1
|
Cui Y, Yang G, Li H, Sun J, Liu X, Xia X. Reduced expression of NUPR1 alleviates epilepsy progression via attenuating ER stress. Biochem Biophys Res Commun 2024; 730:150365. [PMID: 38996786 DOI: 10.1016/j.bbrc.2024.150365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Epilepsy is a neurological disorder characterized by recurring seizures. It is necessary to further understand the mechanisms of epilepsy in order to develop novel strategies for its prevention and treatment. Abnormal endoplasmic reticulum stress (ERS) activation is related to the pathogenesis of epilepsy. Nuclear protein 1, transcriptional regulator (NUPR1) is involved in ERS and it might play a role in epilepsy progression. In the present study, we generated an epileptic mouse model using pilocarpine induction. After 72 h of pilocarpine treatment, the expression of NUPR1 was increased in epileptic mice. Furthermore, NUPR1 knockdown reduced the number of spontaneous recurrent seizures and alleviated hippocampal damage in these mice. Interestingly, NUPR1 knockdown also reduced the protein expression levels of LC3, PINK1, and Parkin in the mitochondria, and decreased the PINK1 expression in hippocampus. Additionally, the expression of ERS-related proteins-cleaved caspase-12, ATF4, and CHOP-decreased in epileptic mice following NUPR1 knockdown. In vitro experiments showed that the absence of NUPR1 reduced the expression of ATF4, CHOP, and cleaved caspase-12 in hippocampal neurons and inhibited the neuron apoptosis. In all, our study suggested that NUPR1 maybe a potential molecular target for epilepsy therapy.
Collapse
Affiliation(s)
- Ying Cui
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
| | - Guang Yang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Hong Li
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jianying Sun
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiaoman Liu
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiaohan Xia
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong, China
| |
Collapse
|
2
|
Wu X, Shi M, Chen Y, Lian Y, Fang S, Zhang H. Effect and Mechanism of LIN28 on Ferroptosis in Mg 2+-free Rat Hippocampal Neuron Model of Epilepsy. Neurochem Res 2024; 49:1655-1664. [PMID: 38217758 DOI: 10.1007/s11064-024-04101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Studies have demonstrated that LIN28 is expressed in the CNS and may exert protective effects on neurons. However, it remains unknown whether LIN28 regulates ferroptosis in the context of epilepsy. In this study, we established an epilepsy model by culturing hippocampal neurons from rats in a magnesium-free (Mg2+-free) medium. In Mg2+-depleted conditions, hippocampal neurons exhibited reduced LIN28 expression, heightened miR-142-5p expression, decreased glutathione peroxidase (GPX) activity and expression, elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA), resulting in a significant decline in cell viability and an increase in ferroptosis. Conversely, overexpression of LIN28 reversed these trends in the mentioned indices. Altogether, this study reveals that LIN28 may exert neuroprotective effects by inhibiting the miR-142-5p expression and suppressing ferroptosis in hippocampal neurons induced by Mg2+-free via increasing GPX4 expression.
Collapse
Affiliation(s)
- Xiaoke Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Mengmeng Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuan Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shaokuan Fang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
3
|
Guo X, Zhang Z, Gu J, Ke P, Liu J, Meng Y, Zheng W, Que W, Fan R, Luo J, Xiao F. FUDNC1-dependent mitophagy ameliorate motor neuron death in an amyotrophic lateral sclerosis mouse model. Neurobiol Dis 2024; 197:106534. [PMID: 38759931 DOI: 10.1016/j.nbd.2024.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, yet effective treatment is lacking. Moreover, the underlying pathomechanisms of ALS remain unclear, with impaired mitophagy function being increasingly recognized as a contributing factor. FUN14 domain-containing protein 1 (FUNDC1) is an autophagy receptor localized to the outer mitochondrial membrane and a mitochondrial membrane protein that mediates mitophagy and therefore considered as important factor in neurodegenerative diseases. However, its specific role in ALS is not yet clear. Therefore, this study aimed to investigate the regulatory role of FUNDC1 in ALS and determine its regulatory mechanisms. ALS transgenic mice were obtained and maintained under standard conditions. Cell lines were generated by stable transfection with hSOD1G93A or control vectors. Mice received intrathecal injections of AAV9 vectors expressing FUNDC1 or EGFP. Motor function was assessed through behavioral tests, and histological and immunostaining analyses were performed. Colocalization analysis was conducted in transfected cells, and protein expression was evaluated via western blotting. We first observed that FUNDC1 was significantly downregulated in the spinal cord tissues of SOD1G93A mice. FUNDC1 overexpression considerably improved locomotor activity and prolonged survival time in SOD1G93A mice. Mechanistically, reduced expression of FUNDC1 resulted in decreased mitophagy, as indicated by decreased recruitment through LC3 in SOD1G93A mice and cellular models. Consequently, this led to increased mitochondrial accumulation and cell apoptosis, exacerbating the ALS phenotype. Furthermore, we identified transcription factor FOXD3 as an essential upstream factor of FUNDC1, resulting in reduced transcription of FUNDC1 in ALS lesions. This study suggests a novel strategy of targeting FUNDC1-mediated mitophagy for developing therapeutic interventions to mitigate disease progression and improve outcomes for ALS patients.
