliation(s)
- Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Neurobiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab), Departamento de bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Fatkullin R, Kalinina I, Naumenko N, Naumenko E. Use of Micronization and Complex Coacervation to Preserve Antioxidant Properties of Flavonoids. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:9456931. [PMID: 37745180 PMCID: PMC10516702 DOI: 10.1155/2023/9456931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
The plant flavonoids taxifolin and rutin are among the best known and best studied antioxidants. In addition to their antioxidant properties, other pharmacobiological properties have been established for these substances. At the same time, taxifolin and rutin are chemically labile. They are prone to oxidative degradation and have poor water solubility. Under conditions of their real consumption, all this can lead to a significant reduction or complete loss of bioactivity of these flavonoids. Flavonoid modification and encapsulation techniques can be used to overcome these barrier factors. The use of micronization process for taxifolin and rutin allows changing the lipophilicity values of antioxidants. For micronized taxifolin, the log P value is 1.3 (1.12 for the control forms), and for rutin, it was 0.15 (-0.64 for the control forms). The antioxidant activity of micronized flavonoids has increased about 1.16 times compared to control forms. The present study evaluates the possibility of using encapsulation of premyconized flavonoids by complex coacervation, in order to preserve their antioxidant properties. The results of an in vitro digestion study show that the encapsulated forms of antioxidants retain their bioactivity and bioavailability better than their original forms. The bioavailability indices for the encapsulated forms of flavonoids are more than 1.6 times higher than for their original forms. The digested fractions of the encapsulated properties reveal better antioxidant properties than their original forms in in vitro tests evaluating the antioxidant properties on cultures of the protozoan Paramecium caudatum and human neuroblastoma SH-SY5Y cells. Encapsulated rutin indicates the highest activity, 0.64 relative to PMA. Thus, the studies represent the feasibility of using encapsulation to protect flavonoids during digestion and ensure the preservation of their antioxidant properties.
Collapse
Affiliation(s)
- Rinat Fatkullin
- Department of Food and Biotechnology, South Ural State University (National Research University), 76 Lenin Avenue, Chelyabinsk 454080, Russia
| | - Irina Kalinina
- Department of Food and Biotechnology, South Ural State University (National Research University), 76 Lenin Avenue, Chelyabinsk 454080, Russia
| | - Natalya Naumenko
- Department of Food and Biotechnology, South Ural State University (National Research University), 76 Lenin Avenue, Chelyabinsk 454080, Russia
| | - Ekaterina Naumenko
- Department of Food and Biotechnology, South Ural State University (National Research University), 76 Lenin Avenue, Chelyabinsk 454080, Russia
| |
Collapse
|
8
|
de Mello Pereira D, Mazon SC, Mendes EJ, Brunetto R, Ozelame B, Zembruski FS, Dalcin ALF, Marsaro IB, Aguiar GP, Lutinski JA, Tavella RA, da Silva Júnior FMR, Oliveira JV, Müller LG, Fiori MA, Sachett A, Siebel AM. Recycled polyvinyl chloride microplastics: investigation of environmentally relevant concentrations on toxicity in adult zebrafish. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:347-360. [PMID: 37073468 DOI: 10.1080/15287394.2023.2203154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recycled polyvinyl chloride (PVC) microplastics have been detected in the aquatic environment. These recycled microparticles contain chemicals that are released into the environment reaching different organisms. Although the problem of the presence of recycled PVC microparticles in the environment is evident, the toxicological consequences of this contaminant to exposed organisms remains to be better determined. The aim of this study was to investigate the toxicity attributed to exposure to environmentally relevant concentrations of recycled PVC microplastics in adult zebrafish (Danio rerio). The experimental groups were: negative control, vehicle control, positive control, and recycled microplastics (20 ± 5 μm) at 5, 10 or 20 μg/L. Zebrafish (D. rerio) were exposed to respective treatments for 96 hr. Locomotion and oxidative status parameters were measured and mortality recorded. The positive control group presented increased mortality rates and decreased locomotor activity. Animals from the vehicle group did not show marked differences. Finally, no significant disturbances were found in survival rate, locomotion pattern and oxidative status of animals exposed to recycled PVC microparticles at 5, 10 or 20 μg/L. Taken together our results suggest that recycled PVC microplastics in this particle size range do not appear to exert harmful effects on exposed adult D. rerio. However, these results need to be carefully observed due to limitations including size of particle and duration of exposure parameters that might affect ecological consequences. It is suggested that additional studies applying other particles sizes and chronic exposure are needed to more comprehensively verify the toxicity of the contaminant investigated here.
