1
|
Khan MN, Choudhary D, Mehan S, Khan Z, Gupta GD, Narula AS. Molecular mechanisms of GDNF/GFRA1/RET and PI3K/AKT/ERK signaling interplay in neuroprotection: Therapeutic strategies for treating neurological disorders. Neuropeptides 2025; 111:102516. [PMID: 40101330 DOI: 10.1016/j.npep.2025.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Neurological disorders, marked by progressive neuronal degeneration, impair essential cognitive functions like memory and motor coordination… This manuscript explores the significant roles of glial cell line-derived neurotrophic factor (GDNF), its co-receptors (GFRA1), and the receptor tyrosine kinase (RET) in mediating neuronal survival and function in various neurodegenerative conditions. The interplay between pivotal signaling pathways-PI3K/AKT and ERK1/2-facilitated by GDNF/GFRA1/RET, is emphasized for its neuroprotective effects. Dysregulation of these pathways is implicated in neurodegenerative and neuropsychiatric processes, with overactivation of GSK3β contributing to neuronal damage and apoptosis. Experimental evidence supports that activation of the RET receptor by GDNF enhances AKT signaling, promoting cell survival by inhibiting apoptotic pathways-therapeutic strategies incorporating GDNF delivery and RET activation present promising neuronal protection and regeneration options. Furthermore, inhibition of GSK3β demonstrates potential in ameliorating tau-related pathologies, while small molecule RET agonists may enhance therapeutic efficacy. This review explores the knowledge of GDNF/GFRA1/RET and PI3K/AKT/ERK1/2 associated signaling cascades, underscoring their significance in neuroprotection and therapeutic targeting to combat neurodegenerative diseases. Emerging approaches such as gene therapy and small-molecule RET agonists may offer novel avenues for treatment, although challenges like targeted delivery across the blood-brain barrier remain pertinent.
Collapse
Affiliation(s)
- Md Nasiruddin Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
2
|
Sears JC, Broadie K. Temporally and Spatially Localized PKA Activity within Learning and Memory Circuitry Regulated by Network Feedback. eNeuro 2022; 9:ENEURO.0450-21.2022. [PMID: 35301221 PMCID: PMC8982635 DOI: 10.1523/eneuro.0450-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/18/2022] [Accepted: 03/12/2022] [Indexed: 12/02/2022] Open
Abstract
Dynamic functional connectivity within brain circuits requires coordination of intercellular signaling and intracellular signal transduction. Critical roles for cAMP-dependent protein kinase A (PKA) signaling are well established in the Drosophila mushroom body (MB) learning and memory circuitry, but local PKA activity within this well-mapped neuronal network is uncharacterized. Here, we use an in vivo PKA activity sensor (PKA-SPARK) to test spatiotemporal regulatory requirements in the MB axon lobes. We find immature animals have little detectable PKA activity, whereas postcritical period adults show high field-selective activation primarily in just 3/16 defined output regions. In addition to the age-dependent PKA activity in distinct α'/β' lobe nodes, females show sex-dependent elevation compared with males in these same restricted regions. Loss of neural cell body Fragile X mental retardation protein (FMRP) and Rugose [human Neurobeachin (NBEA)] suppresses localized PKA activity, whereas overexpression (OE) of MB lobe PKA-synergist Meng-Po (human SBK1) promotes PKA activity. Elevated Meng-Po subverts the PKA age-dependence, with elevated activity in immature animals, and spatial-restriction, with striking γ lobe activity. Testing circuit signaling requirements with temperature-sensitive shibire (human Dynamin) blockade, we find broadly expanded PKA activity within the MB lobes. Using transgenic tetanus toxin to block MB synaptic output, we find greatly heightened PKA activity in virtually all MB lobe fields, although the age-dependence is maintained. We conclude spatiotemporally restricted PKA activity signaling within this well-mapped learning/memory circuit is age-dependent and sex-dependent, driven by FMRP-Rugose pathway activation, temporally promoted by Meng-Po kinase function, and restricted by output neurotransmission providing network feedback.
Collapse
Affiliation(s)
- James C Sears
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN 37235
- Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, TN 37235
| |
Collapse
|
3
|
Almandil NB, AlSulaiman A, Aldakeel SA, Alkuroud DN, Aljofi HE, Alzahrani S, Al-mana A, Alfuraih AA, Alabdali M, Alkhamis FA, AbdulAzeez S, Borgio JF. Integration of Transcriptome and Exome Genotyping Identifies Significant Variants with Autism Spectrum Disorder. Pharmaceuticals (Basel) 2022; 15:ph15020158. [PMID: 35215271 PMCID: PMC8880056 DOI: 10.3390/ph15020158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Autism is a complex disease with genetic predisposition factors. Real factors for treatment and early diagnosis are yet to be defined. This study integrated transcriptome and exome genotyping for identifying functional variants associated with autism spectrum disorder and their impact on gene expression to find significant variations. More than 1800 patients were screened, and 70 (47 male/23 female) with an average age of 7.56 ± 3.68 years fulfilled the DSM-5 criteria for autism. Analysis revealed 682 SNPs of 589 genes significantly (p < 0.001) associated with autism among the putative functional exonic variants (n = 243,345) studied. Olfactory receptor genes on chromosome 6 were significant after Bonferroni correction (α = 0.05/243345 = 2.05 × 10−7) with a high degree of linkage disequilibrium on 6p22.1 (p = 6.71 × 10−9). The differentially expressed gene analysis of autistic patients compared to controls in whole RNA sequencing identified significantly upregulated (foldchange ≥ 0.8 and p-value ≤ 0.05; n = 125) and downregulated (foldchange ≤ −0.8 and p-value ≤ 0.05; n = 117) genes. The integration of significantly up- and downregulated genes and genes of significant SNPs identified regulatory variants (rs6657480, rs3130780, and rs1940475) associated with the up- (ITGB3BP) and downregulation (DDR1 and MMP8) of genes in autism spectrum disorder in people of Arab ancestries. The significant variants could be a biomarker of interest for identifying early autism among Arabs and helping to characterize the genes involved in the susceptibility mechanisms for autistic subjects.
Collapse
Affiliation(s)
- Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Abdulla AlSulaiman
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (M.A.); (F.A.A.)
| | - Sumayh A. Aldakeel
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.A.); (D.N.A.); (A.A.A.); (S.A.)
| | - Deem N. Alkuroud
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.A.); (D.N.A.); (A.A.A.); (S.A.)
| | - Halah Egal Aljofi
- Environmental Health Research Area, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Safah Alzahrani
- Department of Mental Health, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.); (A.A.-m.)
- King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Aishah Al-mana
- Department of Mental Health, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.); (A.A.-m.)
- King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Asma A. Alfuraih
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.A.); (D.N.A.); (A.A.A.); (S.A.)
| | - Majed Alabdali
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (M.A.); (F.A.A.)
| | - Fahd A. Alkhamis
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (M.A.); (F.A.A.)
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.A.); (D.N.A.); (A.A.A.); (S.A.)
| | - J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.A.); (D.N.A.); (A.A.A.); (S.A.)
- Correspondence: ; Tel.: +966-13-3330864
| |
Collapse
|