Collapse
Affiliation(s)
- Xia Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China; Department of Neurology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhuo Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Juan Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China; Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - PingYang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jing Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yuan Meng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Wei Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - WenJun Que
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Rui Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China.
| |
Collapse
|
4
|
Wang Y, Yang J. ER-organelle contacts: A signaling hub for neurological diseases. Pharmacol Res 2024; 203:107149. [PMID: 38518830 DOI: 10.1016/j.phrs.2024.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Neuronal health is closely linked to the homeostasis of intracellular organelles, and organelle dysfunction affects the pathological progression of neurological diseases. In contrast to isolated cellular compartments, a growing number of studies have found that organelles are largely interdependent structures capable of communicating through membrane contact sites (MCSs). MCSs have been identified as key pathways mediating inter-organelle communication crosstalk in neurons, and their alterations have been linked to neurological disease pathology. The endoplasmic reticulum (ER) is a membrane-bound organelle capable of forming an extensive network of pools and tubules with important physiological functions within neurons. There are multiple MCSs between the ER and other organelles and the plasma membrane (PM), which regulate a variety of cellular processes. In this review, we focus on ER-organelle MCSs and their role in a variety of neurological diseases. We compared the biological effects between different tethering proteins and the effects of their respective disease counterparts. We also discuss how altered ER-organelle contacts may affect disease pathogenesis. Therefore, understanding the molecular mechanisms of ER-organelle MCSs in neuronal homeostasis will lay the foundation for the development of new therapies targeting ER-organelle contacts.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
5
|
He Y, He T, Li H, Chen W, Zhong B, Wu Y, Chen R, Hu Y, Ma H, Wu B, Hu W, Han Z. Deciphering mitochondrial dysfunction: Pathophysiological mechanisms in vascular cognitive impairment. Biomed Pharmacother 2024; 174:116428. [PMID: 38599056 DOI: 10.1016/j.biopha.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.
Collapse
Affiliation(s)
- Yuyao He
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Tiantian He
- Sichuan Academy of Chinese Medicine Sciences, China
| | - Hongpei Li
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Biying Zhong
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yue Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Runming Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuli Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huaping Ma
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bin Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wenyue Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Wu Y, Li M, Ying H, Gu Y, Zhu Y, Gu Y, Huang L. Mitochondrial quality control alterations and placenta-related disorders. Front Physiol 2024; 15:1344951. [PMID: 38390447 PMCID: PMC10883312 DOI: 10.3389/fphys.2024.1344951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Mitochondria are ubiquitous in eukaryotic cells. Normal maintenance of function is the premise and basis for various physiological activities. Mitochondrial dysfunction is commonly observed in a wide range of pathological conditions, such as neurodegenerative, metabolic, cardiovascular, and various diseases related to foetal growth and development. The placenta is a highly energy-dependent organ that acts as an intermediary between the mother and foetus and functions to maintain foetal growth and development. Recent studies have demonstrated that mitochondrial dysfunction is associated with placental disorders. Defects in mitochondrial quality control mechanisms may lead to preeclampsia and foetal growth restriction. In this review, we address the quality control mechanisms of mitochondria and the relevant pathologies of mitochondrial dysfunction in placenta-related diseases, such as preeclampsia and foetal growth restriction. This review also investigates the relation between mitochondrial dysfunction and placental disorders.
