1
|
Wang H, Fan X, Zhang Y, Ma N, Li L, Lu Q, Wang Q, Yu B, Li X, Gao J. The Application of MicroRNAs in Traumatic Brain Injury: Mechanism Elucidation and Clinical Translation. Mol Neurobiol 2025; 62:7846-7863. [PMID: 39946001 DOI: 10.1007/s12035-025-04737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 01/31/2025] [Indexed: 05/15/2025]
Abstract
Traumatic brain injury (TBI) is a complex neurological disease caused by external forces impacting the head and is one of the leading causes of mortality and disability worldwide, exerting a significant impact on public health and socioeconomic conditions. Current research on TBI has focused primarily on assessing injury severity, determining clinical treatment, and improving patient prognosis. The timely and accurate diagnosis of TBI in clinical settings and the implementation of effective therapeutic strategies remain challenging. However, a deeper understanding of changes in gene expression and underlying molecular regulatory processes may alleviate this pressing issue. MicroRNAs (miRNAs), a class of short noncoding RNA molecules, play crucial roles in cellular physiology and pathology by regulating gene expression. With advancements in research, miRNAs have garnered increasing attention in TBI studies. This review summarizes the progress of miRNA research in TBI and explores the potential of miRNAs as diagnostic and prognostic markers and therapeutic targets for TBI.
Collapse
Affiliation(s)
- Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China.
| | - Xiaolin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Yuhao Zhang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Ning Ma
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Qing Lu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Qi Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Boya Yu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Xiao Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Junhong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China.
| |
Collapse
|
2
|
Lu H, Xie T, Qin X, Wei S, Zhao Z, Liu X, Wu L, Ding R, Chen Z. Identification of pivotal genes and regulatory networks associated with SAH based on multi-omics analysis and machine learning. Sci Rep 2025; 15:14401. [PMID: 40274967 PMCID: PMC12022295 DOI: 10.1038/s41598-025-98754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Subarachnoid hemorrhage (SAH) is a disease with high mortality and morbidity, and its pathophysiology is complex but poorly understood. To investigate the potential therapeutic targets post-SAH, the SAH-related feature genes were screened by the combined analysis of transcriptomics and metabolomics of rat cortical tissues following SAH and proteomics of cerebrospinal fluid from SAH patients, as well as WGCNA and machine learning. The competitive endogenous RNAs (ceRNAs) and transcription factors (TFs) regulatory networks of the feature genes were constructed and further validated by molecular biology experiments. A total of 1336 differentially expressed proteins were identified, including 729 proteins downregulated and 607 proteins upregulated. The immune microenvironment changed after SAH and the changement persisted at SAH 7d. Through multi-omics and bioinformatics techniques, five SAH-related feature genes (A2M, GFAP, GLIPR2, GPNMB, and LCN2) were identified, closely related to the immune microenvironment. In addition, ceRNAs and TFs regulatory networks of the feature genes were constructed. The increased expression levels of A2M and GLIPR2 following SAH were verified, and co-localization of A2M with intravascular microthrombus was demonstrated. Multiomics and bioinformatics tools were used to predict the SAH associated feature genes confirmed further through the ceRNAs and TFs regulatory network development. These molecules might play a key role in SAH and may serve as potential biological markers and provide clues for exploring therapeutic options.
Collapse
Affiliation(s)
- Haoran Lu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China
| | - Teng Xie
- Department of Neurosurgery, Hanchuan Renmin Hospital, Hanchuan, 431600, Hubei, China
| | - Xiaohong Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China
| | - Shanshan Wei
- Department of Oncology, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Zilong Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China
| | - Xizhi Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China
| | - Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China
| | - Rui Ding
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.
