1
|
Thukral J, Moudgil P, Maheta D, Agrawal SP, Kaur H, Thukral N, Frishman WH, Aronow WS. Taurine and Berberine: Nutritional Interventions Targeting Cellular Mechanisms of Aging and Longevity. Cardiol Rev 2025:00045415-990000000-00424. [PMID: 39969164 DOI: 10.1097/crd.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Aging is a multifaceted biological process characterized by progressive physiological decline and increased susceptibility to diseases. Central to this process are molecular and cellular changes that contribute to hallmark features of aging, including mitochondrial dysfunction, genomic instability, telomere attrition, and cellular senescence. Emerging research highlights the role of nutrient deficiencies in accelerating aging, bringing dietary supplements such as taurine and berberine into focus. Taurine, a sulfur-containing amino acid, plays a critical role in cellular protection, osmoregulation, and antioxidant defense, with evidence linking its deficiency to cellular senescence, mitochondrial dysfunction, and stem cell exhaustion. Berberine, an isoquinoline alkaloid, exerts antiaging effects by modulating key signaling pathways, including adenosine monophosphate-activated protein kinase/mechanistic target of rapamycin and sirtuin 1, and promoting mitohormesis. This review explores the mechanisms by which taurine and berberine mitigate aging processes, highlighting their effects on cellular metabolism, stress response, and longevity. Animal studies demonstrate their potential to enhance health span and lifespan although human clinical trials remain limited. Future research should focus on elucidating their molecular pathways, evaluating their combined effects with other interventions such as caloric restriction, and optimizing dosage for clinical applications. Taurine and berberine represent promising therapeutic candidates for addressing fundamental aspects of aging and advancing strategies for healthy aging and lifespan extension.
Collapse
Affiliation(s)
- Jatin Thukral
- From the Department of Internal Medicine, New York Medical College/Landmark Medical Center, Woonsocket, RI
| | | | | | - Siddharth Pravin Agrawal
- From the Department of Internal Medicine, New York Medical College/Landmark Medical Center, Woonsocket, RI
| | | | - Nikhil Thukral
- Pt. Deendayal Upadhyaya National Institute for Persons With Physical Disabilities, New Delhi, India
| | | | - Wilbert S Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
2
|
Hsieh CC, Yi TK, Kao YF, Lin SP, Tu MC, Chou YC, Lu JJ, Chai HJ, Cheng KC. Comparative Efficacy of Botryocladia leptopoda Extracts in Scar Inhibition and Skin Regeneration: A Study on UV Protection, Collagen Synthesis, and Fibroblast Proliferation. Molecules 2024; 29:5688. [PMID: 39683847 DOI: 10.3390/molecules29235688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Botryocladia leptopoda is a red macroalga known for its bioactive compounds with antioxidant, anti-inflammatory, and skin-regenerative properties. The study aimed to examine their effects on UV protection, collagen synthesis, fibroblast proliferation, and pigmentation modulation. Bioactive compounds were extracted using two solvents, producing ethanol extract (FE) and alkaline extracts (AE). Methods involved characterizing extracts using mass spectrometry and assessing their effects on human fibroblasts under UVB-induced damage. UV absorbance, ROS production, and collagen synthesis were evaluated. The FE extract, which comprised 4-hydroxyquinoline, phytosphingosine, and docosapentaenoic acid, reinstated procollagen type I synthesis to 113% of baseline levels and reduced TGF-β1-mediated fibroblast proliferation to 87.78%. FE also suppressed Smad2 and α-SMA by 71% and 68%, respectively, indicating modulation of fibrosis-associated pathways. AE, containing 4-hydroxyquinoline and phenylalanine betaine, demonstrated dose-responsive cellular repair, reducing fibroblast proliferation to 97.86% and collagen Type I expression by 73% at 1000 μg/mL. Both extracts decreased ROS production, with FE and AE reducing levels by 21.4% and 19.7%, respectively, under UVB-induced oxidative stress. FE showed superior scar inhibition, while AE excelled in skin regeneration and pigmentation management.
Collapse
Affiliation(s)
- Chen-Che Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung 81157, Taiwan
| | - Tsung-Kai Yi
- Seafood Technology Division, Fisheries Research Institute, Ministry of Agriculture, Keelung 20246, Taiwan
| | - Yi-Feng Kao
- Seafood Technology Division, Fisheries Research Institute, Ministry of Agriculture, Keelung 20246, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, Taipei 11042, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Ming-Chieh Tu
- Seafood Technology Division, Fisheries Research Institute, Ministry of Agriculture, Keelung 20246, Taiwan
| | - Yu-Chieh Chou
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Jheng-Jhe Lu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Huey-Jine Chai
- Seafood Technology Division, Fisheries Research Institute, Ministry of Agriculture, Keelung 20246, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 413, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 404, Taiwan
| |
Collapse
|
3
|
Chen H, Zheng M, Li M, Zheng Y, Wang X, He Y. Taurine ameliorates radiation-induced oxidative stress in bone marrow mesenchymal stromal cells and promotes osteogenesis. Free Radic Biol Med 2024; 225:805-820. [PMID: 39486749 DOI: 10.1016/j.freeradbiomed.2024.10.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Osteoradionecrosis of the jaw (ORNJ) is a severe complication following head and neck radiotherapy that significantly impacts the quality of life of patients. Currently, there is a lack of comprehensive understanding of the microenvironmental factors involved in ORNJ. In this study, we reveal the activation of taurine metabolism in irradiated mandibular stromal cells using scRNA-Seq and demonstrate a decrease in taurine levels in irradiated bone marrow mesenchymal stromal cells (BMSCs) through metabolomics. Compared with unirradiated BMSCs, taurine uptake in irradiated BMSCs increases. Taurine concentrations in the peripheral blood and jaws of irradiated mice are significantly lower than those in unirradiated mice (P = 0.0064 and 0.0249 respectively). Supplementation with taurine promotes osteogenic differentiation, reduces oxidative stress, and decreases DNA damage in irradiated BMSCs. Oral administration of taurine significantly improves the survival rate of irradiated mice and enhances osteogenesis in irradiated jaws. Our study highlights the role of taurine in the recovery from radiation-induced jaw injury, and suggests its potential as a non-invasive therapeutic option for combating ORNJ.
