1
|
Solomon P, Kaurani L, Budde M, Guiné JB, Krüger DM, Riquin K, Pena T, Burkhardt S, Fourgeux C, Adorjan K, Heilbronner M, Kalman JL, Kohshour MO, Papiol S, Reich-Erkelenz D, Schaupp SK, Schulte EC, Senner F, Vogl T, Anghelescu IG, Arolt V, Baune BT, Dannlowski U, Dietrich DE, Fallgatter AJ, Figge C, Juckel G, Konrad C, Reimer J, Reininghaus EZ, Schmauß M, Spitzer C, Wiltfang J, Zimmermann J, Schütz AL, Sananbenesi F, Sauvaget A, Falkai P, Schulze TG, Fischer A, Heilbronner U, Poschmann J. Integrative analysis of miRNA expression profiles reveals distinct and common molecular mechanisms underlying broad diagnostic groups of severe mental disorders. Mol Psychiatry 2025:10.1038/s41380-025-03018-9. [PMID: 40263528 DOI: 10.1038/s41380-025-03018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Micro RNAs (miRNAs) play a crucial role as regulators of various biological processes and have been implicated in the pathogenesis of mental disorders such as schizophrenia and bipolar disorders. In this study, we investigate the expression patterns of miRNAs in the PsyCourse Study (n = 1786), contrasting three broad diagnostic groups: Psychotic (Schizophrenia-spectrum disorders), Affective (Bipolar Disorder I, II and recurrent Depression), and neurotypic healthy individuals. Through comprehensive analyses, including differential miRNA expression, miRNA transcriptome-wide association study (TWAS), and predictive modelling, we identified multiple miRNAs unique to Psychotic and Affective groups as well as shared by both. Furthermore, we performed integrative analysis to identify the target genes of the dysregulated miRNAs and elucidate their potential roles in psychosis. Our findings reveal significant alterations of multiple miRNAs such as miR-584-3p and miR-99b-5p across the studied diagnostic groups, highlighting their role as molecular correlates. Additionally, the miRNA TWAS analysis discovered previously known and novel genetically dysregulated miRNAs confirming the relevance in the etiology of the diagnostic groups. Importantly, novel factors and putative molecular mechanisms underlying these groups were uncovered through the integration of miRNA-target gene interactions. This comprehensive investigation provides valuable insights into the molecular underpinnings of severe mental disorders, shedding light on the complex regulatory networks involving miRNAs.
Collapse
Affiliation(s)
- Pierre Solomon
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Lalit Kaurani
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Jean-Baptiste Guiné
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Dennis Manfred Krüger
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Kevin Riquin
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Tonatiuh Pena
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Cynthia Fourgeux
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maria Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina K Schaupp
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Centers for Psychiatry Suedwuerttemberg, Ravensburg, Ravensburg, Germany
| | - Thomas Vogl
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Ion-George Anghelescu
- Department of Psychiatry and Psychotherapy, Mental Health Institute Berlin, Berlin, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Bernhardt T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Detlef E Dietrich
- AMEOS Clinical Center Hildesheim, Hildesheim, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
- Department of Psychiatry, Medical School of Hannover, Hannover, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), partner site Tübingen, Tübingen, Germany
| | - Christian Figge
- Karl-Jaspers Clinic, European Medical School Oldenburg-Groningen, Oldenburg, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, Rotenburg, Germany
| | - Jens Reimer
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Psychosocial Medicine, Academic Teaching Hospital Itzehoe, Itzehoe, Germany
| | - Eva Z Reininghaus
- Division of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Max Schmauß
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Augsburg University, Medical Faculty, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Disease (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jörg Zimmermann
- Psychiatrieverbund Oldenburger Land GMBH, Karl-Jaspers-Klinik, Bad Zwischenahn, Germany
| | - Anna-Lena Schütz
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Anne Sauvaget
- Nantes Université, CHU Nantes, Movement - Interactions - Performance, MIP, UR 4334, Nantes, France
| | - Peter Falkai
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, Munich, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - André Fischer
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Jeremie Poschmann
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| |
Collapse
|
2
|
Wang L, Liu R, Wang Y. The roles of extracellular vesicles in mental disorders: information carriers, biomarkers, therapeutic agents. Front Pharmacol 2025; 16:1591469. [PMID: 40271072 PMCID: PMC12014780 DOI: 10.3389/fphar.2025.1591469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Mental disorders are complex conditions that encompass various symptoms and types, affecting approximately 1 in 8 people globally. They place a significant burden on both families and society as a whole. So far, the etiology of mental disorders remains poorly understood, making diagnosis and treatment particularly challenging. Extracellular vesicles (EVs) are nanoscale particles produced by cells and released into the extracellular space. They contain bioactive molecules including nucleotides, proteins, lipids, and metabolites, which can mediate intercellular communication and are involved in various physiological and pathological processes. Recent studies have shown that EVs are closely linked to mental disorders like schizophrenia, major depressive disorder, and bipolar disorder, playing a key role in their development, diagnosis, prognosis, and treatment. Therefore, based on recent research findings, this paper aims to describe the roles of EVs in mental disorders and summarize their potential applications in diagnosis and treatment, providing new ideas for the future clinical transformation and application of EVs.
Collapse
Affiliation(s)
| | | | - Ying Wang
- Department of Pharmacy, Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
3
|
Ammothumkandy A, Cayce A, Shariq M, Bonaguidi MA. Astroglia's role in synchronized spontaneous neuronal activity: from physiology to pathology. Front Cell Neurosci 2025; 19:1544460. [PMID: 40177583 PMCID: PMC11961896 DOI: 10.3389/fncel.2025.1544460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
The nervous system relies on a balance of excitatory and inhibitory signals. Aberrant neuronal hyperactivity is a pathological phenotype associated with several neurological disorders, with its most severe effects observed in epilepsy patients. This review explores the literature on spontaneous synchronized neuronal activity, its physiological role, and its aberrant forms in disease. Emphasizing the importance of targeting underlying disease mechanisms beyond traditional neuron-focused therapies, the review delves into the role of astroglia in epilepsy progression. We detail how astroglia transitions from a normal to a pathological state, leading to epileptogenic seizures and cognitive decline. Astroglia activity is correlated with epileptiform activity in both animal models and human tissue, indicating their potential role in seizure induction and modulation. Understanding astroglia's dual beneficial and detrimental roles could lead to novel treatments for epilepsy and other neurological disorders with aberrant neuronal activity as the underlying disease substrate.
