1
|
Liu C, Xu H, Wang P, Li Y, Yi X, Tu Y. Syringin: Plant Source, Traditional Uses, Anti-Cancer, Brain Protection, and Related Pharmacological Properties. Chem Biodivers 2025; 22:e202402272. [PMID: 39552511 DOI: 10.1002/cbdv.202402272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Traditional herbal medicines, containing syringin in different parts of the world, have been used to enhance memory, relieve pain, cough, clear fever, treat psoas tension, tonsillitis, sore throat, acute gastroenteritis, and anti-inflammatory, analgesic, and so on. In this article, the extraction, analytical method, pharmacological action, and research progress of syringin-containing plants were reviewed. Various extraction methods and detection methods of syringin were summarized, especially the ultrasonic-assisted extraction and high-performance liquid chromatography, which were recommended for the extraction and determination of syringin. We spotlighted the anti-cancer, brain-protective, and anti-inflammatory pharmacological effects of syringin. An in-depth analysis of four plants contains syringin-Eleutherococcus senticosus, Codonopsis pilosula, Daphne tangutica Maxim, and Syringa reticulata subsp. amurensis. In addition, the safety and efficacy of these four plants and preparations containing syringin (Shugan Jieyu Capsule, compound Coginseng tablet, hyoscyamine ointment, and Qinfenghong Zhike capsule) were analyzed. Although syringin has been widely used in traditional medicine, its specific mechanism of action and clinical efficacy are still not completely understood, and further research is needed to explore and verify it. This study provides a valuable theoretical basis and potential research direction for the research and development of new drugs such as anti-cancer and brain protection.
Collapse
Affiliation(s)
- Chuan Liu
- School of Food and Bioengineering, Xihua University, Chengdu, P. R. China
| | - Huijuan Xu
- School of Food and Bioengineering, Xihua University, Chengdu, P. R. China
| | - Peng Wang
- School of Food and Bioengineering, Xihua University, Chengdu, P. R. China
| | - Yafan Li
- School of Food and Bioengineering, Xihua University, Chengdu, P. R. China
| | - Xiangrui Yi
- School of Food and Bioengineering, Xihua University, Chengdu, P. R. China
| | - Ya Tu
- Experimental Research Center, China Academy of Traditional Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
2
|
Xie Y, Xie D, Chen C. Hsa_circ_0049472 contributed to amyloid-beta peptide-induced neurotoxicity, apoptosis and inflammation via regulating PI3K-AKT signaling pathway by interacting with miR-22-3p/ZNF217 axis. Brain Res Bull 2024; 215:111004. [PMID: 38852653 DOI: 10.1016/j.brainresbull.2024.111004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) exhibited important roles in Alzheimer's disease (AD). Here, we focused on the dysregulation of hsa_circ_0049472 (circ_0049472) and potential functions in SK-N-SH cells with amyloid-beta peptide (Aβ) treatment in AD. METHODS RNA expression was detected by real-time quantitative PCR. Cell viability and proliferation were measured by MTS and Edu assays. Flow cytometry was used for apoptosis detection, and cell inflammation was assessed using enzyme-linked immunosorbent assay. Target interaction was validated by dual-luciferase reporter assay and RNA immunoprecipitation assay. Protein expression and phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) pathway were examined by Immunoblotting. RESULTS Aβ treatment inhibited cell viability and proliferation of SK-N-SH cells, but enhanced apoptosis rate, apoptosis protein levels (Bcl2-associated X protein and cleaved-caspase-3) and inflammatory cytokines (interleukin -6, IL-1β, tumor necrosis factor-α). Then, circ_0049472 expression was shown to be upregulated in response to Aβ stimulation and knockdown of circ_0049472 has ameliorated Aβ-induced cell injury. Circ_0049472 was identified as a sponge for miR-22-3p, and miR-22-3p inhibition reversed the regulation of circ_0049472 knockdown in Aβ-treated cells. Furthermore, ZNF217 acted as a target of miR-22-3p and circ_0049472 could regulate ZNF217 expression via binding to miR-22-3p. Overexpression of miR-22-3p abated Aβ-induced apoptosis and inflammation via downregulating ZNF217. Furthermore, Aβ reduced proteins levels of p-PI3K and p-AKT, and this inhibition of PI3K-AKT pathway was restored by the regulation of circ_0049472/miR-22-3p/ZNF217 axis. CONCLUSION Circ_0049472 was involved in Aβ-induced neural injury by regulating miR-22-3p/ZNF217 axis to affect PI3K-AKT pathway. This study has discovered an innovative mechanism for AD.