Collapse
Affiliation(s)
- Yamei Wu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Meng Li
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Gu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Yunlong Zhu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Yanfang Gu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Lu Huang
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| |
Collapse
|
7
|
Wang J, Sun Z, Jiang L, Xuan L, Ma Y, Wang J, Gu Y, Zhang Y. Activation of Pink1/Parkin-mediated mitochondrial autophagy alleviates exertional heat stroke-induced acute lung injury in rats. Clin Hemorheol Microcirc 2024; 88:13-31. [PMID: 38788061 PMCID: PMC11380311 DOI: 10.3233/ch-242100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
OBJECTIVE To investigate the role of Pink1/Parkin-mediated mitochondrial autophagy in exertional heat stroke-induced acute lung injury in rats. METHODS Sixty SD rats were divided into four groups: normal group (CON group), normal Parkin overexpression group (CON + Parkin group), exertional heat stroke group (EHS group), and exertional heat stroke Parkin overexpression group (EHS + Parkin group). Adeno-associated virus carrying the Parkin gene was intravenously injected into the rats to overexpress Parkin in the lung tissue. An exertional heat stroke rat model was established, and survival curves were plotted. Lung micro-CT was performed, and lung coefficient and pulmonary microvascular permeability were measured. RESULTS Compared with the EHS group, the survival rate of rats in the EHS + Parkin overexpression group was significantly increased, lung coefficient and pulmonary microvascular permeability were reduced, and pathological changes such as exudation and consolidation were significantly reduced. The levels of inflammatory factors IL-6, IL-1β, TNF- α, and ROS were significantly decreased; the degree of mitochondrial swelling in type II alveolar epithelial cells was reduced, and no vacuolization was observed. Lung tissue apoptosis was reduced, and the colocalization fluorescence of Pink1 and Parkin, as well as LC3 and Tom20, were increased. The expression of Parkin and LC3-II/LC3-I ratio in lung tissue were both increased, while the expression of P62, Pink1, MFN2, and PTEN-L was decreased. CONCLUSION Impairment of Pink1/Parkin-mediated mitochondrial autophagy function is one of the mechanisms of exertional heat stroke-induced acute lung injury in rats. Activation of the Pink1/Parkin pathway can alleviate acute lung injury caused by exertional heat stroke.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhengzhong Sun
- Graduate School of Hebei North University, Zhangjiakou, China
| | - Liya Jiang
- Department of Respiratory and Critical Care Medicine, Jingdezhen First People’s Hospital, Jingdezhen, China
| | - Lyv Xuan
- Graduate School of Hebei North University, Zhangjiakou, China
| | - Yunya Ma
- Graduate School of Hebei North University, Zhangjiakou, China
| | - Jiao Wang
- Department of Critical Care Medicine, Xuanwu Hospital of Capital Medical University, Beijing China
| | - Yan Gu
- Department of Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuxiang Zhang
- Department of Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Li Z, Xing J. Contribution and therapeutic value of mitophagy in cerebral ischemia-reperfusion injury after cardiac arrest. Biomed Pharmacother 2023; 167:115492. [PMID: 37716121 DOI: 10.1016/j.biopha.2023.115492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Cardiopulmonary resuscitation and related life support technologies have improved substantially in recent years; however, mortality and disability rates from cardiac arrest (CA) remain high and are closely associated with the high incidence of cerebral ischemia-reperfusion injury (CIRI), which is explained by a "double-hit" model (i.e., resulting from both ischemia and reperfusion). Mitochondria are important power plants in the cell and participate in various biochemical processes, such as cell differentiation and signaling in eukaryotes. Various mitochondrial processes, including energy metabolism, calcium homeostasis, free radical production, and apoptosis, are involved in several important stages of the progression and development of CIRI. Mitophagy is a key mechanism of the endogenous removal of damaged mitochondria to maintain organelle function and is a critical target for