Collapse
Affiliation(s)
- Aswathy Ammothumkandy
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Alisha Cayce
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Mohammad Shariq
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Michael A. Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
- Department of Gerontology, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Knight SR, Abbasova L, Zeighami Y, Hansen JY, Martins D, Zelaya F, Dipasquale O, Liu T, Shin D, Bossong M, Azis M, Antoniades M, Howes OD, Bonoldi I, Egerton A, Allen P, O'Daly O, McGuire P, Modinos G. Transcriptional and Neurochemical Signatures of Cerebral Blood Flow Alterations in Individuals With Schizophrenia or at Clinical High Risk for Psychosis. Biol Psychiatry 2025:S0006-3223(25)00076-9. [PMID: 39923816 DOI: 10.1016/j.biopsych.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND The brain integrates multiple scales of description, from the level of cells and molecules to large-scale networks and behavior. Understanding relationships across these scales may be fundamental to advancing understanding of brain function in health and disease. Recent neuroimaging research has shown that functional brain alterations that are associated with schizophrenia spectrum disorders (SSDs) are already present in young adults at clinical high risk for psychosis (CHR-P), but the cellular and molecular determinants of these alterations remain unclear. METHODS Here, we used regional cerebral blood flow (rCBF) data from 425 individuals (122 with an SSD compared with 116 healthy control participants [HCs] and 129 individuals at CHR-P compared with 58 HCs) and applied a novel pipeline to integrate brainwide rCBF case-control maps with publicly available transcriptomic data (17,205 gene maps) and neurotransmitter atlases (19 maps) from 1074 healthy volunteers. RESULTS We identified significant correlations between astrocyte, oligodendrocyte, oligodendrocyte precursor cell, and vascular leptomeningeal cell gene modules for both SSD and CHR-P rCBF phenotypes. Additionally, endothelial cell genes were correlated in SSD, and microglia in CHR-P. Receptor distribution significantly predicted case-control rCBF differences, with dominance analysis highlighting dopamine (D1, D2, dopamine transporter), acetylcholine (VAChT, M1), gamma-aminobutyric acid A (GABAA), and glutamate (NMDA) receptors as key predictors for SSD (R2adjusted = 0.58, false discovery rate [FDR]-corrected p < .05) and CHR-P (R2adjusted = 0.6, pFDR < .05) rCBF phenotypes. These associations were primarily localized in subcortical regions and implicate cell types involved in stress response and inflammation, alongside specific neuroreceptor systems, in shared and distinct rCBF phenotypes in psychosis. CONCLUSIONS Our findings underscore the value of integrating multiscale data as a promising hypothesis-generating approach toward decoding biological pathways involved in neuroimaging-based psychosis phenotypes, potentially guiding novel interventions.
Collapse
Affiliation(s)
- Samuel R Knight
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Leyla Abbasova
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Yashar Zeighami
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Olea Medical, La Ciotat, France
| | - Thomas Liu
- Centre for Functional MRI, University of California San Diego, San Diego, California
| | - David Shin
- Global MR Applications and Workflow, GE Healthcare, Menlo Park, California
| | - Matthijs Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry, Brain Center Rudoph Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matilda Azis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mathilde Antoniades
- Center for AI and Data Science for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Philip McGuire
- Department of Psychiatry, Oxford University, Oxford, United Kingdom
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Depaauw-Holt L, Peyrard S, Bosson A, Murphy-Royal C. Morphological Investigation of Astrocytic Responses to Stress. Methods Mol Biol 2025; 2896:231-241. [PMID: 40111610 DOI: 10.1007/978-1-0716-4366-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
There are many ways in which astrocytes are likely to respond to stress, but one of the most reliable phenotypes has been glial fibrillary acidic protein (GFAP) and morphological changes. GFAP is usually a reliable indicator for morphological reorganization but cannot be used alone for detailed morphological reconstruction and analysis. Sparse labeling of astrocytes with a fluorescent indicator, e.g., eGFP, is a robust way to determine discrete morphological changes in these cells. Here, we outline both methods to study stress-induced changes in astrocyte morphology.
Collapse
Affiliation(s)
- Lewis Depaauw-Holt
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Sarah Peyrard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Anthony Bosson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ciaran Murphy-Royal
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
6
|
Depaauw-Holt L, Peyrard S, Bosson A, Murphy-Royal C. Development and Validation of Stress Paradigms to Study Astrocytes in Rodent Models of Stress Disorders. Methods Mol Biol 2025; 2896:215-222. [PMID: 40111608 DOI: 10.1007/978-1-0716-4366-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
There is growing appreciation for astrocytes as essential partners in the central response to stress. Insight from post-mortem human brain tissue has revealed extensive astrocyte remodeling in people who suffered from psychiatric disorders including major depressive disorder. Rodent models of stress disorders align with human data, showing that astrocyte dysfunction directly contributes to cellular and behavioral maladaptation following intense or chronic stress. Despite these links, more research is required to determine astrocyte-specific stress signalling mechanisms and whether these pathways can be targeted in a therapeutic strategy. Here, we detail an early-life stress paradigm that induces lifelong stress susceptibility associated with astrocyte dysfunction. In addition, we provide a detailed guideline to validate a stress model.
