1
|
Yan Y, Zhang Y, Liu M, Li L, Zheng Y. Neuroprotection vs. Neurotoxicity: The Dual Impact of Brain Lipids in Depression. Int J Mol Sci 2025; 26:2722. [PMID: 40141364 PMCID: PMC11943007 DOI: 10.3390/ijms26062722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Growing neurochemical evidence highlights cerebral lipid dysregulation as a key factor in the pathophysiology of major depressive disorder (MDD). This review systematically explores the dual roles of lipid species in both normal behavioral regulation and MDD development. By critically examining the recent literature, we classify these lipid species into two functional categories based on their functional neuroactivity: (1) neuroprotective lipids (sphingomyelin, cholesterol, cardiolipin, sphingosine, phosphatidic acid, and phosphatidylserine), which exert neuroprotective effects by modulating membrane fluidity and supporting synaptic vesicle trafficking; and (2) neurotoxic lipids (ceramides, phosphatidylinositol, phosphocholine, and phosphatidylethanolamine), which promote apoptotic signaling cascades and disrupt mitochondrial bioenergetics. An unresolved but critical question pertains to the maintenance of homeostatic equilibrium between these opposing lipid classes. This balance is essential, given their significant impact on membrane protein localization and function, monoaminergic neurotransmitter metabolism, energy homeostasis, and redox balance in neural circuits involved in mood regulation. This emerging framework positions cerebral lipidomics as a promising avenue for identifying novel therapeutic targets and developing biomarker-based diagnostic approaches for MDD treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yanrong Zheng
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
2
|
Mao P, Hu J, Mai X, Li N, Liao Y, Feng L, Long Q. Multi-Omics Analysis of the Gut-Brain Axis Elucidates Therapeutic Mechanisms of Guhong Injection in the Treatment of Ischemic Stroke. Int J Mol Sci 2025; 26:1560. [PMID: 40004026 PMCID: PMC11855775 DOI: 10.3390/ijms26041560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Guhong injection (GH) is a compound preparation widely utilized in the treatment of cerebrovascular diseases. Accumulating evidence indicates that the gut microbiota is implicated in the development of ischemic stroke (IS). However, although the therapeutic potential of GH in IS may be mediated through the gut microbiota, the intricate relationships among the gut-brain axis, biomarkers, and target proteins remain to be completely explained. A rat model of middle cerebral artery occlusion (MCAO) was utilized to investigate the impact of GH on IS. Our 16S rRNA sequence analysis revealed that GH markedly enhanced the α-diversity of the intestinal microbiome and rectified the imbalance of short-chain fatty acids (SCFAs). Metabolomic analysis indicated that GH reversed 45 biomarkers and 6 disordered metabolic pathways in MCAO rats. Among these, the metabolic pathways of arachidonic acid, α-linolenic acid, fructose, and mannose were closely associated with gut microbiota comprising Lactobacillus modulated by GH. Furthermore, IS-related signaling pathways, including inflammation, autophagy, oxidative stress, and apoptosis, were significantly associated with three gut microbial species influenced by GH. The potential efficacy of GH in the context of IS is mediated through multiple pathways, involving the gut microbiota, SCFAs, biomarkers, and target proteins. This process partly relies on the gut-brain axis.
Collapse
MESH Headings
- Animals
- Gastrointestinal Microbiome/drug effects
- Rats
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/therapeutic use
- Male
- Ischemic Stroke/drug therapy
- Ischemic Stroke/metabolism
- Brain/metabolism
- Brain/drug effects
- Disease Models, Animal
- Rats, Sprague-Dawley
- Metabolomics/methods
- RNA, Ribosomal, 16S/genetics
- Biomarkers/metabolism
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/metabolism
- Fatty Acids, Volatile/metabolism
- Oxidative Stress/drug effects
- Multiomics
Collapse
Affiliation(s)
| | | | - Xi Mai
- School of Pharmacy, Nanchang University, Nanchang 330006, China; (P.M.); (J.H.); (N.L.); (Y.L.); (L.F.); (Q.L.)
