1
|
Staehr C, Guldbrandsen HØ, Homilius C, Johnsen LØ, Postnov D, Pedersen TM, Pierre S, Sandow SL, Matchkov VV. Targeting Na,K-ATPase-Src signaling to normalize cerebral blood flow in a murine model of familial hemiplegic migraine. J Cereb Blood Flow Metab 2025; 45:842-854. [PMID: 39628316 PMCID: PMC11615910 DOI: 10.1177/0271678x241305562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024]
Abstract
Familial hemiplegic migraine type 2 (FHM2) is linked to Na,K-ATPase α2 isoform mutations, including that of G301R. Mice heterozygous for this mutation (α 2 + / G3 0 1R ) show cerebrovascular hypercontractility associated with amplified Src kinase signaling, and exaggerated neurovascular coupling. This study hypothesized that targeting Na,K-ATPase-dependent Src phosphorylation with pNaKtide would normalize cerebral perfusion and neurovascular coupling in α 2 + / G3 0 1R mice. The effect of pNaKtide on cerebral blood flow and neurovascular coupling was assessed using laser speckle contrast imaging in awake, head-fixed mice with cranial windows in a longitudinal study design. At baseline, compared to wild type, α 2 + / G3 0 1R mice exhibited increased middle cerebral artery tone; with whisker stimulation leading to an exaggerated increase in sensory cortex blood flow. No difference between genotypes in telemetrically assessed blood pressure occurred. The exaggerated neurovascular coupling in α 2 + / G3 0 1R mice was associated with increased Kir2.1 channel expression in cerebrovascular endothelium. Two weeks pNaKtide treatment normalized cerebral artery tone, endothelial Kir2.1 expression, and neurovascular coupling in α 2 + / G3 0 1R mice. Inhibition of the Na,K-ATPase-dependent Src kinase signaling with pNaKtide prevented excessive vasoconstriction and disturbances in neurovascular coupling in α 2 + / G3 0 1R mice. pNaKtide had only minor hypotensive effect similar in both genotypes. These results demonstrate a novel treatment target to normalize cerebral perfusion in FHM2.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
- School of Clinical Medicine, University of Queensland, St Lucia, Qld, Australia
| | | | - Casper Homilius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Dmitry Postnov
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Tina M Pedersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sandrine Pierre
- Institute for Interdisciplinary Research, Marshall University, Huntington, USA
| | - Shaun L Sandow
- School of Clinical Medicine, University of Queensland, St Lucia, Qld, Australia
- School of Health, University of the Sunshine Coast, Maroochydore, Qld, Australia
| | | |
Collapse
|
2
|
Pietrobon D, Brennan KC. Mechanisms underlying CSD initiation implicated by genetic mouse models of migraine. J Headache Pain 2025; 26:17. [PMID: 39871148 PMCID: PMC11773941 DOI: 10.1186/s10194-025-01948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
A key unanswered question in migraine neurobiology concerns the mechanisms that make the brain of migraineurs susceptible to cortical spreading depression (CSD, a spreading depolarization that underlies migraine aura and may trigger the migraine pain mechanisms). Important insights into this question can be obtained by studying the mechanisms of facilitation of CSD initiation in genetic mouse models of the disease. These models, all generated from families with hereditary migraine, allow the investigation of the functional consequences of disease-causing mutations at the molecular, cellular, synaptic and neural circuit levels. In this review, after describing the available genetic mouse models of migraine, which all share increased susceptibility to experimentally induced CSD, we will discuss the functional alterations in their cerebral cortex and the mechanisms underlying the facilitation of CSD initiation in their cortex, as well as the insights that these mechanisms may give into the mechanisms of initiation of spontaneous CSDs in migraine.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, Via Ugo Bassi 58, 35131, Padua, Italy.