Collapse
Affiliation(s)
- Lewis Depaauw-Holt
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Sarah Peyrard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Anthony Bosson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ciaran Murphy-Royal
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
7
|
Qin L, Liu Z, Guo S, Han Y, Wang X, Ren W, Chen J, Zhen H, Nie C, Xing KK, Chen T, Südhof TC, Sun Y, Zhang B. Astrocytic Neuroligin-3 influences gene expression and social behavior, but is dispensable for synapse number. Mol Psychiatry 2025; 30:84-96. [PMID: 39003414 PMCID: PMC11649564 DOI: 10.1038/s41380-024-02659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Neuroligin-3 (Nlgn3) is an autism-associated cell-adhesion molecule that interacts with neurexins and is robustly expressed in both neurons and astrocytes. Neuronal Nlgn3 is an essential regulator of synaptic transmission but the function of astrocytic Nlgn3 is largely unknown. Given the high penetrance of Nlgn3 mutations in autism and the emerging role of astrocytes in neuropsychiatric disorders, we here asked whether astrocytic Nlgn3 might shape neural circuit properties in the cerebellum similar to neuronal Nlgn3. Imaging of tagged Nlgn3 protein produced by CRISPR/Cas9-mediated genome editing showed that Nlgn3 is enriched in the cell body but not the fine processes of cerebellar astrocytes (Bergmann glia). Astrocyte-specific knockout of Nlgn3 did not detectably alter the number of synapses, synaptic transmission, or astrocyte morphology in mouse cerebellum. However, spatial transcriptomic analyses revealed a significant shift in gene expression among multiple cerebellar cell types after the deletion of astrocytic Nlgn3. Hence, in contrast to neuronal Nlgn3, astrocytic Nlgn3 in the cerebellum is not involved in shaping synapses but may modulate gene expression in specific brain areas.
Collapse
Affiliation(s)
- Liming Qin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhili Liu
- BGI Research, Shenzhen, 518083, China
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sile Guo
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ying Han
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiankun Wang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Wen Ren
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jiewen Chen
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Hefu Zhen
- BGI Research, Shenzhen, 518083, China
| | - Chao Nie
- BGI Research, Shenzhen, 518083, China
| | - Ke-Ke Xing
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Chen
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Thomas C Südhof
- Department of molecular and cellular physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94043, USA.
| | - Yuzhe Sun
- BGI Research, Shenzhen, 518083, China.
- BGI Research, 102601, Beijing, China.
- Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen, 518120, China.
| | - Bo Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
8
|
Sebastian R, Song Y, Pak C. Probing the molecular and cellular pathological mechanisms of schizophrenia using human induced pluripotent stem cell models. Schizophr Res 2024; 273:4-23. [PMID: 35835709 PMCID: PMC9832179 DOI: 10.1016/j.schres.2022.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/13/2023]
Abstract
With recent advancements in psychiatric genomics, as a field, "stem cell-based disease modelers" were given the exciting yet daunting task of translating the extensive list of disease-associated risks into biologically and clinically relevant information in order to deliver therapeutically meaningful leads and insights. Despite their limitations, human induced pluripotent stem cell (iPSCs) based models have greatly aided our understanding of the molecular and cellular mechanisms underlying the complex etiology of brain disorders including schizophrenia (SCZ). In this review, we summarize the major findings from studies in the past decade which utilized iPSC models to investigate cell type-specific phenotypes relevant to idiopathic SCZ and disease penetrant alleles. Across cell type differences, several biological themes emerged, serving as potential neurodevelopmental mechanisms of SCZ, including oxidative stress and mitochondrial dysfunction, depletion of progenitor pools and insufficient differentiation potential of these progenitors, and structural and functional deficits of neurons and other supporting cells. Here, we discuss both the recent progress as well as challenges and improvements needed for future studies utilizing iPSCs as a model for SCZ and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Sebastian
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Yoonjae Song
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
9
|
Vijayaraghavan S, Ross DA, Novick AM. Under the Microscope: Nerve Glue and the Evolution of Psychiatric Neuroscience. Biol Psychiatry 2024; 96:e11-e13. [PMID: 39357969 DOI: 10.1016/j.biopsych.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Sukumar Vijayaraghavan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - David A Ross
- Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Andrew M Novick
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
10
|
Wei W, Ma S, Fu B, Song R, Guo H. Human-specific insights into candidate genes and boosted discoveries of novel loci illuminate roles of neuroglia in reading disorders. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12899. [PMID: 38752599 PMCID: PMC11097622 DOI: 10.1111/gbb.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Reading disorders (RD) are human-specific neuropsychological conditions associated with decoding printed words and/or reading comprehension. So far only a handful of candidate genes segregated in families and 42 loci from genome-wide association study (GWAS) have been identified that jointly provided little clues of pathophysiology. Leveraging human-specific genomic information, we critically assessed the RD candidates for the first time and found substantial human-specific features within. The GWAS candidates (i.e., population signals) were distinct from the familial counterparts and were more likely pleiotropic in neuropsychiatric traits and to harbor human-specific regulatory elements (HSREs). Candidate genes associated with human cortical morphology indeed showed human-specific expression in adult brain cortices, particularly in neuroglia likely regulated by HSREs. Expression levels of candidate genes across human brain developmental stages showed a clear pattern of uplifted expression in early brain development crucial to RD development. Following the new insights and loci pleiotropic in cognitive traits, we identified four novel genes from the GWAS sub-significant associations (i.e., FOXO3, MAPT, KMT2E and HTT) and the Semaphorin gene family with functional priors (i.e., SEMA3A, SEMA3E and SEMA5B). These novel genes were related to neuronal plasticity and disorders, mostly conserved the pattern of uplifted expression in early brain development and had evident expression in cortical neuroglial cells. Our findings jointly illuminated the association of RD with neuroglia regulation-an emerging hotspot in studying neurodevelopmental disorders, and highlighted the need of improving RD phenotyping to avoid jeopardizing future genetic studies of RD.