| | | | | | | | | |
Collapse
|
3
|
Lin F, Song Y, Cao H, Liao F, Deng Y, Wei Q, Hong W, Yao G, Ding C, Chen X. Serum lipid profiling reveals characteristic lipid signatures associated with stroke in patients with leukoaraiosis. Sci Rep 2024; 14:31337. [PMID: 39733101 PMCID: PMC11682383 DOI: 10.1038/s41598-024-82808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Many lipid biomarkers of stroke have been identified, but the lipid metabolism in elderly patients with leukoaraiosis remains poorly understood. This study aims to explore lipid metabolic processes in stroke among leukoaraiosis patients, which could provide valuable insights for guiding future antithrombotic therapy. In a cohort of 215 individuals undergoing MRI, 13 stroke patients were matched with controls, and 48 stroke patients with leukoaraiosis were matched with 40 leukoaraiosis patients. Serum lipidomics was profiled using UPLC-TOF, and OPLS-DA was applied for metabolite identification. Partial Least Squares Path Model (PLS-PM) assessed pathway weights of novel metabolites in stroke risk, while linear regression explored correlations with clinical outcomes. Lipid profiling identified 168 distinct compounds. From these, 25 lipid molecules were associated with glycerolipid, glycerophospholipid, and sphingolipid metabolism. PLS-PM identified 12 key metabolites, including DG 36:4 (OR = 6.40) as a significant risk factor. Metabolites such as PE 38:5 and FA 16:1;O showed significant correlations with stroke in leukoaraiosis, particularly when the Fazekas score was ≥ 4. Twelve metabolites were identified as key factors in stroke incidence among leukoaraiosis patients. Lipid disturbances in glycerolipids and glycerophospholipids provide valuable insights for further studies on the progression from leukoaraiosis to stroke.
Collapse
Affiliation(s)
- Feng Lin
- Department of Neurology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Yige Song
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Hongli Cao
- Department of Emergency Medicine, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Fengye Liao
- Department of Neurology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Yanping Deng
- Department of Neurology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Qinyu Wei
- Department of Neurology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Weimin Hong
- Department of Neurology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Guifeng Yao
- Department of Neurology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
| | - Xianyang Chen
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China.
- Biomedical Center, Zhongguancun Big Data Industry Alliance, Beijing, China.
| |
Collapse
|
4
|
Jiang Q, Zhang Y, Ye T, Liang X, Lou B. Metabonomics and Transcriptomics Analyses Reveal the Underlying HPA-Axis-Related Mechanisms of Lethality in Larimichthys polyactis Exposed to Underwater Noise Pollution. Int J Mol Sci 2024; 25:12610. [PMID: 39684322 PMCID: PMC11641136 DOI: 10.3390/ijms252312610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The problem of marine noise pollution has a long history. Strong noise (>120 dB re 1 µPa) will affects the growth, development, physiological responses, and behaviors of fish, and also can induce the stress response, posing a mortal threat. Although many studies have reported that underwater noise may affect the survival of fish by disturbing their nervous system and endocrine system, the underlying causes of death due to noise stimulation remain unknown. Therefore, in this study, we used the underwater noise stress models to conduct underwater strong noise (50-125 dB re 1 µPa, 10-22,000 Hz) stress experiments on small yellow croaker for 10 min (short-term noise stress) and 6 days (long-term noise stress). A total of 150 fishes (body weight: 40-60 g; body length: 12-14 cm) were used in this study. Omics (metabolomics and transcriptomics) studies and quantitative analyses of important genes (HPA (hypothalamic-pituitary-adrenal)-axis functional genes) were performed to reveal genetic and metabolic changes in the important tissues associated with the HPA axis (brain, heart, and adrenal gland). Finally, we found that the strong noise pollution can significantly interfere with the expression of HPA-axis functional genes (including corticotropin releasing hormone (CRH), corticotropin releasing hormone receptor 2 (CRHR2), and arginine vasotocin (AVT)), and long-term stimulation can further induce metabolic disorders of the functional tissues (brain, heart, and adrenal gland), posing a lethal threat. Meanwhile, we also found that there were two kinds of death processes, direct death and chronic death, and both were closely related to the duration of stimulation and the regulation of the HPA axis.
Collapse
Affiliation(s)
| | | | | | | | - Bao Lou
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Q.J.); (Y.Z.); (T.Y.); (X.L.)
| |
Collapse
|
5
|
Shen L, Kang J, Wang J, Shao S, Zhou H, Yu X, Huang M, Zeng W. Dissecting the mechanism of synergistic interactions between Aspergillus fumigatus and the microalgae Synechocystis sp. PCC6803 under Cd(II) exposure: insights from untargeted metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135354. [PMID: 39126852 DOI: 10.1016/j.jhazmat.2024.135354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Co-culturing fungi and microalgae may effectively remediate wastewater containing Cd and harvest microalgae. Nevertheless, a detailed study of the mechanisms underlying the synergistic interactions between fungi and microalgae under Cd(II) exposure is lacking. In this study, Cd(II) exposure resulted in a significant enhancement of antioxidants, such as glutathione (GSH), malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide dismutase (SOD) compared to the control group, suggesting that the cellular antioxidant defense response was activated. Extracellular proteins and extracellular polysaccharides of the symbiotic system were increased by 60.61 % and ,24.29 %, respectively, after Cd(II) exposure for 72 h. The adsorption behavior of Cd(II) was investigated using three-dimensional fluorescence excitation-emission matrix (3D-EEM), fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). Metabolomics results showed that the TCA cycle provided effective material and energy supply for the symbiotic system to resist the toxicity of Cd(II); Proline, histidine, and glutamine strengthened the synergistic adsorption capacity of the fungus and microalgae. Overall, the theoretical foundation for a deep comprehension of the beneficial interactions between fungi and microalgae under Cd(II) exposure and the role of the fungal-algal symbiotic system in the management of heavy metal pollution is provided by this combined physiological and metabolomic investigation.