Collapse
Affiliation(s)
- Yuanrun Xie
- Department of Neurosurgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Dan Xie
- Department of Otolaryngology, Huangshi No.5 Hospital, Huangshi City, Hubei, China
| | - Chao Chen
- Department of Neurosurgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China.
| |
Collapse
|
3
|
Qian Q, Pan J, Yang J, Wang R, Luo K, Wu Z, Ma S, Wang Y, Li M, Gao Y. Syringin: a naturally occurring compound with medicinal properties. Front Pharmacol 2024; 15:1435524. [PMID: 39104400 PMCID: PMC11298447 DOI: 10.3389/fphar.2024.1435524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Syringin, a phenylpropanoid glycoside, is widely distributed in various plants, such as Acanthopanax senticosus (Rupr. et Maxim.) Harms, Syringa reticulata (BL) Hara var. mandshurica (Maxim.) Hara, and Ilex rotunda Thumb. It serves as the main ingredient in numerous listed medicines, health products, and foods with immunomodulatory, anti-tumor, antihyperglycemic, and antihyperlipidemic effects. This review aims to systematically summarize syringin, including its physicochemical properties, plant sources, extraction and separation methods, total synthesis approaches, pharmacological activities, drug safety profiles, and preparations and applications. It will also cover the pharmacokinetics of syringin, followed by suggestions for future application prospects. The information on syringin was obtained from internationally recognized scientific databases through the Internet (PubMed, CNKI, Google Scholar, Baidu Scholar, Web of Science, Medline Plus, ACS Elsevier, and Flora of China) and libraries. Syringin, extraction and separation, pharmacological activities, preparations and applications, and pharmacokinetics were chosen as the keywords. According to statistics, syringin can be found in 23 families more than 60 genera, and over 100 species of plants. As a key component in many Chinese herbal medicines, syringin holds significant research value due to its unique sinapyl alcohol structure. Its diverse pharmacological effects include immunomodulatory activity, tumor suppression, hypoglycemic action, and hypolipidemic effects. Additionally, it has been shown to provide neuroprotection, liver protection, radiation protection, cardioprotection, and bone protection. Related preparations such as Aidi injection, compound cantharidin capsule, and Tanreqing injection have been widely used in clinical settings. Other studies on syringin such as extraction and isolation, total synthesis, safety profile assessment, and pharmacokinetics have also made progress. It is crucial for medical research to deeply explore its mechanism of action, especially regarding immunity and tumor therapy. Meanwhile, more robust support is needed to improve the utilization of plant resources and to develop extraction means adapted to the needs of industrial biochemistry to further promote economic development while protecting people's health.
Collapse
Affiliation(s)
- Qingyuan Qian
- College of Pharmacy, Lanzhou University, Lanzhou, China
- Institute of Radiation Medicine Sciences, Beijing, China
| | - Jinchao Pan
- Institute of Radiation Medicine Sciences, Beijing, China
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jun Yang
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Renjie Wang
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Luo
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhenhui Wu
- Institute of Radiation Medicine Sciences, Beijing, China
| | - Shuhe Ma
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuguang Wang
- Institute of Radiation Medicine Sciences, Beijing, China
| | - Maoxing Li
- College of Pharmacy, Lanzhou University, Lanzhou, China
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yue Gao
- Institute of Radiation Medicine Sciences, Beijing, China
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
4
|
Li L, Jin M, Tan J, Xiao B. NcRNAs: A synergistically antiapoptosis therapeutic tool in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14476. [PMID: 37735992 PMCID: PMC11017435 DOI: 10.1111/cns.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
AIMS The aim of this review is to systematically summarize and analyze the noncoding RNAs (ncRNAs), especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the cell apoptosis among Alzheimer's disease (AD) in recent years to demonstrate their value in the diagnosis and treatment of AD. METHODS We systematically summarized in vitro and in vivo studies focusing on the ncRNAs in the regulation of cell apoptosis among AD in PubMed, ScienceDirect, and Google Scholar. RESULTS We discover three patterns of ncRNAs (including 'miRNA-mRNA', 'lncRNA-miRNA-mRNA', and 'circRNA-miRNA-mRNA') form the ncRNA-based regulatory networks in regulating cell apoptosis in AD. CONCLUSIONS This review provides a future diagnosis and treatment strategy for AD patients based on ncRNAs.