| |
Collapse
|
3
|
Domínguez-Mozo MI, Casanova I, Monreal E, Costa-Frossard L, Sainz-de-la-Maza S, Sainz-Amo R, Aladro-Benito Y, Lopez-Ruiz P, De-Torres L, Abellán S, Garcia-Martinez MA, De-la-Cuesta D, Lourido D, Torrado-Carvajal A, Gomez-Barbosa C, Linares-Villavicencio C, Villar LM, López-De-Silanes C, Arroyo R, Alvarez-Lafuente R. Association of MicroRNA Expression and Serum Neurofilament Light Chain Levels with Clinical and Radiological Findings in Multiple Sclerosis. Int J Mol Sci 2024; 25:10012. [PMID: 39337499 PMCID: PMC11432459 DOI: 10.3390/ijms251810012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
microRNAs (miRNAs) are promising biomarkers for many diseases, including multiple sclerosis (MS). The neurofilament light chain (NfL) is a biomarker that can detect axonal damage in different neurological diseases. The objective of this study was to evaluate the association of the expression profile of pre-selected miRNAs and NfL levels with clinical and radiological variables in MS patients. We conducted a 1-year longitudinal prospective study in MS patients with different clinical forms. We measured clinical disability using the expanded disability status scale (EDSS), the magnetic resonance imaging (MRI) volumetry baseline, and cognitive functioning using the processing speed test (PST) at baseline and 1 year later. Selected serum miRNAs and serum NfL (sNfL) levels were quantified. Seventy-three patients were recruited. MiR-126.3p correlated with EDSS and cognitive status at baseline and miR-126.3p and miR-9p correlated with cognitive deterioration at 1 year. Correlations with regional brain volumes were observed between miR-126.3p and the cortical gray matter, cerebellum, putamen, and pallidum; miR-146a.5p with the cerebellum and pallidum; miR-29b.3p with white matter and the pallidum; miR-138.5p with the pallidum; and miR-9.5p with the thalamus. sNfL was correlated with miR-9.5p. miR-146a.5p was also associated with the MS phenotype. These data justify future studies to further explore the utility of miRNAs (mirR-126.3p, miR-146.5p, and miR.9-5p) and sNfL levels as biomarkers of MS.
Collapse
Affiliation(s)
- María Inmaculada Domínguez-Mozo
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), 28040 Madrid, Spain; (M.A.G.-M.); (D.D.-l.-C.); (R.A.-L.)
| | - Ignacio Casanova
- Department of Neurology, Hospital Universitario de Torrejón, 28850 Madrid, Spain; (I.C.); (L.D.-T.); (S.A.); (C.L.-D.-S.)
- School of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
- Department of Neurology, Hospital Universitario QuironSalud Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain; (P.L.-R.); (R.A.)
| | - Enric Monreal
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Instituto Ramón y Cajal de Investigación Sanitaria, Universidad de Alcalá, 28034 Madrid, Spain; (E.M.); (L.C.-F.); (S.S.-d.-l.-M.); (R.S.-A.)
| | - Lucienne Costa-Frossard
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Instituto Ramón y Cajal de Investigación Sanitaria, Universidad de Alcalá, 28034 Madrid, Spain; (E.M.); (L.C.-F.); (S.S.-d.-l.-M.); (R.S.-A.)
| | - Susana Sainz-de-la-Maza
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Instituto Ramón y Cajal de Investigación Sanitaria, Universidad de Alcalá, 28034 Madrid, Spain; (E.M.); (L.C.-F.); (S.S.-d.-l.-M.); (R.S.-A.)
| | - Raquel Sainz-Amo
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Instituto Ramón y Cajal de Investigación Sanitaria, Universidad de Alcalá, 28034 Madrid, Spain; (E.M.); (L.C.-F.); (S.S.-d.-l.-M.); (R.S.-A.)
| | | | - Pedro Lopez-Ruiz
- Department of Neurology, Hospital Universitario QuironSalud Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain; (P.L.-R.); (R.A.)
| | - Laura De-Torres
- Department of Neurology, Hospital Universitario de Torrejón, 28850 Madrid, Spain; (I.C.); (L.D.-T.); (S.A.); (C.L.-D.-S.)
| | - Sara Abellán
- Department of Neurology, Hospital Universitario de Torrejón, 28850 Madrid, Spain; (I.C.); (L.D.-T.); (S.A.); (C.L.-D.-S.)
| | - Maria Angel Garcia-Martinez
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), 28040 Madrid, Spain; (M.A.G.-M.); (D.D.-l.-C.); (R.A.-L.)
| | - David De-la-Cuesta
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), 28040 Madrid, Spain; (M.A.G.-M.); (D.D.-l.-C.); (R.A.-L.)