Collapse
Affiliation(s)
- Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Shiyu Shao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Min Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China.
| |
Collapse
|
6
|
Wei J, Zhang M, Wang X, Yang K, Xiao Q, Zhu X, Pan X. Role of cardiolipin in regulating and treating atherosclerotic cardiovascular diseases. Eur J Pharmacol 2024; 979:176853. [PMID: 39067567 DOI: 10.1016/j.ejphar.2024.176853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cardiovascular diseases, mainly caused by atherosclerosis, are the leading causes of morbidity and mortality worldwide. Despite the discrepancies in clinical manifestations between different abnormalities, atherosclerosis shares similar pathophysiological processes, such as mitochondrial dysfunction. Cardiolipin (CL) is a conserved mitochondria-specific lipid that contributes to the cristae structure of the inner mitochondrial membrane (IMM). Alterations in the CL, including oxidative modification, reduced quantity, and abnormal localization, contribute to the onset and progression of atherosclerosis. In this review, we summarize the knowledge that CL is involved in the pathogenesis of atherosclerosis. On the one hand, CL and its oxidative modification promote the progression of atherosclerosis via several mechanisms, including oxidative stress, apoptosis, and inflammation in response to stress. On the other hand, CL externalizes to the outer mitochondrial membrane (OMM) and acts as the pivotal "eat-me" signal in mitophagy, removing dysfunctional mitochondria and safeguarding against the progression of atherosclerosis. Given the imbalance between proatherogenic and antiatherogenic effects, we provide our understanding of the roles of the CL and its oxidative modification in atherosclerotic cardiovascular diseases, in addition to potential therapeutic strategies aimed at restoring the CL. Briefly, CL is far more than a structural IMM lipid; broader significances of the evolutionarily conserved lipid need to be explored.
Collapse
Affiliation(s)
- Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Zhang H, Wang L, Wang X, Deng L, He B, Yi X, Li J. Mangiferin alleviated poststroke cognitive impairment by modulating lipid metabolism in cerebral ischemia/reperfusion rats. Eur J Pharmacol 2024; 977:176724. [PMID: 38851559 DOI: 10.1016/j.ejphar.2024.176724] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION Mangiferin is a Chinese herbal extract with multiple biological activities. Mangiferin can penetrate the blood‒brain barrier and has potential in the treatment of nervous system diseases. These findings suggest that mangiferin protects the neurological function in ischemic stroke rats by targeting multiple signaling pathways. However, little is known about the effect and mechanism of mangiferin in alleviating poststroke cognitive impairment. METHODS Cerebral ischemia/reperfusion (I/R) rats were generated via middle cerebral artery occlusion. Laser speckle imaging was used to monitor the cerebral blood flow. The I/R rats were intraperitoneally (i.p.) injected with 40 mg/kg mangiferin for 7 consecutive days. Neurological scoring, and TTC staining were performed to evaluate neurological function. Behavioral experiments, including the open field test, elevated plus maze, sucrose preference test, and novel object recognition test, were performed to evaluate cognitive function. Metabolomic data from brain tissue with multivariate statistics were analyzed by gas chromatography‒mass spectrometry and liquid chromatography‒mass spectrometry. RESULTS Mangiferin markedly decreased neurological scores, and reduced infarct areas. Mangiferin significantly attenuated anxiety-like and depression-like behaviors and enhanced learning and memory in I/R rats. According to the metabolomics results, 13 metabolites were identified to be potentially regulated by mangiferin, and the differentially abundant metabolites were mainly involved in lipid metabolism. CONCLUSIONS Mangiferin protected neurological function and relieved poststroke cognitive impairment by improving lipid metabolism abnormalities in I/R rats.