Collapse
Affiliation(s)
- Liangxian Li
- Laboratory of Respiratory DiseaseAffiliated Hospital of Guilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Bo Xiao
- Laboratory of Respiratory DiseaseAffiliated Hospital of Guilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
- Key Laboratory of Respiratory DiseasesEducation Department of Guangxi Zhuang Autonomous RegionGuilinChina
| |
Collapse
|
5
|
Chen L, Jiang L, Shi X, Yang J, Wang R, Li W. Constituents, pharmacological activities, pharmacokinetic studies, clinical applications, and safety profile on the classical prescription Kaixinsan. Front Pharmacol 2024; 15:1338024. [PMID: 38362144 PMCID: PMC10867185 DOI: 10.3389/fphar.2024.1338024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Kaixinsan (KXS) is a noteworthy classical prescription, which consists of four Chinese medicinal herbs, namely Polygalae Radix, Ginseng Radix et Rhizoma, Poria, and Acori Tatarinowii Rhizoma. KXS was initially documented in the Chinese ancient book Beiji Qianjin Yaofang written by Sun Simiao of the Tang Dynasty in 652 A.D. As a traditional Chinese medicine (TCM) prescription, it functions to nourish the heart and replenish Qi, calm the heart tranquilize the mind, and excrete dampness. Originally used to treat amnesia, it is now also effective in memory decline and applied to depression. Although there remains an abundance of literature investigating KXS from multiple aspects, few reviews summarize the features and research, which impedes better exploration and exploitation of KXS. This article intends to comprehensively analyze and summarize up-to-date information concerning the chemical constituents, pharmacology, pharmacokinetics, clinical applications, and safety of KXS based on the scientific literature, as well as to examine possible scientific gaps in current research and tackle issues in the next step. The chemical constituents of KXS primarily consist of saponins, xanthones, oligosaccharide esters, triterpenoids, volatile oils, and flavonoids. Of these, saponins are the predominant active ingredients, and increasing evidence has indicated that they exert therapeutic properties against mental disease. Pharmacokinetic research has illustrated that the crucial exposed substances in rat plasma after KXS administration are ginsenoside Re (GRe), ginsenoside Rb1 (GRb1), and polygalaxanthone III (POL). This article provides additional descriptions of the safety. In this review, current issues are highlighted to guide further comprehensive research of KXS and other classical prescriptions.
Collapse
Affiliation(s)
- Liping Chen
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Lin Jiang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoyu Shi
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jihong Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Rong Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| |
Collapse
|
6
|
Zhuo Y, Fu X, Jiang Q, Lai Y, Gu Y, Fang S, Chen H, Liu C, Pan H, Wu Q, Fang J. Systems pharmacology-based mechanism exploration of Acanthopanax senticosusin for Alzheimer's disease using UPLC-Q-TOF-MS, network analysis, and experimental validation. Eur J Pharmacol 2023:175895. [PMID: 37422122 DOI: 10.1016/j.ejphar.2023.175895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease, characterized by progressive cognitive dysfunction and memory loss. However, the disease-modifying treatments for AD are still lacking. Traditional Chinese herbs, have shown their potentials as novel treatments for complex diseases, such as AD. PURPOSE This study was aimed at investigating the mechanism of action (MOA) of Acanthopanax senticosusin (AS) for treatment of AD. METHODS In this study, we firstly identified the chemical constituents in Acanthopanax senticosusin (AS) utilizing ultra-high performance liquid chromatography coupled with Q-TOF-mass spectrometry (UPLC-Q-TOF-MS), and next built the drug-target network of these compounds. We next performed the systems pharmacology-based analysis to preliminary explore the MOA of AS against AD. Moreover, we applied the network proximity approach to identify the potential anti-AD components in AS. Finally, experimental validations, including animal behavior test, ELISA and TUNEL staining, were conducted to verify our systems pharmacology-based analysis. RESULTS 60 chemical constituents in AS were identified via the UPLC-Q-TOF-MS approach. The systems pharmacology-based analysis indicated that AS might exert its therapeutic effects on AD via acetylcholinesterase and apoptosis signaling pathway. To explore the material basis of AS against AD, we further identified 15 potential anti-AD components in AS. Consistently, in vivo experiments demonstrated that AS could protect cholinergic nervous system damage and decrease neuronal apoptosis caused by scopolamine. CONCLUSION Overall, this study applied systems pharmacology approach, via UPLC-Q-TOF-MS, network analysis, and experimental validation to decipher the potential molecular mechanism of AS against AD.