| | - K C Brennan
- Department of Neurology, University of Utah, 383 Colorow Drive, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
3
|
Liu XX, Ke XY, Jiang C, Bo LW, Sun N, Li LL, Qin SQ, He JC, Ren JL, Wu QQ, Li SZ, Yang JL, Yu LL, Lu QY, Liu LZ, Li WY, Xian XH, Zhang LN. Na +-K +-ATPase/GLT-1 interaction participates in EGCG protection against cerebral ischemia-reperfusion injury in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156349. [PMID: 39765036 DOI: 10.1016/j.phymed.2024.156349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND In China, stroke is the primary cause of adult death and disability. Because of the increased rate of blood vessel reperfusion, it is important to prevent cerebral ischemia-reperfusion injury, in which glutamate (Glu) excitotoxicity plays a critical role. The most important Glu transporter, GLT-1, is essential for the regulation of Glu, which is dependent on Na+-K+-ATPase (NKA)-induced ion concentration gradient differences. EGCG, a substance found in tea polyphenols, can reduce infarct areas in ischemia-reperfusion models, reduce stroke incidence, and prolong life in which NKA is involved. PURPOSE In this study, we investigated the potential of EGCG in protecting against cerebral ischemia-reperfusion injury by regulating the interaction between NKA and GLT-1. STUDY DESIGN This study was designed to investigate the protective effects of EGCG against cerebral ischemia-reperfusion injury by modulating the interaction between NKA and GLT-1, utilizing both the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model and the oxygen-glucose deprivation/reoxygenation (OGD/R) model in co-cultures of rat hippocampal neurons and astrocytes. METHODS The neuronal survival rate was assessed using CCK8, and the cerebral infarction area and neurological function were determined by TTC staining and neurological deficit scores. NKA activity was measured using an inorganic phosphorous detection method, and NKA and GLT-1 expression was detected using western blotting. The interaction between NKAα2 and GLT-1 was identified by co-immunoprecipitation (CoIP) assay, laser confocal microscopy, and Imaris 3D confocal rendering technology. An adenovirus vector with overexpression of NKAα2 was constructed, packaged, and injected into the rat lateral ventricle. Neurological function and the cerebral infarction area were identified, and the interaction between NKAα2 and GLT-1 was identified using CoIP assay. RESULTS EGCG reduced the infarction area and neurological deficit scores, restored NKA activity, alleviated the decrease in membrane NKAα2 and GLT-1 expression, and relieved the uncoupling of NKAα2 and GLT-1 in the hippocampal CA1 after rat MCAO/R injury. By promoting the coupling of NKAα2 and GLT-1 in rat MCAO/R models, overexpression of NKAα2 reduced the cerebral infarction area and neurological impairment scores. CONCLUSION EGCG improved cerebral ischemia-reperfusion injury by restoring NKA activity and increasing membrane GLT-1 expression due to NKA-GLT-1 interaction. For the first time, our findings demonstrate the critical role that NKA and GLT-1 colocalization plays in cerebral ischemia-reperfusion damage. Our findings provide new strategic directions for the pathogenesis and prevention of thrombolytic injury in the clinical treatment of stroke, while also serving as a basis for further development and utilization of EGCG.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China; Department of Science and Education, Xingtai People's Hospital, 818 Xiangdu North Road, Xingtai 054001, China
| | - Xue-Ying Ke
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Chen Jiang
- Forensic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Ling-Wei Bo
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Nan Sun
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Lin-Lin Li
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Shi-Qi Qin
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Jin-Chen He
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Jia-Lin Ren
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Qian-Qian Wu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Shuai-Zhen Li
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Jia-Lei Yang
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Lan-Ling Yu
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Qi-Yong Lu
- Department of Neurosurgery, Hengshui Fifth People's Hospital, 1638 Shengli West Road, Hengshui 053010, China
| | - Li-Zhe Liu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Wen-Ya Li
- Department of Physiology, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China.
| | - Xiao-Hui Xian
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China.
| | - Li-Nan Zhang
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China.