CIRI treatment after CA. Mitophagy also plays an essential role in attenuating ischemia-reperfusion in other organs, particularly during post-cardiac arrest myocardial dysfunction. Regulation of mitophagy may influence necroptosis (a programmed cell death pathway), which is the main endpoint of organ ischemia-reperfusion injury. In this review, we summarize the main signaling pathways related to mitophagy and their associated regulatory proteins. New therapeutic methods and drugs targeting mitophagy in ischemia-reperfusion animal models are also discussed. In-depth studies of the mechanisms underlying the regulation of mitophagy will enhance our understanding of the damage and repair processes in CIRI after CA, thereby contributing to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
9
|
Yang K, Wu J, Li S, Wang S, Zhang J, Wang YP, Yan YS, Hu HY, Xiong MF, Bai CB, Sun YQ, Chen WQ, Zeng Y, Yuan JL, Yin CH. NTRK1 knockdown induces mouse cognitive impairment and hippocampal neuronal damage through mitophagy suppression via inactivating the AMPK/ULK1/FUNDC1 pathway. Cell Death Discov 2023; 9:404. [PMID: 37907480 PMCID: PMC10618268 DOI: 10.1038/s41420-023-01685-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
Hippocampal neuronal damage may induce cognitive impairment. Neurotrophic tyrosine kinase receptor 1 (NTRK1) reportedly regulates neuronal damage, although the underlying mechanism remains unclear. The present study aimed to investigate the role of NTRK1 in mouse hippocampal neuronal damage and the specific mechanism. A mouse NTRK1-knockdown model was established and subjected to pre-treatment with BAY-3827, followed by a behavioral test, Nissl staining, and NeuN immunofluorescence (IF) staining to evaluate the cognitive impairment and hippocampal neuronal damage. Next, an in vitro analysis was conducted using the CCK-8 assay, TUNEL assay, NeuN IF staining, DCFH-DA staining, JC-1 staining, ATP content test, mRFP-eGFP-LC3 assay, and LC3-II IF staining to elucidate the effect of NTRK1 on mouse hippocampal neuronal activity, apoptosis, damage, mitochondrial function, and autophagy. Subsequently, rescue experiments were performed by subjecting the NTRK1-knockdown neurons to pre-treatment with O304 and Rapamycin. The AMPK/ULK1/FUNDC1 pathway activity and mitophagy were detected using western blotting (WB) analysis. Resultantly, in vivo analysis revealed that NTRK1 knockdown induced mouse cognitive impairment and hippocampal tissue damage, in addition to inactivating the AMPK/ULK1/FUNDC1 pathway activity and mitophagy in the hippocampal tissues of mice. The treatment with BAY-3827 exacerbated the mouse depressive-like behavior induced by NTRK1 knockdown. The results of in vitro analysis indicated that NTRK1 knockdown attenuated viability, NeuN expression, ATP production, mitochondrial membrane potential, and mitophagy, while enhancing apoptosis and ROS production in mouse hippocampal neurons. Conversely, pre-treatment with O304 and rapamycin abrogated the suppression of mitophagy and the promotion of neuronal damage induced upon NTRK1 silencing. Conclusively, NTRK1 knockdown induces mouse hippocampal neuronal damage through the suppression of mitophagy via inactivating the AMPK/ULK1/FUNDC1 pathway. This finding would provide insight leading to the development of novel strategies for the treatment of cognitive impairment induced due to hippocampal neuronal damage.
Collapse
Affiliation(s)
- Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Jue Wu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shang Li
- Department of Anesthesiology, Peking University People's Hospital, Beijing, 100044, China
| | - Shan Wang
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, Hebei, 050011, China
| | - Yi-Peng Wang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - You-Sheng Yan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Hua-Ying Hu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ming-Fang Xiong
- Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Chao-Bo Bai
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
| | - Yong-Qing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Wen-Qi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, Hebei, 050011, China
| | - Yang Zeng
- Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Jun-Liang Yuan
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China.