| | - Daniel Lourido
- Department of Radiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Universidad de Alcalá, 28034 Madrid, Spain;
| | - Angel Torrado-Carvajal
- Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - Carol Gomez-Barbosa
- Department of Radiology, Hospital Universitario de Torrejón, 28850 Madrid, Spain; (C.G.-B.); (C.L.-V.)
| | | | - Luisa Maria Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Instituto Ramón y Cajal de Investigación Sanitaria, Universidad de Alcalá, 28034 Madrid, Spain;
| | - Carlos López-De-Silanes
- Department of Neurology, Hospital Universitario de Torrejón, 28850 Madrid, Spain; (I.C.); (L.D.-T.); (S.A.); (C.L.-D.-S.)
| | - Rafael Arroyo
- Department of Neurology, Hospital Universitario QuironSalud Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain; (P.L.-R.); (R.A.)
| | - Roberto Alvarez-Lafuente
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), 28040 Madrid, Spain; (M.A.G.-M.); (D.D.-l.-C.); (R.A.-L.)
| |
Collapse
|
4
|
Qu Z, Luo J, Li Z, Yang R, Zhao J, Chen X, Yu S, Shu H. Advancements in strategies for overcoming the blood-brain barrier to deliver brain-targeted drugs. Front Aging Neurosci 2024; 16:1353003. [PMID: 39253614 PMCID: PMC11381257 DOI: 10.3389/fnagi.2024.1353003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier is known to consist of a variety of cells and complex inter-cellular junctions that protect the vulnerable brain from neurotoxic compounds; however, it also complicates the pharmacological treatment of central nervous system disorders as most drugs are unable to penetrate the blood-brain barrier on the basis of their own structural properties. This dramatically diminished the therapeutic effect of the drug and compromised its biosafety. In response, a number of drugs are often delivered to brain lesions in invasive ways that bypass the obstruction of the blood-brain barrier, such as subdural administration, intrathecal administration, and convection-enhanced delivery. Nevertheless, these intrusive strategies introduce the risk of brain injury, limiting their clinical application. In recent years, the intensive development of nanomaterials science and the interdisciplinary convergence of medical engineering have brought light to the penetration of the blood-brain barrier for brain-targeted drugs. In this paper, we extensively discuss the limitations of the blood-brain barrier on drug delivery and non-invasive brain-targeted strategies such as nanomedicine and blood-brain barrier disruption. In the meantime, we analyze their strengths and limitations and provide outlooks on the further development of brain-targeted drug delivery systems.
Collapse
Affiliation(s)
- Zhichuang Qu
- Department of Neurosurgery, Meishan City People's Hospital, Meishan, China
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Juan Luo
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zheng Li
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rong Yang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiaxi Zhao
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Sixun Yu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine of Southwest Jiaotong University, Chengdu, China
| | - Haifeng Shu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
5
|
Ahmad F, Sudesh R, Ahmed AT, Arumugam M, Mathkor DM, Haque S. The multifaceted functions of long non-coding RNA HOTAIR in neuropathologies and its potential as a prognostic marker and therapeutic biotarget. Expert Rev Mol Med 2024; 26:e11. [PMID: 38682637 PMCID: PMC11140545 DOI: 10.1017/erm.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) are progressively being perceived as prominent molecular agents controlling multiple aspects of neuronal (patho)physiology. Amongst these is the HOX transcript antisense intergenic RNA, often abbreviated as HOTAIR. HOTAIR epigenetically regulates its target genes via its interaction with two different chromatin-modifying agents; histone methyltransferase polycomb-repressive complex 2 and histone demethylase lysine-specific demethylase 1. Parenthetically, HOTAIR elicits trans-acting sponging function against multiple micro-RNA species. Oncological research studies have confirmed the pathogenic functions of HOTAIR in multiple cancer types, such as gliomas and proposed it as a pro-oncological lncRNA. In fact, its expression has been suggested to be a predictor of the severity/grade of gliomas, and as a prognostic biomarker. Moreover, a propound influence of HOTAIR in other aspects of brain heath and disease states is just beginning to be unravelled. The objective of this review is to recapitulate all the relevant data pertaining to the regulatory roles of HOTAIR in neuronal (patho)physiology. To this end, we discuss the pathogenic mechanisms of HOTAIR in multiple neuronal diseases, such as neurodegeneration, traumatic brain injury and neuropsychiatric disorders. Finally, we also summarize the results from the studies incriminating HOTAIR in the pathogeneses of gliomas and other brain cancers. Implications of HOTAIR serving as a suitable therapeutic target in neuropathologies are also discussed.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Atheeq Toufeeq Ahmed