| |
Collapse
|
4
|
Gao J, Wang D, Zhu C, Wang J, Wang T, Xu Y, Ren X, Zhang K, Peng C, Guan J, Wang Y. 1H-MRS reveals abnormal energy metabolism and excitatory-inhibitory imbalance in a chronic migraine-like state induced by nitroglycerin in mice. J Headache Pain 2024; 25:163. [PMID: 39350002 PMCID: PMC11441011 DOI: 10.1186/s10194-024-01872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Chronic migraine is closely related to the dysregulation of neurochemical substances in the brain, with metabolic imbalance being one of the proposed causes of chronic migraine. This study aims to evaluate the metabolic changes between energy metabolism and excitatory and inhibitory neurotransmitters in key brain regions of mice with chronic migraine-like state and to uncover the dysfunctional pathways of migraine. METHODS A chronic migraine-like state mouse model was established by repeated administration of nitroglycerin (NTG). We used von Frey filaments to assess the mechanical thresholds of the hind paw and periorbital in wild-type and familial hemiplegic migraine type 2 mice. After the experiments, tissue was collected from five brain regions: the somatosensory cortex (SSP), hippocampus, thalamus (TH), hypothalamus, and the spinal trigeminal nucleus caudalis (TNC). Proton magnetic resonance spectroscopy (1H-MRS) was employed to study the changes in brain metabolites associated with migraine, aiming to explore the mechanisms underlying metabolic imbalance in chronic migraine-like state. RESULTS In NTG-induced chronic migraine-like state model, we observed a significant reduction in energy metabolism during central sensitization, an increase in excitatory neurotransmitters such as glutamate, and a tendency for inhibitory neurotransmitters like GABA to decrease. The TNC and thalamus were the most affected regions. Furthermore, the consistency of N-acetylaspartate levels highlighted the importance of the TNC-TH-SSP pathway in the ascending nociceptive transmission of migraine. CONCLUSION Abnormal energy metabolism and neurotransmitter imbalance in the brain region of NTG-induced chronic migraine-like state model are crucial mechanisms contributing to the chronicity of migraine.
Collapse
Affiliation(s)
- Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Da Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Chenlu Zhu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tianxiao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunhao Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiao Ren
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Kaibo Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Cheng Peng
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Jisong Guan
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Device, ShanghaiTech University, Shanghai, China.
| | - Yonggang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
5
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 Variants Reveal Potential Association between GPR37L1 and Disorders of Anxiety and Migraine. J Neurosci 2024; 44:e1226232024. [PMID: 38569927 PMCID: PMC11089846 DOI: 10.1523/jneurosci.1226-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare G-protein-coupled receptor 37-like 1 (GPR37L1) genetic variants found among 51,289 whole-exome sequences from the DiscovEHR cohort. Rare GPR37L1 coding variants were binned according to predicted pathogenicity and analyzed by sequence kernel association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate mitogen-activated protein kinase (MAPK) signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared with the wild-type receptor. In addition to signaling changes, knock-out (KO) of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a KO mouse line lacking Gpr37l1 was generated. Although KO animals did not recapitulate an acute migraine phenotype, the loss of this receptor produced sex-specific changes in anxiety-related disorders often seen in chronic migraineurs. Collectively, these observations define the existence of rare GPR37L1 variants associated with neuropsychiatric conditions in the human population and identify the signaling changes contributing to pathological processes.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Andrea Cippitelli
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Yingcai Wang
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Oliver Pelletier
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Ridge Dershem
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Jianning Wei
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Lawrence Toll
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Bianca Fakhoury
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Gloria Brunori
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | | | - David J Carey
- Geisinger, Weis Center for Research, Danville, Pennsylvania
| | - Janet Robishaw
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
- College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 variants reveal potential roles in anxiety and migraine disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547546. [PMID: 37461723 PMCID: PMC10349990 DOI: 10.1101/2023.07.05.547546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare GPR37L1 genetic variants found among 51,289 whole exome sequences from the DiscovEHR cohort. Briefly, rare GPR37L1 coding variants were binned according to predicted pathogenicity, and analyzed by Sequence Kernel Association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were then functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate MAPK signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared to the wild-type receptor. In addition to signaling changes, knockout of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a knockout (KO) mouse line lacking Gpr37L1 was generated, revealing loss of this receptor produced sex-specific changes implicated in migraine-related disorders. Collectively, these observations define the existence of rare GPR37L1 variants in the human population that are associated with neuropsychiatric conditions and identify the underlying signaling changes that are implicated in the in vivo actions of this receptor in pathological processes leading to anxiety and migraine. SIGNIFICANCE STATEMENT G-protein coupled receptors (GPCRs) represent a diverse group of membrane receptors that contribute to a wide range of diseases and serve as effective drug targets. However, a number of these receptors have no identified ligands or functions, i.e., orphan receptors. Over the past decade, advances have been made, but there is a need for identifying new strategies to reveal their roles in health and disease. Our results highlight the utility of rare variant analyses of orphan receptors for identifying human disease associations, coupled with functional analyses in relevant cellular and animal systems, to ultimately reveal their roles as novel drug targets for treatment of neurological disorders that lack wide-spread efficacy.
Collapse
|