Collapse
Affiliation(s)
- Danieli de Mello Pereira
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Samara Cristina Mazon
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Ellen Jaqueline Mendes
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Raísa Brunetto
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Bruna Ozelame
- Curso de Farmácia, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | | | - Ana Laura Fiori Dalcin
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | | | - Gean Pablo Aguiar
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Junir Antônio Lutinski
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Ronan Adler Tavella
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Flávio Manoel Rodrigues da Silva Júnior
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - J Vladimir Oliveira
- Departamento de Engenharia Quíimica e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Liz Girardi Müller
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Márcio Antônio Fiori
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
- Departamento de Física, Universidade Tecnológica Federal do Paraná, Pato Branco, Brazil
| | - Adrieli Sachett
- Curso de Farmácia, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Anna Maria Siebel
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
9
|
Jiang X, Wang J, Liu J, Zhu H, Hu J, Sun X, Zhou W. Resveratrol ameliorates penconazole-induced cardiotoxicity by inhibition of oxidative stress and apoptosis in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114865. [PMID: 37018857 DOI: 10.1016/j.ecoenv.2023.114865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Penconazole (PEN) is a typical systemic triazole fungicide with cardiac toxic effects. Resveratrol (RES) is a natural polyphenolic phytochemical with antioxidation properties. This study aimed to investigate if RES could protect against PEN-induced cardiotoxicity and to determine the underlying mechanisms. Zebrafish embryos were exposed to 0, 0.5, 1 and 2 mg/L of PEN from 4 to 96 h post fertilization (hpf) and cardiac developmental toxicity was assessed. Our results showed that PEN decreased hatching rate, survival rate, heart rate and body length, with increased malformation rate and spontaneous movement. PEN induced pericardial edema and abnormal cardiac structure in myl7:egfp transgenic zebrafish, as well as downregulation of cardiac development related genes (nkx2.5, tbx2.5, gata4, noto, and vmhc). In addition, PEN elevated oxidative stress via reactive oxygen species (ROS) accumulation and triggered cardiomyocytic apoptosis by upregulation of p53, bcl-2, bax and caspase 3. These adverse outcomes were counteracted by RES, indicating that RES ameliorated PEN-induced cardiotoxicity by inhibiting oxidative stress and apoptosis in zebrafish. Taken together, this study revealed the important role of oxidative stress in PEN-induced cardiotoxicity and identified dietary RES supplementation as a novel strategy to mitigate its toxicity.
Collapse
Affiliation(s)
- Xue Jiang
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Jie Wang
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Jin Liu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Haiyan Zhu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Jian Hu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Xingzhen Sun
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China
| | - Wendi Zhou
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, PR China.
| |
Collapse
|
10
|
Chen J, Zhang M, Zou H, Aniagu S, Jiang Y, Chen T. Synergistic protective effects of folic acid and resveratrol against fine particulate matter-induced heart malformations in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113825. [PMID: 36068752 DOI: 10.1016/j.ecoenv.2022.113825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Ambient fine particulate matter (PM2.5) is a major environmental health problem worldwide, and recent studies indicate that maternal PM2.5 exposure is closely associated with congenital heart diseases (CHDs) in offspring. We previously found that supplementation with folic acid (FA) or Resveratrol (RSV) could protect against heart defects in zebrafish embryos exposed to extractable organic matter (EOM) from PM2.5 by targeting aryl hydrocarbon receptor (AHR) signaling and reactive oxygen species (ROS) production respectively. Thus, we hypothesized that FA combined with RSV may have a synergistic protective effect against PM2.5-induced heart defects. To test our hypothesis, we treated zebrafish embryos with EOM in the presence or absence of FA, RSV or a combination of both. We found that RSV and FA showed a clear synergistic protection against EOM-induced heart defects in zebrafish embryos. Further studies showed that FA and RSV suppressed EOM-induced AHR activity and ROS generation respectively. Although only RSV inhibited EOM-induced apoptosis, FA enhanced the inhibitory effect of RSV. Moreover, vitamin C (VC), a typical antioxidant, also exhibits a synergistic inhibitory effect with FA on EOM-induced apoptosis and heart defects. In conclusion, supplementation with FA and RSV have a synergistic protective effect against PM2.5-induced heart defects in zebrafish embryos by targeting AHR activity and ROS production respectively. Our results indicate that, in the presence of antioxidants, FA even at a low concentration level could protect against the high risk of CHDs caused by air pollution.