Collapse
Affiliation(s)
- Wen‐Hua Wei
- Centre for Biostatistics, Division of Population Health, Health Services Research and Primary CareThe University of ManchesterManchesterUK
| | - Shaowei Ma
- Hebei Key Laboratory of Children's Cognition and Digital Education and School of Foreign LanguagesLangfang Normal UniversityLangfangChina
| | - Bo Fu
- School of Data ScienceFudan UniversityShanghaiChina
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hui Guo
- Centre for Biostatistics, Division of Population Health, Health Services Research and Primary CareThe University of ManchesterManchesterUK
| |
Collapse
|
11
|
Domin H, Konieczny J, Cieślik P, Pochwat B, Wyska E, Szafarz M, Lenda T, Biała D, Gąsior Ł, Śmiałowska M, Szewczyk B. The antidepressant-like and glioprotective effects of the Y2 receptor antagonist SF-11 in the astroglial degeneration model of depression in rats: Involvement of glutamatergic inhibition. Behav Brain Res 2024; 457:114729. [PMID: 37871655 DOI: 10.1016/j.bbr.2023.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
In this study, we explored the potential antidepressant-like properties of the brain-penetrant Y2 receptor (Y2R) antagonist SF-11 [N-(4-ethoxyphenyl)- 4-(hydroxydiphenylmethyl)- 1-piperidinecarbothioamide] in the astroglial degeneration model of depression with an emphasis on checking the possible mechanisms implicated in this antidepressant-like effect. The model of depression relies on the loss of astrocytes in the medial prefrontal cortex (mPFC) in Sprague-Dawley rats after administering the gliotoxin L-alpha-aminoadipic acid (L-AAA). SF-11 was administered intraperitoneally (i.p.) once (10 mg/kg) or for three consecutive days (10 mg/kg/day), and the effects of L-AAA and SF-11 injected alone or in combination were investigated using the forced swim test (FST), sucrose intake test (SIT), Western blotting, immunohistochemical staining, and microdialysis. SF-11 produced an antidepressant-like effect after single or three-day administration in rats subjected to astrocyte impairment, as demonstrated by the FST and SIT, respectively. Immunoblotting and immunohistochemical analyses showed that SF-11 reversed the L-AAA-induced astrocyte cell death in the mPFC, suggesting it is glioprotective. Microdialysis studies showed that SF-11 decreased extracellular glutamate (Glu) levels compared to basal value when administered alone and compared to the basal value and control group in LAAA-treated rats. The results from immunoblotting analysis indicated the involvement of Y2Rs in the astrocyte ablation model of depression and the antidepressant-like effect of SF-11. In addition, we observed the participation of the caspase-3 apoptotic pathway in the mechanism of gliotoxin action induced by L-AAA. These findings demonstrate that SF-11, a Y2R antagonist, elicited a rapid antidepressant-like response, possibly linked to its ability to inhibit glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland.
| | - Jolanta Konieczny
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Bartłomiej Pochwat
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Szafarz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Tomasz Lenda
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Dominika Biała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Łukasz Gąsior
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| |
Collapse
|
12
|
Lei L, Wang YT, Hu D, Gai C, Zhang Y. Astroglial Connexin 43-Mediated Gap Junctions and Hemichannels: Potential Antidepressant Mechanisms and the Link to Neuroinflammation. Cell Mol Neurobiol 2023; 43:4023-4040. [PMID: 37875763 PMCID: PMC11407732 DOI: 10.1007/s10571-023-01426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
Major depression disorder (MDD) is a neuropsychiatric disorder associated with a high suicide rate and a higher disability rate than any other disease. Evidence suggests that the pathological mechanism of MDD is related to astrocyte dysfunction. Depression is mainly associated with the expression of connexin 43 (Cx43) and the function of Cx43-mediated gap junctions and hemichannels in astrocytes. Moreover, neuroinflammation has been a hotspot in research on the pathology of depression, and Cx43-mediated functions are thought to be involved in neuroinflammation-related depression. However, the specific mechanism of Cx43-mediated functions in neuroinflammation-related depression pathology remains unclear. Therefore, this review summarizes and discusses Cx43 expression, the role of gap junction intercellular communication, and its relationship with neuroinflammation in depression. This review also focuses on the effects of antidepressant drugs (e.g., monoamine antidepressants, psychotropic drugs, and N-methyl-D-aspartate receptor antagonists) on Cx43-mediated function and provides evidence for Cx43 as a novel target for the treatment of MDD. The pathogenesis of MDD is related to astrocyte dysfunction, with reduced Cx43 expression, GJ dysfunction, decreased GJIC and reduced BDNF expression in the depressed brain. The effect of Cx43 on neuroinflammation-related depression involving inflammatory cytokines, glutamate excitotoxicity, and HPA axis dysregulation. Antidepressant drugs targeting Cx43 can effectively relieve depressive symptoms.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Cong Gai
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
13
|
Cervetto C, Maura G, Guidolin D, Amato S, Ceccoli C, Agnati LF, Marcoli M. Striatal astrocytic A2A-D2 receptor-receptor interactions and their role in neuropsychiatric disorders. Neuropharmacology 2023:109636. [PMID: 37321323 DOI: 10.1016/j.neuropharm.2023.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
It is now generally accepted that astrocytes are active players in synaptic transmission, so that a neurocentric perspective of the integrative signal communication in the central nervous system is shifting towards a neuro-astrocentric perspective. Astrocytes respond to synaptic activity, release chemical signals (gliotransmitters) and express neurotransmitter receptors (G protein-coupled and ionotropic receptors), thus behaving as co-actors with neurons in signal communication in the central nervous system. The ability of G protein-coupled receptors to physically interact through heteromerization, forming heteromers and receptor mosaics with new distinct signal recognition and transduction pathways, has been intensively studied at neuronal plasma membrane, and has changed the view of the integrative signal communication in the central nervous system. One of the best-known examples of receptor-receptor interaction through heteromerization, with relevant consequences for both the physiological and the pharmacological points of view, is given by adenosine A2A and dopamine D2 receptors on the plasma membrane of striatal neurons. Here we review evidence that native A2A and D2 receptors can interact through heteromerization at the plasma membrane of astrocytes as well. Astrocytic A2A-D2 heteromers were found able to control the release of glutamate from the striatal astrocyte processes. A2A-D2 heteromers on striatal astrocytes and astrocyte processes are discussed as far as their potential relevance in the control of glutamatergic transmission in striatum is concerned, including potential roles in glutamatergic transmission dysregulation in pathological conditions including schizophrenia or the Parkinson's disease.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Center for Promotion of 3Rs in Teaching and Research (Centro 3R), Pisa, Italy.