Collapse
Affiliation(s)
- Hui Zhang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Laifa Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Xueqin Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Ling Deng
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Binsheng He
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, Hunan, China; The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China.
| | - Xia Yi
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, Hunan, China.
| | - Jianming Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China.
| |
Collapse
|
8
|
Wang C, Zhao L, Su X, Zhang X, Wang L, Li X, Fu M, Ye F. Music May Improve Negative Psychology of Stroke Rehabilitation Patients with Dysphagia: A Retrospective Study. Noise Health 2024; 26:417-422. [PMID: 39345086 PMCID: PMC11539986 DOI: 10.4103/nah.nah_81_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE This study aims to explore the effect of music therapy on improving the negative psychology of stroke rehabilitation patients with dysphagia. METHODS The medical records of 160 stroke rehabilitation patients with dysphagia admitted to Wuwei People's Hospital from June 2020 to May 2021 were retrospectively analyzed. Based on the different clinical management programs, these patients were divided into the control group (n = 77, receiving routine clinical rehabilitation management) and the research group (n = 83, receiving routine clinical rehabilitation management + music therapy). The scores of the Standard Swallowing Assessment Scale (SSA), Patient Health Questionnaire-9 (PHQ-9), and the World Health Organization Five-item Well-Being Index (WHO-5), as well as the levels of dopamine (DA) and 5-hydroxy tryptamine (5-HT), of the two groups were compared. RESULTS After treatment, there was no significant difference in SSA scores between the two groups (P > 0.05). After the treatment, the PHQ-9 score of the research group was lower than that of the control group, whereas the WHO-5 score was significantly higher than that of the control group (P < 0.05). After the treatment, the levels of DA and 5-HT in the research group were significantly higher than those in the control group (P < 0.05). CONCLUSIONS Music therapy for stroke rehabilitation patients with dysphagia can improve their negative emotions and quality of life to a certain extent, which may alleviate the condition of patients.
Collapse
Affiliation(s)
- Chunyan Wang
- Department II of Neurology, Wuwei People’s Hospital, Wuwei City, Gansu Province 733000, P.R. China
| | - Li Zhao
- Department II of Neurology, Wuwei People’s Hospital, Wuwei City, Gansu Province 733000, P.R. China
| | - Xiaoying Su
- Department II of Neurology, Wuwei People’s Hospital, Wuwei City, Gansu Province 733000, P.R. China
| | - Xiangqing Zhang
- Department II of Neurology, Wuwei People’s Hospital, Wuwei City, Gansu Province 733000, P.R. China
| | - Liping Wang
- Department I of Neurology, Wuwei People’s Hospital, Wuwei City, Gansu Province 733000, P.R. China
| | - Xinglin Li
- Department I of Neurology, Wuwei People’s Hospital, Wuwei City, Gansu Province 733000, P.R. China
| | - Mei Fu
- Department I of Neurology, Wuwei People’s Hospital, Wuwei City, Gansu Province 733000, P.R. China
| | - Fan Ye
- Department I of Neurology, Wuwei People’s Hospital, Wuwei City, Gansu Province 733000, P.R. China
| |
Collapse
|
9
|
Liang Y, Wang F, Song Y, Tang C, Wu R, Feng Q, Han M, Li Y, Chen W, Zhang J, Jiang M, Wang Z. LC-MS based metabonomics study on protective mechanism of ESWW in cerebral ischemia via CYTC/Apaf-1/NDRG4 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155543. [PMID: 38657364 DOI: 10.1016/j.phymed.2024.155543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Ershiwuwei Zhenzhu pills was originally recorded in the Tibetan medical book Si Bu Yi Dian in the 8th century AD and is now included in the Pharmacopoeia of the People's Republic of China (2020). The pills can calm the nerves and open the mind as well as treat cerebral ischemia reperfusion injury, stroke, hemiplegia. However, its quality standards have not yet been established, and the therapeutic effect on cerebral ischemia by regulating the mitochondrial apoptosis pathway has not been elucidated. STUDY DESIGN AND METHODS LC-MS was used to establish quality standards for Ershiwuwei Zhenzhu pills. Metabonomics, molecular docking, neuroethology, cerebral infarction ratio, pathological detection of diencephalon, cortex, and hippocampus, and molecular biology techniques were used to reveal the mechanism of the pills in regulating the mitochondrial apoptosis pathway to treat cerebral ischemia. RESULTS The contents of 20 chemical components in Ershiwuwei Zhenzhu pills from 12 batches and 8 manufacturers was determined for the first time. Eleven differential metabolites and three metabolic pathways, namely, fructose and mannose metabolism, glycerophospholipid metabolism, and purine metabolism, were identified by metabonomics. The pills improved the neuroethology abnormalities of MCAO rats and the pathological damage in the diencephalon and decreased the ratio of cerebral infarction. It also significantly reduced the mRNA expression of AIF, Apaf-1, cleared caspase8, CytC, and P53 mRNA in the brain tissue and the protein expression of Apaf-1 and CYTC and increased the protein expression of NDRG4. CONCLUSION In vitro quantitative analysis of the in vitro chemical components of Ershiwuwei Zhenzhu pills has laid the foundation for improving its quality control. The potential mechanism of the pills in treating cerebral ischemia may be related to the Apaf-1/CYTC/NDRG4 apoptosis pathway. This work provides guidance for clinical drug use for patients.