Collapse
Affiliation(s)
- Jin Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Mingxuan Zhang
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Hongmei Zou
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Sachett A, Gallas-Lopes M, Benvenutti R, Marcon M, Linazzi AM, Aguiar GPS, Herrmann AP, Oliveira JV, Siebel AM, Piato A. Non-micronized and micronized curcumin do not prevent the behavioral and neurochemical effects induced by acute stress in zebrafish. Pharmacol Rep 2022; 74:736-744. [DOI: 10.1007/s43440-022-00389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
|
12
|
Pedroso J, Schneider SE, Lima-Rezende CA, Aguiar GPS, Müller LG, Oliveira JV, Piato A, Siebel AM. Evaluation of Resveratrol and Piceatannol Anticonvulsant Potential in Adult Zebrafish (Danio rerio). Neurochem Res 2022; 47:3250-3260. [PMID: 35750876 DOI: 10.1007/s11064-022-03656-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/14/2023]
Abstract
Epilepsy is a common neurological disorder which affects 50 million people worldwide. Patients with epilepsy may present cognitive deficits and psychological impairment. Currently, 30% of patients fail to respond to any available antiseizure drug, and a significant number of patients do not well tolerate the offered treatments. Then, it is necessary to find out alternatives for controlling epileptic seizures. Studies have shown that despite its neuroprotective effects, resveratrol shows poor anticonvulsant properties. Resveratrol analog, piceatannol, possesses higher biological activity than resveratrol and could be an alternative to control seizure. Thus, the present study investigated the effects of resveratrol and piceatannol in pentylenetetrazole-induced seizures in adult zebrafish (Danio rerio). Only the experimental positive control (diazepam) showed anticonvulsant effect in this study. In addition, no behavioral changes were observed 24 h after seizure occurrence. Finally, the expression of genes related to neuronal activity (c-fos), neurogenesis (p70S6Ka and p70S6Kb), inflammatory response (interleukin 1β), and cell apoptosis (caspase-3) did not change by pentylenetetrazole-induced seizures. Therefore, we failed to observe any anticonvulsant and neuroprotective potential of resveratrol and piceatannol in adult zebrafish. However, resveratrol and piceatannol benefits in epilepsy are not discharged, and more studies are necessary.
Collapse
Affiliation(s)
- Jefferson Pedroso
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Sabrina Ester Schneider
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Cássia Alves Lima-Rezende
- División Ornitología, Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina.,Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Gean Pablo S Aguiar
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Liz Girardi Müller
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - J Vladimir Oliveira
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.,Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Angelo Piato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anna Maria Siebel
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil. .,Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.
| |
Collapse
|
13
|
Shaw PAG, Panda SK, Stanca A, Luyten W. Optimization of a locomotion-based zebrafish seizure model. J Neurosci Methods 2022; 375:109594. [PMID: 35421798 DOI: 10.1016/j.jneumeth.2022.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Locomotor assays in zebrafish have emerged as a screening test in early drug discovery for antiseizure compounds. However, parameters differ considerably between published studies, which may explain some discrepant results with (candidate) antiseizure medications. NEW METHOD We optimized a locomotor-based seizure assay in zebrafish with pentylenetetrazol (PTZ) as the pharmacological proconvulsant to generate a therapeutic window in which proconvulsant-treated zebrafish larvae could be discriminated from a non-treated control. To generate a reliable control, exposure time and concentration of valproate (VPA, anticonvulsant) was optimized. RESULTS Wells with one or three larvae show a similar PTZ dose-dependent increase in locomotion with less variability in motility for the latter. Zebrafish immersed in 10 mM PTZ showed a significant increase in movement with a sustained effect, without any indication of toxicity. Animals treated with 3 mM VPA showed the strongest reduction of PTZ-induced movement without toxicity. The decrease in PTZ-induced locomotion was greater after 18 h versus 2 h. COMPARISON WITH EXISTING METHOD(S) For the larval zebrafish PTZ-induced seizure model, varying experimental parameters have been reported in literature. Our results show that PTZ is often used at toxic concentrations, and we provide instead reliable conditions to quantify convulsant behaviour using an infrared-beam motility assay. CONCLUSIONS We recommend using three zebrafish larvae per well to quantify locomotion in 96-multiwell plates. Larvae should preferably be exposed to 10 mM PTZ for 1 h, consisting of 30 min acclimation and 30 min subsequent recording. As positive control for anticonvulsant activity, we recommend exposure to 3 mM VPA for 18 h before administration of PTZ.