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Italy.
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Cristina Ceccoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Luigi F Agnati
- Department of Biochemical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Center for Promotion of 3Rs in Teaching and Research (Centro 3R), Pisa, Italy; Center of Excellence for Biomedical Research, University of Genova, Italy.
| |
Collapse
|
14
|
Ferland JMN, Ellis RJ, Rompala G, Landry JA, Callens JE, Ly A, Frier MD, Uzamere TO, Hurd YL. Dose mediates the protracted effects of adolescent THC exposure on reward and stress reactivity in males relevant to perturbation of the basolateral amygdala transcriptome. Mol Psychiatry 2023; 28:2583-2593. [PMID: 35236956 DOI: 10.1038/s41380-022-01467-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023]
Abstract
Despite the belief that cannabis is relatively harmless, exposure during adolescence is associated with increased risk of developing several psychopathologies in adulthood. In addition to the high levels of use amongst teenagers, the potency of ∆-9-tetrahydrocannabinol (THC) has increased more than fourfold compared to even twenty years ago, and it is unclear whether potency influences the presentation of THC-induced behaviors. Expanded knowledge about the impact of adolescent THC exposure, especially high dose, is important to delineating neural networks and molecular mechanisms underlying psychiatric risk. Here, we observed that repeated exposure to low (1.5 mg/kg) and high (5 mg/kg) doses of THC during adolescence in male rats produced divergent effects on behavior in adulthood. Whereas low dose rats showed greater sensitivity to reward devaluation and also self-administered more heroin, high dose animals were significantly more reactive to social isolation stress. RNA sequencing of the basolateral amygdala, a region linked to reward processing and stress, revealed significant perturbations in transcripts and gene networks related to synaptic plasticity and HPA axis that were distinct to THC dose as well as stress. In silico single-cell deconvolution of the RNAseq data revealed a significant reduction of astrocyte-specific genes related to glutamate regulation in stressed high dose animals, a result paired anatomically with greater astrocyte-to-neuron ratios and hypotrophic astrocytes. These findings emphasize the importance of dose and behavioral state on the presentation of THC-related behavioral phenotypes in adulthood and dysregulation of astrocytes as an interface for the protracted effects of high dose THC and subsequent stress sensitivity.
Collapse
Affiliation(s)
- Jacqueline-Marie N Ferland
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Randall J Ellis
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Joseph A Landry
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - James E Callens
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Annie Ly
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Micah D Frier
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Teddy O Uzamere
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Yasmin L Hurd
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Gao SQ, Chen JQ, Zhou HY, Luo L, Zhang BY, Li MT, He HY, Chen C, Guo Y. Thrombospondin1 mimics rapidly relieve depression via Shank3 dependent uncoupling between dopamine D1 and D2 receptors. iScience 2023; 26:106488. [PMID: 37091229 PMCID: PMC10119609 DOI: 10.1016/j.isci.2023.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/17/2022] [Accepted: 03/18/2023] [Indexed: 04/25/2023] Open
Abstract
Deficits in astrocyte function contribute to major depressive disorder (MDD) and suicide, but the therapeutic effect of directly reactivating astrocytes for depression remains unclear. Here, specific gains and losses of astrocytic cell functions in the medial prefrontal cortex (mPFC) bidirectionally regulate depression-like symptoms. Remarkably, recombinant human Thrombospondin-1 (rhTSP1), an astrocyte-secreted protein, exerted rapidly antidepressant-like actions through tyrosine hydroxylase (Th)/dopamine (DA)/dopamine D2 receptors (D2Rs) pathways, but not dopamine D1 receptors (D1Rs), which was dependent on SH3 and multiple ankyrin repeat domains 3 (Shank3) in the mPFC. TSP1 in the mPFC might have potential as a target for treating clinical depression.
Collapse
Affiliation(s)
- Shuang-Qi Gao
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
- Corresponding author
| | - Jun-Quan Chen
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Hai-Yun Zhou
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lun Luo
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Bao-Yu Zhang
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Man-Ting Li
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Hai-Yong He
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Chuan Chen
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
- Corresponding author
| | - Ying Guo
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
- Corresponding author
| |
Collapse
|
16
|
Chakraborty P, Dey A, Gopalakrishnan AV, Swati K, Ojha S, Prakash A, Kumar D, Ambasta RK, Jha NK, Jha SK, Dewanjee S. Glutamatergic neurotransmission: A potential pharmacotherapeutic target for the treatment of cognitive disorders. Ageing Res Rev 2023; 85:101838. [PMID: 36610558 DOI: 10.1016/j.arr.2022.101838] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
In the mammalian brain, glutamate is regarded to be the primary excitatory neurotransmitter due to its widespread distribution and wide range of metabolic functions. Glutamate plays key roles in regulating neurogenesis, synaptogenesis, neurite outgrowth, and neuron survival in the brain. Ionotropic and metabotropic glutamate receptors, neurotransmitters, neurotensin, neurosteroids, and others co-ordinately formulate a complex glutamatergic network in the brain that maintains optimal excitatory neurotransmission. Cognitive activities are potentially synchronized by the glutamatergic activities in the brain via restoring synaptic plasticity. Dysfunctional glutamate receptors and other glutamatergic components are responsible for the aberrant glutamatergic activity in the brain that cause cognitive impairments, loss of synaptic plasticity, and neuronal damage. Thus, controlling the brain's glutamatergic transmission and modifying glutamate receptor function could be a potential therapeutic strategy for cognitive disorders. Certain drugs that regulate glutamate receptor activities have shown therapeutic promise in improving cognitive functions in preclinical and clinical studies. However, several issues regarding precise functional information of glutamatergic activity are yet to be comprehensively understood. The present article discusses the scope of developing glutamatergic systems as prospective pharmacotherapeutic targets to treat cognitive disorders. Special attention has been given to recent developments, challenges, and future prospects.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand 248007, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
17
|
Lohr C. Role of P2Y receptors in astrocyte physiology and pathophysiology. Neuropharmacology 2023; 223:109311. [PMID: 36328064 DOI: 10.1016/j.neuropharm.2022.109311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Astrocytes are active constituents of the brain that manage ion homeostasis and metabolic support of neurons and directly tune synaptic transmission and plasticity. Astrocytes express all known P2Y receptors. These regulate a multitude of physiological functions such as cell proliferation, Ca2+ signalling, gliotransmitter release and neurovascular coupling. In addition, P2Y receptors are fundamental in the transition of astrocytes into reactive astrocytes, as occurring in many brain disorders such as neurodegenerative diseases, neuroinflammation and epilepsy. This review summarizes the current literature addressing the function of P2Y receptors in astrocytes in the healthy brain as well as in brain diseases.