Collapse
Affiliation(s)
- Yan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangjie Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinglian Song
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ruixia Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoqiao Feng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengtian Han
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanyue Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Miao Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
10
|
Zhang T, Cao Y, Zhao J, Yao J, Liu G. Assessing the causal effect of genetically predicted metabolites and metabolic pathways on stroke. J Transl Med 2023; 21:822. [PMID: 37978512 PMCID: PMC10655369 DOI: 10.1186/s12967-023-04677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Stroke is a common neurological disorder that disproportionately affects middle-aged and elderly individuals, leading to significant disability and mortality. Recently, human blood metabolites have been discovered to be useful in unraveling the underlying biological mechanisms of neurological disorders. Therefore, we aimed to evaluate the causal relationship between human blood metabolites and susceptibility to stroke. METHODS Summary data from genome-wide association studies (GWASs) of serum metabolites and stroke and its subtypes were obtained separately. A total of 486 serum metabolites were used as the exposure. Simultaneously, 11 different stroke phenotypes were set as the outcomes, including any stroke (AS), any ischemic stroke (AIS), large artery stroke (LAS), cardioembolic stroke (CES), small vessel stroke (SVS), lacunar stroke (LS), white matter hyperintensities (WMH), intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), transient ischemic attack (TIA), and brain microbleeds (BMB). A two-sample Mendelian randomization (MR) study was conducted to investigate the causal effects of serum metabolites on stroke and its subtypes. The inverse variance-weighted MR analyses were conducted as causal estimates, accompanied by a series of sensitivity analyses to evaluate the robustness of the results. Furthermore, a reverse MR analysis was conducted to assess the potential for reverse causation. Additionally, metabolic pathway analysis was performed using the web-based MetOrigin. RESULTS After correcting for the false discovery rate (FDR), MR analysis results revealed remarkable causative associations with 25 metabolites. Further sensitivity analyses confirmed that only four causative associations involving three specific metabolites passed all sensitivity tests, namely ADpSGEGDFXAEGGGVR* for AS (OR: 1.599, 95% CI 1.283-1.993, p = 2.92 × 10-5) and AIS (OR: 1.776, 95% CI 1.380-2.285, p = 8.05 × 10-6), 1-linoleoylglycerophosph-oethanolamine* for LAS (OR: 0.198, 95% CI 0.091-0.428, p = 3.92 × 10-5), and gamma-glutamylmethionine* for SAH (OR: 3.251, 95% CI 1.876-5.635, p = 2.66 × 10-5), thereby demonstrating a high degree of stability. Moreover, eight causative associations involving seven other metabolites passed both sensitivity tests and were considered robust. The association result of one metabolite (glutamate for LAS) was considered non-robust. As for the remaining metabolites, we speculate that they may potentially possess underlying causal relationships. Notably, no common metabolites emerged from the reverse MR analysis. Moreover, after FDR correction, metabolic pathway analysis identified 40 significant pathways across 11 stroke phenotypes. CONCLUSIONS The identified metabolites and their associated metabolic pathways are promising circulating metabolic biomarkers, holding potential for their application in stroke screening and preventive strategies within clinical settings.
Collapse
Affiliation(s)
- Tianlong Zhang
- Department of Critical Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yina Cao
- Department of Neurology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jianqiang Zhao
- Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jiali Yao
- Department of Critical Care Medicine, Jinhua Hospital Affiliated to Zhejiang University, Jinhua, Zhejiang, China.
| | - Gang Liu
- Department of Infection Control, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| |
Collapse
|
11
|
Pan T, Shi Y, Yu G, Mamtimin A, Zhu W. Intracranial Aneurysms and Lipid Metabolism Disorders: From Molecular Mechanisms to Clinical Implications. Biomolecules 2023; 13:1652. [PMID: 38002334 PMCID: PMC10669412 DOI: 10.3390/biom13111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Many vascular diseases are linked to lipid metabolism disorders, which cause lipid accumulation and peroxidation in the vascular wall. These processes lead to degenerative changes in the vessel, such as phenotypic transformation of smooth muscle cells and dysfunction and apoptosis of endothelial cells. In intracranial aneurysms, the coexistence of lipid plaques is often observed, indicating localized lipid metabolism disorders. These disorders may impair the function of the vascular wall or result from it. We summarize the literature on the relationship between lipid metabolism disorders and intracranial aneurysms below.