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yiyi Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huiling Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chenchen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
7
|
ERGON EY, ÇELİK A, DİNİZ G, ÇOLAK R, ÖZDEMİR SA, ÇALKAVUR Ş, YILMAZ O. Evaluation of syringin's neuroprotective effect in a model of neonatal hypoxic-ischemic brain injury. Turk J Med Sci 2023; 53:1312-1320. [PMID: 38813032 PMCID: PMC10763795 DOI: 10.55730/1300-0144.5697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/26/2023] [Accepted: 06/21/2023] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND/AIM A significant cause of mortality and morbidity in the neonatal era is hypoxic-ischemic encephalopathy (HIE). This study examined the histopathological analysis and neuroprotective impact of syringin (SYR) in an experimental HIE rat model. MATERIAL AND METHODS On the 7th postnatal day, 24 Wistar albino rats were evaluated in 3 groups using the HIE model under gas anesthesia. In the experiment, Group A received 10 mg/kg SYR plus dimethyl sulfoxide (DMSO), Group B received DMSO only, and Group C served as a sham group. Immunohistochemical techniques were used to assess apoptotic cell measurement and proinflammatory cytokines (TNF-α and IL-1β primary antibodies). RESULTS Rats suffering from hypoxic-ischemic brain damage had their apoptosis assessed. The SYR and sham groups had statistically fewer cells undergoing apoptosis (p < 0.001). There was no difference between the groups in terms of IL-1β and TNF-α during immunohistochemical staining. Neuronal degeneration was significantly lower in the histological evaluation of the hippocampus in the SYR group (p = 0.01). A statistically significant difference (p = 0.01) was observed between the SYR and the control groups regarding pericellular and perivascular edema. CONCLUSION SYR reduced apoptosis, perivascular and pericellular edema, and neuronal degeneration in rat cerebral tissue. These results raise the possibility that SYR may have a neuroprotective effect on the harm brought on by HIE. This is the first investigation of SYR's function within the HIE paradigm.
Collapse
Affiliation(s)
- Ezgi Yangın ERGON
- Neonatal Intensive Care Unit, Pediatric Division, Dr Behçet Uz Children’s Education and Research Hospital, İzmir,
Turkiye
| | - Aslı ÇELİK
- Department of Laboratory Animal Science, Faculty of Health Sciences, Dokuz Eylül University, İzmir,
Turkiye
| | - Gülden DİNİZ
- Department of Pathology, Medical Faculty, İzmir Democracy University, İzmir,
Turkiye
| | - Rüya ÇOLAK
- Neonatal Intensive Care Unit, Pediatric Division, Medikal Park Florya Hospital, Aydın University Medical Faculty, İstanbul,
Turkiye
| | - Senem Alkan ÖZDEMİR
- Neonatal Intensive Care Unit, Pediatric Division, Dr Behçet Uz Children’s Education and Research Hospital, İzmir,
Turkiye
| | - Şebnem ÇALKAVUR
- Neonatal Intensive Care Unit, Pediatric Division, Dr Behçet Uz Children’s Education and Research Hospital, İzmir,
Turkiye
| | - Osman YILMAZ
- Department of Laboratory Animal Science, Faculty of Health Sciences, Dokuz Eylül University, İzmir,
Turkiye
| |
Collapse
|
8
|