Collapse
Affiliation(s)
| | - Sujogya Kumar Panda
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; Center of Environment Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India.
| | - Alexandru Stanca
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Walter Luyten
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Sachett A, Benvenutti R, Reis CG, Gallas-Lopes M, Bastos LM, Aguiar GPS, Herrmann AP, Oliveira JV, Siebel AM, Piato A. Micronized Curcumin Causes Hyperlocomotion in Zebrafish Larvae. Neurochem Res 2022; 47:2307-2316. [PMID: 35536434 DOI: 10.1007/s11064-022-03618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
Abstract
Zebrafish larvae have been widely used in neuroscience and drug research and development. In the larval stage, zebrafish present a broad behavioral repertoire and physiological responses similar to adults. Curcumin (CUR), a major component of Curcuma longa L. (Zingiberaceae), has demonstrated the ability to modulate several neurobiological processes relevant to mental disorders in animal models. However, the low bioavailability of this compound can compromise its in vivo biological potential. Interestingly, it has been shown that micronization can increase the biological effects of several compounds. Thus, in this study, we compared the effects of acute exposure for 30 min to the following solutions: water (control), 0.1% DMSO (vehicle), 1 μM CUR, or 1 μM micronized curcumin (MC) in zebrafish larvae 7 days post-fertilization (dpf). We analyzed locomotor activity (open tank test), anxiety (light/dark test), and avoidance behavior (aversive stimulus test). Moreover, we evaluated parameters of oxidative status (thiobarbituric acid reactive substances and non-protein thiols levels). MC increased the total distance traveled and absolute turn angle in the open tank test. There were no significant differences in the other behavioral or neurochemical outcomes. The increase in locomotion induced by MC may be associated with a stimulant effect on the central nervous system, which was evidenced by the micronization process.
Collapse
Affiliation(s)
- Adrieli Sachett
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Leonardo M Bastos
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Gean P S Aguiar
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó (Unochapecó), Chapecó, SC, Brazil
| | - Ana P Herrmann
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil.,Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - J Vladimir Oliveira
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó (Unochapecó), Chapecó, SC, Brazil.,Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Anna M Siebel
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó (Unochapecó), Chapecó, SC, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. .,Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
15
|
Siddiqui MA, Asad M, Akhter J, Hoda U, Rastogi S, Arora I, Aggarwal NB, Samim M. Resveratrol-Loaded Glutathione-Coated Collagen Nanoparticles Attenuate Acute Seizures by Inhibiting HMGB1 and TLR-4 in the Hippocampus of Mice. ACS Chem Neurosci 2022; 13:1342-1354. [PMID: 35385256 DOI: 10.1021/acschemneuro.2c00171] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Epilepsy is a relatively complicated neurological disorder that results in seizures. The use of resveratrol in treating seizures has been reported in recent studies. However, the low bioavailability of resveratrol and the difficulty of reaching the targeted location in the brain reduce its efficacy considerably. The side effects due to the higher concentration of drugs are another matter of concern. The purpose of the present study is to enhance the antiepileptic potential of resveratrol by delivering it to the brain's targeted location by encapsulating it in glutathione-coated collagen nanoparticles. The collagen nanoparticles increase the bioavailability of resveratrol, while the transport of resveratrol to its target location in the brain is facilitated by glutathione. By encapsulating resveratrol in glutathione-coated collagen nanoparticles, the concentration also substantially decreases. Resveratrol encapsulated in synthesized nanoparticles is referred to as nanoresveratrol. In the present study, nanoresveratrol effectiveness was studied through PTZ-induced seizures (PTZ-IS) and the increasing current electroshock (ICES) test. The efficacy of nanoresveratrol was further established using biochemical analysis, histopathological examinations, ELISA and real-time-PCR tests, and immunohistochemistry examination of the hippocampus of mice. Hence, this study is unique in the sense that it synthesized nanoresveratrol by using glutathione-coated collagen nanoparticles, followed by its application to treating seizures. On the basis of the study results, nanoresveratrol was found to be effective in preventing cognitive impairment in the mice and controlling epilepsy seizures to a greater extent than resveratrol. The proposed nanoformulation also reduces the concentration of resveratrol considerably. The present study results show that even 0.4 mg/kg of nanoresveratrol outperforms 40 mg/kg of resveratrol.