Collapse
Affiliation(s)
- Tonglin Pan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200090, China; (T.P.); (Y.S.); (G.Y.); (A.M.)
- Neurosurgical Institute, Fudan University, Shanghai 200032, China
| | - Yuan Shi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200090, China; (T.P.); (Y.S.); (G.Y.); (A.M.)
- Neurosurgical Institute, Fudan University, Shanghai 200032, China
| | - Guo Yu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200090, China; (T.P.); (Y.S.); (G.Y.); (A.M.)
- Neurosurgical Institute, Fudan University, Shanghai 200032, China
| | - Abdureshid Mamtimin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200090, China; (T.P.); (Y.S.); (G.Y.); (A.M.)
- Neurosurgical Institute, Fudan University, Shanghai 200032, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200090, China; (T.P.); (Y.S.); (G.Y.); (A.M.)
- Neurosurgical Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Liu M, Ma W, He Y, Sun Z, Yang J. Recent Progress in Mass Spectrometry-Based Metabolomics in Major Depressive Disorder Research. Molecules 2023; 28:7430. [PMID: 37959849 PMCID: PMC10647556 DOI: 10.3390/molecules28217430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental illness with a heavy social burden, but its underlying molecular mechanisms remain unclear. Mass spectrometry (MS)-based metabolomics is providing new insights into the heterogeneous pathophysiology, diagnosis, treatment, and prognosis of MDD by revealing multi-parametric biomarker signatures at the metabolite level. In this comprehensive review, recent developments of MS-based metabolomics in MDD research are summarized from the perspective of analytical platforms (liquid chromatography-MS, gas chromatography-MS, supercritical fluid chromatography-MS, etc.), strategies (untargeted, targeted, and pseudotargeted metabolomics), key metabolite changes (monoamine neurotransmitters, amino acids, lipids, etc.), and antidepressant treatments (both western and traditional Chinese medicines). Depression sub-phenotypes, comorbid depression, and multi-omics approaches are also highlighted to stimulate further advances in MS-based metabolomics in the field of MDD research.
Collapse
Affiliation(s)
- Mingxia Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
13
|
Wen L, Yan C, Zheng W, Li Y, Wang Y, Qu M. Metabolic Alterations and Related Biological Functions of Post-Stroke Depression in Ischemic Stroke Patients. Neuropsychiatr Dis Treat 2023; 19:1555-1564. [PMID: 37435550 PMCID: PMC10332415 DOI: 10.2147/ndt.s415141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Background Post-stroke depression (PSD) is one of the most common neuropsychiatric complications after stroke. However, the underlying mechanisms of PSD remain ambiguous, and no objective diagnosis tool is available to diagnose PSD. Previous metabolomic studies on PSD included patients with ischemic and hemorrhagic stroke indiscriminately, which is not conducive to elucidating and predicting the occurrence of PSD. The aim of this study is to elucidate the pathogenesis of PSD and provide potential diagnostic markers for PSD in ischemic stroke patients. Methods In total, 51 ischemic stroke patients at 2 weeks were included in this study. Those with depressive symptoms were assigned to the PSD group, while the others were assigned to the non-PSD group. Plasma metabolomics based on liquid chromatography-mass spectrometry (LC-MS) was performed to explore the differential plasma metabolites between the PSD and non-PSD groups. Results Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) showed significant metabolic alterations between PSD patients and non-PSD patients. In total, 41 differential metabolites were screened out, mainly including phosphatidylcholines (PCs), L-carnitine and acyl carnitines, succinic acid, pyruvic acid and L-lactic acid. Metabolite-related pathway analysis revealed that alanine, aspartate and glutamate metabolism, glycerophospholipid metabolism and the citrate cycle (TCA cycle) may contribute to the pathogenesis of PSD. A panel of three signature metabolites [PC(22:5(7Z,10Z,13Z,16Z,19Z)/15:0), LysoPA(18:1(9Z)/0:0) and 1,5-anhydrosorbitol] was determined as potential biomarkers for PSD in ischemic stroke patients. Conclusion These findings are conducive to providing new insights into the pathogenesis of PSD and developing objective diagnostic tools for PSD in ischemic stroke patients.