Collapse
Affiliation(s)
- Christian Lohr
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Germany.
| |
Collapse
|
18
|
Zhang X, Wolfinger A, Wu X, Alnafisah R, Imami A, Hamoud AR, Lundh A, Parpura V, McCullumsmith RE, Shukla R, O’Donovan SM. Gene Enrichment Analysis of Astrocyte Subtypes in Psychiatric Disorders and Psychotropic Medication Datasets. Cells 2022; 11:3315. [PMID: 36291180 PMCID: PMC9600295 DOI: 10.3390/cells11203315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
Astrocytes have many important functions in the brain, but their roles in psychiatric disorders and their responses to psychotropic medications are still being elucidated. Here, we used gene enrichment analysis to assess the relationships between different astrocyte subtypes, psychiatric diseases, and psychotropic medications (antipsychotics, antidepressants and mood stabilizers). We also carried out qPCR analyses and "look-up" studies to assess the chronic effects of these drugs on astrocyte marker gene expression. Our bioinformatic analysis identified gene enrichment of different astrocyte subtypes in psychiatric disorders. The highest level of enrichment was found in schizophrenia, supporting a role for astrocytes in this disorder. We also found differential enrichment of astrocyte subtypes associated with specific biological processes, highlighting the complex responses of astrocytes under pathological conditions. Enrichment of protein phosphorylation in astrocytes and disease was confirmed by biochemical analysis. Analysis of LINCS chemical perturbagen gene signatures also found that kinase inhibitors were highly discordant with astrocyte-SCZ associated gene signatures. However, we found that common gene enrichment of different psychotropic medications and astrocyte subtypes was limited. These results were confirmed by "look-up" studies and qPCR analysis, which also reported little effect of psychotropic medications on common astrocyte marker gene expression, suggesting that astrocytes are not a primary target of these medications. Conversely, antipsychotic medication does affect astrocyte gene marker expression in postmortem schizophrenia brain tissue, supporting specific astrocyte responses in different pathological conditions. Overall, this study provides a unique view of astrocyte subtypes and the effect of medications on astrocytes in disease, which will contribute to our understanding of their role in psychiatric disorders and offers insights into targeting astrocytes therapeutically.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Alyssa Wolfinger
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Rawan Alnafisah
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ali Imami
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Abdul-rizaq Hamoud
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Anna Lundh
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Promedica Neurosciences Institute, Toledo, OH 43606, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | | |
Collapse
|
19
|
Liu L, Dai L, Xu D, Wang Y, Bai L, Chen X, Li M, Yang S, Tang Y. Astrocyte secretes IL-6 to modulate PSD-95 palmitoylation in basolateral amygdala and depression-like behaviors induced by peripheral nerve injury. Brain Behav Immun 2022; 104:139-154. [PMID: 35636613 DOI: 10.1016/j.bbi.2022.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Dysfunction of glutamatergic synaptic plasticity in basolateral amygdala (BLA) constitutes a critical pathogenic mechanism underlying the depression-like behaviors induced by chronic pain. Astrocytes serve as an important supporting cell modulating glutamatergic synaptic transmission. Here, we found that peripheral spared nerve injury (SNI) induced astrocyte activation to release IL-6 in BLA. Inhibition of astrocyte activity attenuated SNI-induced IL-6 overexpression and depression-like behaviors. Moreover, SNI enhanced the abundance of DHHC2 in synaptosome and DHHC3 in Golgi apparatus, promoted PSD-95 palmitoylation, and increased the recruitment of GluR1 and NR2B at synapses. Suppression of IL-6 or PSD-95 palmitoylation attenuated the synaptic accumulation of GluR1 and NR2B in BLA and improved depression-like behaviors induced by SNI. Furthermore, IL-6 downstream PI3K increased the expression of DHHC3 in Golgi apparatus and facilitated the interaction of palmitoylated PSD-95 with GluR1 and NR2B at synapses. These findings collectively suggested that SNI activated astrocyte to release IL-6 in BLA, which promoted PSD-95 palmitoylation and enhanced the synaptic trafficking of GluR1 and NR2B, and subsequently mediated the depression-like behaviors induced by nerve injury.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Luqi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Yinchan Wang
- Core Facility of West China Hospital, Sichuan University, Chengdu 610093, China
| | - Lin Bai
- Core Facility of West China Hospital, Sichuan University, Chengdu 610093, China
| | - Xiaoting Chen
- Animal Experimental Center of West China Hospital, Sichuan University, Chengdu 610093, China
| | - Mengzhou Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Shuai Yang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Yuying Tang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610093, China.