Zeng W, Cui H, Yang W, Zhao Z. A systematic review: Botany, phytochemistry, traditional uses, pharmacology, toxicology, quality control and pharmacokinetics of Ilex rotunda Thunb. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115419. [PMID: 35781006 DOI: 10.1016/j.jep.2022.115419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ilex rotunda Thunb. (I. rotunda) is an Ilex species of Aquifoliaceae, widely distributed in East Asia. Its dried bark is commonly used as a medicinal part in the field of traditional Chinese medicine (TCM), named Ilicis Rotundae Cortex. This medicinal plant is commonly used for clearing heat and removing toxin, draining dampness and relieving pain in TCM to treat tonsillitis, acute gastroenteritis, gastric and duodenal ulcer, rheumatism, traumatic injury, and so on. It also has significant development value on lipid-lowering, hepatoprotection and anti-inflammation, but the potential mechanism needs to be further explored. AIM OF THE REVIEW More and more medicinal substances are being discovered in I. rotunda with multiple biological activities, which help to advance the ethno-pharmacological research in I. rotunda. However, to date there is a lack of a systematic summary of research progress on I. rotunda. This review aims to provide a critical summary of the current studies on I. rotunda. The progress in research on botany, phytochemistry, traditional uses, pharmacology, toxicology, quality control and pharmacokinetics of the plant is discussed. It hopes to provide useful references and guidance for the future directions of research on I. rotunda. MATERIALS AND METHODS Studies of I. rotunda were collected via Google Scholar and Baidu Scholar, PubMed, ScienceDirect, SciFinder, Web of Science, China National Knowledge Infrastructure (CNKI), WANFANG DATA and libraries. Some local books, official websites, PhD or MS's dissertations were also included. The literature cited in this review covered the period from 1956 to January 2022. RESULTS Analysis of the literature indicates that I. rotunda is a potentially valuable herbal medicine for the therapeutic of various diseases. To date, 120 compounds were found and identified in I. rotunda, mainly including triterpenoids, phenylpropanoids, etc. Modern pharmacological studies also found that the plant has the activities of protecting the cardiovascular system, lowering lipids and protecting the liver, as well as being an anti-inflammatory, anti-tumor and antibacterial. CONCLUSIONS This review summarizes the results from current studies of I. rotunda. However, the current explanation seems insufficient and unsatisfactory, in terms of the relationships between the traditional uses and the modern pharmacological activities, the mechanisms and the material basis. Thus, a critical and comprehensive evaluation is necessary to explore its future research prospects and development direction.
Collapse
Affiliation(s)
- Wei Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weiqun Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Wang F, Yuan C, Liu B, Yang YF, Wu HZ. Syringin exerts anti-breast cancer effects through PI3K-AKT and EGFR-RAS-RAF pathways. J Transl Med 2022; 20:310. [PMID: 35794555 PMCID: PMC9258109 DOI: 10.1186/s12967-022-03504-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Breast cancer (BC) is one of the most common malignant tumors with the highest mortality in the world. Modern pharmacological studies have shown that Syringin has an inhibitory effect on many tumors, but its anti-BC efficacy and mechanism are still unclear.
Methods
First, Syringin was isolated from Acanthopanax senticosus (Rupr. & Maxim.) Harms (ASH) by systematic solvent extraction and silica gel chromatography column. The plant name is composed of genus epithet, species additive words and the persons’ name who give its name. Then, the hub targets of Syringin against BC were revealed by bioinformatics. To provide a more experimental basis for later research, the hub genes which could be candidate biomarkers of BC and a ceRNA network related to them were obtained. And the potential mechanism of Syringin against BC was proved in vitro experiments.
Results
Syringin was obtained by liquid chromatography-mass spectrometry (LC–MS), nuclear magnetic resonance (NMR), and high-performance liquid chromatography (HPLC). Bioinformatics results showed that MAP2K1, PIK3CA, HRAS, EGFR, Caspase3, and PTGS2 were the hub targets of Syringin against BC. And PIK3CA and HRAS were related to the survival and prognosis of BC patients, the PIK3CA-hsa-mir-139-5p-LINC01278 and PIK3CA-hsa-mir-375 pathways might be closely related to the mechanism of Syringin against BC. In vitro experiments confirmed that Syringin inhibited the proliferation and migration and promoted apoptosis of BC cells through the above hub targets.
Conclusions
Syringin against BC via PI3K-AKT-PTGS2 and EGFR-RAS-RAF-MEK-ERK pathways, and PIK3CA and HRAS are hub genes for adjuvant treatment of BC.
Graphical Abstract
Collapse
|