Collapse
Affiliation(s)
- Heng Chen
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Mengting Zheng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Mengyu Li
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Yang Zheng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Xu Wang
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China.
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China.
| |
Collapse
|
4
|
Gutierrez-Castañeda NE, Martínez-Rojas VA, Ochoa-de la Paz LD, Galván EJ. The bidirectional role of GABAA and GABAB receptors during the differentiation process of neural precursor cells of the subventricular zone. PLoS One 2024; 19:e0305853. [PMID: 38913632 PMCID: PMC11195948 DOI: 10.1371/journal.pone.0305853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
The intricate process of neuronal differentiation integrates multiple signals to induce transcriptional, morphological, and electrophysiological changes that reshape the properties of neural precursor cells during their maturation and migration process. An increasing number of neurotransmitters and biomolecules have been identified as molecular signals that trigger and guide this process. In this sense, taurine, a sulfur-containing, non-essential amino acid widely expressed in the mammal brain, modulates the neuronal differentiation process. In this study, we describe the effect of taurine acting via the ionotropic GABAA receptor and the metabotropic GABAB receptor on the neuronal differentiation and electrophysiological properties of precursor cells derived from the subventricular zone of the mouse brain. Taurine stimulates the number of neurites and favors the dendritic complexity of the neural precursor cells, accompanied by changes in the somatic input resistance and the strength of inward and outward membranal currents. At the pharmacological level, the blockade of GABAA receptors inhibits these effects, whereas the stimulation of GABAB receptors has no positive effects on the taurine-mediated differentiation process. Strikingly, the blockade of the GABAB receptor with CGP533737 stimulates neurite outgrowth, dendritic complexity, and membranal current kinetics of neural precursor cells. The effects of taurine on the differentiation process involve Ca2+ mobilization and the activation of intracellular signaling cascades since chelation of intracellular calcium with BAPTA-AM, and inhibition of the CaMKII, ERK1/2, and Src kinase inhibits the neurite outgrowth of neural precursor cells of the subventricular zone.
Collapse
Affiliation(s)
- Nadia Estefanía Gutierrez-Castañeda
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Vladimir Allex Martínez-Rojas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Lenin David Ochoa-de la Paz
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Unidad de Investigación UNAM-APEC, México City, México
| | - Emilio J. Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
- Centro de Investigación sobre el Envejecimiento, Ciudad de México, México
| |
Collapse
|
5
|
Calabrese EJ, Pressman P, Hayes AW, Kapoor R, Dhawan G, Agathokleous E, Calabrese V. Taurine induces hormesis in multiple biological models: May have transformative implications for overall societal health. Chem Biol Interact 2024; 392:110930. [PMID: 38432405 DOI: 10.1016/j.cbi.2024.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
This paper represents the first integrative assessment and documentation of taurine-induced hormetic effects in the biological and biomedical areas, their dose response features, mechanistic frameworks, and possible public health, therapeutic and commercial applications. Taurine-induced hormetic effects are documented in a wide range of experimental models, cell types and for numerous biological endpoints, with most of these experimental findings being reported within the past five years. It is suggested that the concept of hormesis may have a transformative effect on taurine research and its public health and therapeutic applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
6
|
Galván EJ, Zepeda A. The impact of maternal immune activation on the morphology and electrophysiological properties of postnatally-born neurons in the offspring. Neural Regen Res 2024; 19:399-400. [PMID: 37488900 PMCID: PMC10503614 DOI: 10.4103/1673-5374.379043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
- Emilio J. Galván
- Departamento de Farmacobiología, CINVESTAV Unidad Sur CdMx, México; Centro de Investigaciones sobre el Envejecimiento, CIE-Cinvestav, CdMx, México
| | - Angelica Zepeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, UNAM, CdMx, México
| |
Collapse
|
7
|
Santulli G, Kansakar U, Varzideh F, Mone P, Jankauskas SS, Lombardi A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15:4236. [PMID: 37836520 PMCID: PMC10574552 DOI: 10.3390/nu15194236] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Fahimeh Varzideh
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Pasquale Mone
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| |
Collapse
|