Collapse
Affiliation(s)
- Mobin A. Siddiqui
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Asad
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Juheb Akhter
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Ubedul Hoda
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Shweta Rastogi
- Department of Chemistry, Hansraj College, Delhi University, Delhi, 110007, India
| | - Indu Arora
- Department of Biomedical Sciences, Shaheed Rajguru College of Applied Sciences, New Delhi, 110096, India
| | - Nidhi B. Aggarwal
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
16
|
Huang Y, Zhang J, Tao Y, Ji C, Aniagu S, Jiang Y, Chen T. AHR/ROS-mediated mitochondria apoptosis contributes to benzo[a]pyrene-induced heart defects and the protective effects of resveratrol. Toxicology 2021; 462:152965. [PMID: 34597721 DOI: 10.1016/j.tox.2021.152965] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022]
Abstract
Benzo[a]pyrene (BaP), a prototypical polycyclic aromatic hydrocarbon, is widely present in the environment. BaP-induced heart defects have been frequently reported, but the underlying molecular mechanisms remain elusive. Here, we found that BaP increased heart malformations in zebrafish embryos in a concentration-dependent manner, which were attenuated by supplementation with either CH223191 (CH), an aryl hydrocarbon receptor (AHR) inhibitor, or N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger. While CH and NAC both inhibited BaP-induced ROS generation, NAC had no effect on BaP-induced AHR activation. We further demonstrated that BaP increased mitochondrial ROS, decreased mitochondrial membrane potential, and caused endogenous apoptosis, with all these effects being counteracted by supplementation with either CH or NAC. Resveratrol (RSV), a natural AHR antagonist and ROS scavenger, also counteracted the heart malformations caused by BaP. Further experiments showed that RSV attenuated BaP-induced oxidative stress, mitochondrial damage and apoptosis, but had no significant effect on AHR activation. In conclusion, our findings show that BaP induces oxidative stress via AHR activation, which causes mitochondria-mediated intrinsic apoptosis, resulting in heart malformations in zebrafish embryos, and that RSV had a protective effect against BaP-induced heart defects mainly by inhibiting oxidative stress rather than through antagonism of AHR activity.
Collapse
Affiliation(s)
- Yujie Huang
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jie Zhang
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yizhou Tao
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Garbinato C, Lima-Rezende CA, Schneider SE, Pedroso J, Dos Santos AE, Petry F, Aguiar GPS, Müller LG, Lanza M, Piato A, Vladimir Oliveira J, Siebel AM. Investigation on the Anticonvulsant Potential of Luteolin and Micronized Luteolin in Adult Zebrafish (Danio rerio). Neurochem Res 2021; 46:3025-3034. [PMID: 34309774 DOI: 10.1007/s11064-021-03409-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy affects around 50 million people worldwide, and an important number of patients (30%) fail to respond to any available antiepileptic drug. Previous studies have shown that luteolin presents a promising potential as an anticonvulsant. On the other hand, different studies showed that luteolin does not promote anticonvulsant effects. Therefore, there is a lack of consensus about the use of luteolin for seizure control. Luteolin low bioavailability could be a limiting factor to obtain better results. Attractively, micronization technology has been applied to improve flavonoids bioavailability. Thus, the present study aimed to investigate the effects of luteolin on its raw form and micronized luteolin in a PTZ-induced seizure model in adult zebrafish (Danio rerio). Our results demonstrate that luteolin and micronized luteolin did not block PTZ-induced seizures in adult zebrafish. Also, luteolin and micronized luteolin did not provoke behavioral changes. Finally, our results show that 24 h after seizure occurrence, no changes were detected for p70S6Kb, interleukin 1β, and caspase-3 transcript levels. Altogether, we failed to observe an anticonvulsant potential of luteolin in adult zebrafish, even in its micronized form. However, we recommend new studies to investigate luteolin benefits in epilepsy.
Collapse
Affiliation(s)
- Cristiane Garbinato
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Cássia Alves Lima-Rezende
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.,División Ornitología, Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina
| | - Sabrina Ester Schneider
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Jefferson Pedroso
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Aline E Dos Santos
- Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fernanda Petry
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Gean Pablo S Aguiar
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Liz Girardi Müller
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Marcelo Lanza
- Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Angelo Piato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - J Vladimir Oliveira
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.,Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Anna Maria Siebel
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil. .,Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.
| |
Collapse
|