| |
Collapse
|
20
|
Wang J, Gao F, Cui S, Yang S, Gao F, Wang X, Zhu G. Utility of 7,8-dihydroxyflavone in preventing astrocytic and synaptic deficits in the hippocampus elicited by PTSD. Pharmacol Res 2022; 176:106079. [PMID: 35026406 DOI: 10.1016/j.phrs.2022.106079] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023]
Abstract
Astrocytic functions and brain-derived neurotrophic factor (BDNF)-tyrosine kinase receptor B (TrkB) signaling pathways are impaired in stress-related neuropsychiatric diseases. Previous studies have reported neuroprotective effects of 7,8-dihydroxyflavone (7,8-DHF), a TrkB activator. Here, we investigated the molecular mechanisms underlying pathogenesis of post-traumatic stress disorder (PTSD) using a modified single-prolonged stress (SPS&S) model and the potential beneficial effects of 7,8-DHF. SPS&S reduced the hippocampal expression of glial fibrillary acidic protein (GFAP), a marker of astrocytes, and induced morphological changes in astrocytes. From the perspective of synaptic function, the SPS&S model displayed reduced expression of BDNF, p-TrkB, postsynaptic density protein 95 (PSD95), AMPA receptor subunit GluR1 (GluA1), NMDA receptor subunit N2A/N2B ratio, calpain-1, phosphorylated protein kinase B (Akt) and phosphorylated mammalian target of rapamycin (mTOR) and conversely, higher phosphatase and tension homolog (PTEN) expression in the hippocampus. Acute or continuous intraperitoneal administration of 7,8-DHF (5 mg/kg) after SPS&S procedures prevented SPS&S-induced fear memory generalization and anxiety-like behaviors as well as abnormalities of hippocampal oscillations. Most importantly, 7,8-DHF attenuated SPS&S-induced abnormal BDNF-TrkB signaling and calpain-1-dependent cascade of synaptic deficits. Furthermore, treatment with a TrkB inhibitor completely blocked while an mTOR inhibitor partially blocked the effects of 7,8-DHF on behavioral changes of SPS&S model mice. Our collective findings suggest that 7,8-DHF effectively alleviates PTSD-like symptoms, including fear generalization and anxiety-like behavior, potentially by preventing astrocytic and synaptic deficits in the hippocampus through targeting of TrkB.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China
| | - Shuai Cui
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China
| | - Fang Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China; Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| |
Collapse
|
21
|
Chung W, Wang DS, Khodaei S, Pinguelo A, Orser BA. GABA A Receptors in Astrocytes Are Targets for Commonly Used Intravenous and Inhalational General Anesthetic Drugs. Front Aging Neurosci 2022; 13:802582. [PMID: 35087395 PMCID: PMC8787299 DOI: 10.3389/fnagi.2021.802582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Perioperative neurocognitive disorders (PNDs) occur commonly in older patients after anesthesia and surgery. Treating astrocytes with general anesthetic drugs stimulates the release of soluble factors that increase the cell-surface expression and function of GABAA receptors in neurons. Such crosstalk may contribute to PNDs; however, the receptor targets in astrocytes for anesthetic drugs have not been identified. GABAA receptors, which are the major targets of general anesthetic drugs in neurons, are also expressed in astrocytes, raising the possibility that these drugs act on GABAA receptors in astrocytes to trigger the release of soluble factors. To date, no study has directly examined the sensitivity of GABAA receptors in astrocytes to general anesthetic drugs that are frequently used in clinical practice. Thus, the goal of this study was to determine whether the function of GABAA receptors in astrocytes was modulated by the intravenous anesthetic etomidate and the inhaled anesthetic sevoflurane. Methods: Whole-cell voltage-clamp recordings were performed in astrocytes in the stratum radiatum of the CA1 region of hippocampal slices isolated from C57BL/6 male mice. Astrocytes were identified by their morphologic and electrophysiologic properties. Focal puff application of GABA (300 μM) was applied with a Picospritzer system to evoke GABA responses. Currents were studied before and during the application of the non-competitive GABAA receptor antagonist picrotoxin (0.5 mM), or etomidate (100 μM) or sevoflurane (532 μM). Results: GABA consistently evoked inward currents that were inhibited by picrotoxin. Etomidate increased the amplitude of the peak current by 35.0 ± 24.4% and prolonged the decay time by 27.2 ± 24.3% (n = 7, P < 0.05). Sevoflurane prolonged current decay by 28.3 ± 23.1% (n = 7, P < 0.05) but did not alter the peak amplitude. Etomidate and sevoflurane increased charge transfer (area) by 71.2 ± 45.9% and 51.8 ± 48.9% (n = 7, P < 0.05), respectively. Conclusion: The function of astrocytic GABAA receptors in the hippocampus was increased by etomidate and sevoflurane. Future studies will determine whether these general anesthetic drugs act on astrocytic GABAA receptors to stimulate the release of soluble factors that may contribute to PNDs.