Collapse
Affiliation(s)
- Lulu Wen
- Neurology Department, Xuan Wu Hospital Capital Medical University, Beijing, People’s Republic of China
| | - Chuming Yan
- Neurology Department, Xuan Wu Hospital Capital Medical University, Beijing, People’s Republic of China
| | - Wancheng Zheng
- Neurology Department, Xuan Wu Hospital Capital Medical University, Beijing, People’s Republic of China
| | - Yi Li
- Neurology Department, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yuhui Wang
- Neurology Department, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Miao Qu
- Neurology Department, Xuan Wu Hospital Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Jiang W, Chen J, Gong L, Liu F, Zhao H, Yan Z, Li Y, Zhang J, Xiao M, Mu J. Microbiota-derived short-chain fatty acids may participate in post-stroke depression by regulating host's lipid metabolism. J Psychiatr Res 2023; 161:426-434. [PMID: 37031497 DOI: 10.1016/j.jpsychires.2023.03.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Post-stroke depression (PSD) is a common mental disorder of stroke survivors, its pathogenesis remains elusive. Previous studies suggested a role of the microbiota-gut-brain (MGB) axis in stroke and depression. In this study, we characterized microbial composition and function, and gut-brain metabolic signatures, in PSD rats. We aim to explore how disordered gut microbes participate in the pathogenesis of PSD through the MGB axis. MATERIALS AND METHODS 16S rRNA gene sequence and fecal metabolome analysis were performed to identify the gut microbiome and their functional metabolites in PSD rats. Then, the lipid metabolic signatures in the prefrontal cortex (PFC) of PSD were conducted by liquid chromatography mass spectrometry. Finally, the potential pathway between gut and brain in the onset of PSD were explored. RESULTS Compared to control and stroke rats, there were 10 genera (most of them belonged to phylum Firmicutes) significantly changed and 3 short chain fatty acids (SCFAs: butyric acid, acetic acid and pentanoic acid) significantly decreased in PSD rats. Meanwhile, altered gut microbial in PSD rats was significantly associated with these SCFAs. Compared with control and stroke rats, 57 lipid metabolites in the PFC of PSD rats were significantly changed. In addition, the altered SCFAs in PSD rats were also significantly correlated with most of disordered lipid metabolites in PFC. CONCLUSIONS Our findings suggest that the SCFAs may be a bridge of gut-brain communication. The Firmicutes-SCFAs-lipid metabolism might be a potential pathway to further investigate the MGB axis and pathogenesis of PSD.
Collapse
Affiliation(s)
- Wenxia Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, China
| | - Lei Gong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, China
| | - Fang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, China
| | - Huan Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, China
| | - Zhiwen Yan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, China
| | - Yingli Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, China
| | - Jie Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, China
| | - Mi Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, China
| | - Jun Mu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, China.
| |
Collapse
|
15
|
Xie J, Zhong Q, Wu WT, Chen JJ. Multi-omics data reveals the important role of glycerophospholipid metabolism in the crosstalk between gut and brain in depression. J Transl Med 2023; 21:93. [PMID: 36750892 PMCID: PMC9903503 DOI: 10.1186/s12967-023-03942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Gut microbiota plays a critical role in the onset and development of depression, but the underlying molecular mechanisms are unclear. This study was conducted to observe the characteristics of gut microbiota, lipid metabolism and neurotransmitters in Gut-Liver-Brain axis in depressed mice (DM), and identify some novel perceptions on relationships between gut microbiota and depression. METHODS A mouse model of depression was built used chronic unpredictable mild stress (CUMS). Fecal samples (measuring gut microbiota compositions, microbial genes and lipid metabolites), liver samples (measuring lipid metabolites), and hippocampus (measuring neurotransmitters) were collected. Both univariate and multivariate statistical analyses were used to identify the differential gut microbiota, metabolic signatures and neurotransmitters in DM. RESULTS There were significant differences on both microbial and metabolic signatures between DM and control mice (CM): 71 significantly changed operational taxonomic units (OTUs) (60.56% belonged to phylum Firmicutes) and 405 differential lipid metabolites (51.11% belonged to Glycerophospholipid (GP) metabolism) were identified. Functional analysis showed that depressive-like behaviors (DLB)-related differential microbial genes were mainly enriched in GP metabolism. Weighted correlation network analysis (WGCNA) showed that DLB-related differential metabolites mainly belonged to GPs. Meanwhile, seven differential neurotransmitters were identified. Comprehensive analysis found that Lachnospiraceae and gamma-aminobutyric acid (GABA) were significantly correlated with 94.20% and 53.14% differential GPs, respectively, and GABA was significantly correlated with three main DLB phenotypes. CONCLUSION Our results provided novel perceptions on the role of Gut-Liver-Brain axis in the onset of depression, and showed that GP metabolism might be the bridge between gut microbiota and depression. "Lachnospiraceae-GP metabolism-GABA" held the promise as a potential way between gut microbiota and brain functions in DM.