| | - Cheng-Hong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
10
|
Ma W, Su Y, Zhang P, Wan G, Cheng X, Lu C, Gu X. Identification of mitochondrial-related genes as potential biomarkers for the subtyping and prediction of Alzheimer's disease. Front Mol Neurosci 2023; 16:1205541. [PMID: 37470054 PMCID: PMC10352499 DOI: 10.3389/fnmol.2023.1205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive and debilitating neurodegenerative disorder prevalent among older adults. Although AD symptoms can be managed through certain treatments, advancing the understanding of underlying disease mechanisms and developing effective therapies is critical. Methods In this study, we systematically analyzed transcriptome data from temporal lobes of healthy individuals and patients with AD to investigate the relationship between AD and mitochondrial autophagy. Machine learning algorithms were used to identify six genes-FUNDC1, MAP1LC3A, CSNK2A1, VDAC1, CSNK2B, and ATG5-for the construction of an AD prediction model. Furthermore, AD was categorized into three subtypes through consensus clustering analysis. Results The identified genes are closely linked to the onset and progression of AD and can serve as reliable biomarkers. The differences in gene expression, clinical features, immune infiltration, and pathway enrichment were examined among the three AD subtypes. Potential drugs for the treatment of each subtype were also identified. Discussion The findings observed in the present study can help to deepen the understanding of the underlying disease mechanisms of AD and enable the development of precision medicine and personalized treatment approaches.
Collapse
Affiliation(s)
- Wenhao Ma
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuelin Su
- Department of Ultrasound Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guoqing Wan
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changlian Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
11
|
Chen W, Zhang J, Zhang Y, Zhang J, Li W, Sha L, Xia Y, Chen L. Pharmacological modulation of autophagy for epilepsy therapy: opportunities and obstacles. Drug Discov Today 2023; 28:103600. [PMID: 37119963 DOI: 10.1016/j.drudis.2023.103600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Epilepsy (EP) is a long-term neurological disorder characterized by neuroinflammatory responses, neuronal apoptosis, imbalance between excitatory and inhibitory neurotransmitters, and oxidative stress in the brain. Autophagy is a process of cellular self-regulation to maintain normal physiological functions. Emerging evidence suggests that dysfunctional autophagy pathways in neurons are a potential mechanism underlying EP pathogenesis. In this review, we discuss current evidence and molecular mechanisms of autophagy dysregulation in EP and the probable function of autophagy in epileptogenesis. Moreover, we review the autophagy modulators reported for the treatment of EP models, and discuss the obstacles to, and opportunities for, the potential therapeutic applications of novel autophagy modulators as EP therapies. Teaser: Defective autophagy affects the onset and progression of epilepsy, and many anti-epileptic drugs have autophagy-modulating effects.
Collapse
Affiliation(s)
- Wenqing Chen
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiwen Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanling Li
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Leihao Sha
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Xia
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Zavala-Tecuapetla C, Luna-Munguia H, López-Meraz ML, Cuellar-Herrera M. Advances and Challenges of Cannabidiol as an Anti-Seizure Strategy: Preclinical Evidence. Int J Mol Sci 2022; 23:ijms232416181. [PMID: 36555823 PMCID: PMC9783044 DOI: 10.3390/ijms232416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The use of Cannabis for medicinal purposes has been documented since ancient times, where one of its principal cannabinoids extracted from Cannabis sativa, cannabidiol (CBD), has emerged over the last few years as a promising molecule with anti-seizure potential. Here, we present an overview of recent literature pointing out CBD's pharmacological profile (solubility, metabolism, drug-drug interactions, etc.,), CBD's interactions with multiple molecular targets as well as advances in preclinical research concerning its anti-seizure effect on both acute seizure models and chronic models of epilepsy. We also highlight the recent attention that has been given to other natural cannabinoids and to synthetic derivatives of CBD as possible compounds with therapeutic anti-seizure potential. All the scientific research reviewed here encourages to continue to investigate the probable therapeutic efficacy of CBD and its related compounds not only in epilepsy but also and specially in drug-resistant epilepsy, since there is a dire need for new and effective drugs to treat this disease.
Collapse
Affiliation(s)
- Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Mexico City 14269, Mexico
- Correspondence:
| | - Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - María-Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa 91190, Mexico
| | - Manola Cuellar-Herrera
- Epilepsy Clinic, Hospital General de México Dr. Eduardo Liceaga, Dr. Balmis 148, Doctores, Mexico City 06720, Mexico
| |
Collapse
|