Collapse
Affiliation(s)
- Woosuk Chung
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesiology and Pain Medicine, Chungnam National University, Daejeon, South Korea
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Shahin Khodaei
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Arsene Pinguelo
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
22
|
Protease-activated receptor 2 activation induces behavioural changes associated with depression-like behaviour through microglial-independent modulation of inflammatory cytokines. Psychopharmacology (Berl) 2022; 239:229-242. [PMID: 34888704 PMCID: PMC8770450 DOI: 10.1007/s00213-021-06040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
RATIONALE Major depressive disorder (MDD) is a leading cause of disability worldwide but currently prescribed treatments do not adequately ameliorate the disorder in a significant portion of patients. Hence, a better appreciation of its aetiology may lead to the development of novel therapies. OBJECTIVES In the present study, we have built on our previous findings indicating a role for protease-activated receptor-2 (PAR2) in sickness behaviour to determine whether the PAR2 activator, AC264613, induces behavioural changes similar to those observed in depression-like behaviour. METHODS AC264613-induced behavioural changes were examined using the open field test (OFT), sucrose preference test (SPT), elevated plus maze (EPM), and novel object recognition test (NOR). Whole-cell patch clamping was used to investigate the effects of PAR2 activation in the lateral habenula with peripheral and central cytokine levels determined using ELISA and quantitative PCR. RESULTS Using a blood-brain barrier (BBB) permeable PAR2 activator, we reveal that AC-264613 (AC) injection leads to reduced locomotor activity and sucrose preference in mice but is without effect in anxiety and memory-related tasks. In addition, we show that AC injection leads to elevated blood sera IL-6 levels and altered cytokine mRNA expression within the brain. However, neither microglia nor peripheral lymphocytes are the source of these altered cytokine profiles. CONCLUSIONS These data reveal that PAR2 activation results in behavioural changes often associated with depression-like behaviour and an inflammatory profile that resembles that seen in patients with MDD and therefore PAR2 may be a target for novel antidepressant therapies.
Collapse
|
23
|
Abstract
Bipolar disorder (BD) is a complex group of neuropsychiatric disorders, typically comprising both manic and depressive episodes. The underlying neuropathology of BD is not established, but a consistent feature is progressive thinning of cortical grey matter (GM) and white matter (WM) in specific pathways, due to loss of subpopulations of neurons and astrocytes, with accompanying disturbance of connectivity. Dysregulation of astrocyte homeostatic functions are implicated in BD, notably regulation of glutamate, calcium signalling, circadian rhythms and metabolism. Furthermore, the beneficial therapeutic effects of the frontline treatments for BD are due at least in part to their positive actions on astrocytes, notably lithium, valproic acid (VPA) and carbamazepine (CBZ), as well as antidepressants and antipsychotics that are used in the management of this disorder. Treatments for BD are ineffective in a large proportion of cases, and astrocytes represent new therapeutic targets that can also serve as biomarkers of illness progression and treatment responsiveness in BD.
Collapse
|
24
|
Chen X, Beltran DJ, Tsygankova VD, Woolwine BJ, Patel T, Baer W, Felger JC, Miller AH, Haroon E. Kynurenines increase MRS metabolites in basal ganglia and decrease resting-state connectivity in frontostriatal reward circuitry in depression. Transl Psychiatry 2021; 11:456. [PMID: 34482366 PMCID: PMC8418602 DOI: 10.1038/s41398-021-01587-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Inflammation is associated with the development of anhedonia in major depression (MD), but the pathway by which inflammatory molecules gain access to the brain and lead to anhedonia is not clear. Molecules of the kynurenine pathway (KP), which is activated by inflammation, readily influx into the brain and generate end products that alter brain chemistry, disrupt circuit functioning, and result in the expression of inflammatory behaviors such as anhedonia. We examined the impact of plasma and CSF KP metabolites on brain chemistry and neural function using multimodal neuroimaging in 49 depressed subjects. We measured markers of glial dysfunction and distress including glutamate (Glu) and myo-inositol in the left basal ganglia using magnetic resonance spectroscopy (MRS); metrics of local activity coherence (regional homogeneity, ReHo) and functional connectivity from resting-state functional MRI measures; and anhedonia from the Inventory for Depressive Symptoms-Self Report Version (IDS-SR). Plasma kynurenine/tryptophan (KYN/TRP) ratio and cerebrospinal fluid (CSF) 3-hydroxykynurenine (3HK) were associated with increases in left basal ganglia myo-inositol. Plasma kynurenic acid (KYNA) and KYNA/QA were associated with decreases and quinolinic acid (QA) with increases in left basal ganglia Glu. Plasma and CSF KP were associated with decreases in ReHo in the basal ganglia and dorsomedial prefrontal regions (DMPFC) and impaired functional connectivity between these two regions. DMPFC-basal ganglia mediated the effect of plasma and CSF KP on anhedonia. These findings highlight the pathological impact of KP system dysregulation in mediating inflammatory behaviors such as anhedonia.
Collapse
Affiliation(s)
- Xiangchuan Chen
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Diana J Beltran
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Valeriya D Tsygankova
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Bobbi J Woolwine
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Trusharth Patel
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wendy Baer
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Jennifer C Felger
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Andrew H Miller
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Ebrahim Haroon
- Emory Behavioral Immunology Program, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA.
| |
Collapse
|
25
|
Repetitive Transcranial Magnetic Stimulation: A Potential Treatment for Obesity in Patients with Schizophrenia. Behav Sci (Basel) 2021; 11:bs11060086. [PMID: 34208079 PMCID: PMC8230713 DOI: 10.3390/bs11060086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Obesity is highly prevalent in patients with schizophrenia and, in association with metabolic syndrome, contributes to premature deaths of patients due to cardiovascular disease complications. Moreover, pharmacologic, and behavioral interventions have not stemmed the tide of obesity in schizophrenia. Therefore, novel effective interventions are urgently needed. Repetitive transcranial magnetic stimulation (rTMS) has shown efficacy for inducing weight loss in obese non-psychiatric samples but this promising intervention has not been evaluated as a weight loss intervention in patients with schizophrenia. In this narrative review, we describe three brain mechanisms (hypothalamic inflammation, dysregulated mesocorticolimbic reward system, and impaired prefrontal cortex function) implicated in the pathogenesis and pathophysiology of obesity and emphasize how the three mechanisms have also been implicated in the neurobiology of schizophrenia. We then argue that, based on the three overlapping brain mechanisms in obesity and schizophrenia, rTMS would be effective as a weight loss intervention in patients with schizophrenia and comorbid obesity. We end this review by describing how deep TMS, relative to conventional TMS, could potentially result in larger effect size for weight loss. While this review is mainly conceptual and based on an extrapolation of findings from non-schizophrenia samples, our aim is to stimulate research in the use of rTMS for weight loss in patients with schizophrenia.
Collapse
|