Collapse
Affiliation(s)
- Jing Xie
- grid.190737.b0000 0001 0154 0904Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, 400010 China
| | - Qi Zhong
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016 China
| | - Wen-tao Wu
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016 China
| | - Jian-jun Chen
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016 China
| |
Collapse
|
16
|
Hou JY, Cao GZ, Tian LL, Zhou R, Zhang Y, Xu H, Wu HW, Wang LF, Yang HJ, Zhang JJ. Integrated transcriptomics and metabolomics analysis reveals that C3 and C5 are vital targets of DuZhi Wan in protecting against cerebral ischemic injury. Biomed Pharmacother 2022; 155:113703. [PMID: 36126455 DOI: 10.1016/j.biopha.2022.113703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND/AIMS Duzhi Wan (DZW) has been extensively used in the prevention and treatment of ischemic stroke, but the mechanisms underlying its effects remain unclear. In this study, a combination of transcriptomics, metabolomics and network analysis was applied to identify the preventive mechanism of DZW in middle cerebral artery occlusion (MCAO)-induced ischemia/reperfusion (I/R) injury. METHODS The mice were divided into five groups: the sham group, I/R group, I/R + Ginaton group, I/R+DZW-L group, and I/R+DZW-H group. Neurological deficit scores and regional cerebral blood flow (rCBF), hematoxylin and eosin (H&E) and Nissl staining results were evaluated. Transcriptomics analysis and metabolomics analysis were applied to identify the key genes and metabolites, and qRT-PCR, ELISA, and immunofluorescence were applied to verify the key targets. RESULTS DZW significantly decreased the infarction size and neurological deficit scores, increased the rCBF percentage and neuronal number and improved neuronal morphology after MCAO. Transcriptomics and metabolomics analysis revealed that C3 and C5ar1 were core targets of DZW and indirectly regulated downstream purine metabolism, the pentose phosphate pathway, and glycerophospholipid metabolism-associated pathways via inflammatory cells. Moreover, ELISA, qRT-PCR, and immunofluorescence further confirmed that DZW significantly decreased the expression of C3, C5ar1, C5 and downstream inflammatory cytokines, including IL-6, IL-1β and MMP-9, at the gene and protein levels, suggesting that DZW decreased neuroinflammation and inhibited related metabolic pathways. CONCLUSION C3 and C5 play important roles in the neuroprotective and antineuroinflammatory effects of DZW in protecting against cerebral I/R. This study provides novel insights into the neuroprotective effects of DZW and its clinical application.
Collapse
Affiliation(s)
- Jing-Yi Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang-Liang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hong-Wei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li-Fang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
17
|
Krokidis MG, Prasinou P, Efthimiadou EK, Boari A, Ferreri C, Chatgilialoglu C. Effects of Aging and Disease Conditions in Brain of Tumor-Bearing Mice: Evaluation of Purine DNA Damages and Fatty Acid Pool Changes. Biomolecules 2022; 12:1075. [PMID: 36008969 PMCID: PMC9405824 DOI: 10.3390/biom12081075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
The consequences of aging and disease conditions in tissues involve reactive oxygen species (ROS) and related molecular alterations of different cellular compartments. We compared a murine model of immunodeficient (SCID) xenografted young (4 weeks old) and old (17 weeks old) mice with corresponding controls without tumor implantation and carried out a compositional evaluation of brain tissue for changes in parallel DNA and lipids compartments. DNA damage was measured by four purine 5',8-cyclo-2'-deoxynucleosides, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxo-dA). In brain lipids, the twelve most representative fatty acid levels, which were mostly obtained from the transformation of glycerophospholipids, were followed up during the aging and disease progressions. The progressive DNA damage due to age and tumoral conditions was confirmed by raised levels of 5'S-cdG and 5'S-cdA. In the brain, the remodeling involved a diminution of palmitic acid accompanied by an increase in arachidonic acid, along both age and tumor progressions, causing increases in the unsaturation index, the peroxidation index, and total TFA as indicators of increased oxidative and free radical reactivity. Our results contribute to the ongoing debate on the central role of DNA and genome instability in the aging process, and on the need for a holistic vision, which implies choosing the best biomarkers for such monitoring. Furthermore, our data highlight brain tissue for its lipid remodeling response and inflammatory signaling, which seem to prevail over the effects of DNA damage.
Collapse
Affiliation(s)
- Marios G. Krokidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Paraskevi Prasinou
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Eleni K. Efthimiadou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Athens, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Andrea Boari
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|