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
6
|
Zhang Z, Lu T, Li S, Zhao R, Li H, Zhang X, Li Y, Xia Y, Ni G. Acupuncture Extended the Thrombolysis Window by Suppressing Blood-Brain Barrier Disruption and Regulating Autophagy-Apoptosis Balance after Ischemic Stroke. Brain Sci 2024; 14:399. [PMID: 38672048 PMCID: PMC11048240 DOI: 10.3390/brainsci14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is one of the leading causes of death and disability worldwide. The narrow therapeutic window (within 4.5 h) and severe hemorrhagic potential limits therapeutic efficacy of recombinant tissue type plasminogen activator (rt-PA) intravenous thrombolysis for patients. Xingnao Kaiqiao (XNKQ) acupuncture is an integral part of traditional Chinese medicine, specifically designed to address acute ischemic stroke by targeting key acupoints such as Shuigou (GV26) and Neiguan (PC6). In this study, we explored the therapeutic potential of XNKQ acupuncture in extending the time window for thrombolysis and interrogated the molecular mechanisms responsible for this effect. METHODS The effect of extending the thrombolysis window by acupuncture was evaluated via TTC staining, neuronal score evaluation, hemorrhagic transformation assay, and H&E staining. RNA sequencing (RNA-seq) technology was performed to identify the therapeutic targets and intervention mechanisms of acupuncture. Evans blue staining and transmission electron microscopy were used to assess blood-brain barrier (BBB) integrity. Immunofluorescence staining and co-immunoprecipitation were performed to evaluate the level of autophagy and apoptosis and validate their interactions with BBB endothelial cells. RESULTS Acupuncture alleviated infarction and neurological deficits and extended the thrombolysis window to 6 h. The RNA-seq revealed 16 potential therapeutic predictors for acupuncture intervention, which related to suppressing inflammation and restoring the function of BBB and blood vessels. Furthermore, acupuncture suppressed BBB leakage and preserved tight junction protein expression. The protective effect was associated with regulation of the autophagy-apoptosis balance in BBB endothelial cells. Acupuncture intervention dissociated the Beclin1/Bcl-2 complex, thereby promoting autophagy and reducing apoptosis. CONCLUSION XNKQ acupuncture could serve as an adjunctive therapy for rt-PA thrombolysis, aiming to extend the therapeutic time window and mitigate ischemia-reperfusion injury. Acupuncture suppressed BBB disruption by regulating the autophagy-apoptosis balance, which in turn extended the therapeutic window of rt-PA in IS. These findings provide a rationale for further exploration of acupuncture as a complementary candidate co-administered with rt-PA.
Collapse
Affiliation(s)
- Zhihui Zhang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Tianliang Lu
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Shanshan Li
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Ruyu Zhao
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Honglei Li
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Xinchang Zhang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yiyang Li
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yawen Xia
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Guangxia Ni
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
7
|
Nakashima M, Suga N, Yoshikawa S, Ikeda Y, Matsuda S. Potential Molecular Mechanisms of Alcohol Use Disorder with Non-Coding RNAs and Gut Microbiota for the Development of Superior Therapeutic Application. Genes (Basel) 2024; 15:431. [PMID: 38674366 PMCID: PMC11049149 DOI: 10.3390/genes15040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Many investigations have evaluated the expression of noncoding RNAs (ncRNAs) as well as their related molecular functions and biological machineries in individuals with alcohol dependence. Alcohol dependence may be one of the most prevailing psychological disorders globally, and its pathogenesis is intricate and inadequately comprehended. There is substantial evidence indicating significant links between multiple genetic factors and the development of alcohol dependence. In particular, the critical roles of ncRNAs have been emphasized in the pathology of mental illnesses, probably including alcohol dependence. In the comprehension of the action of ncRNAs and their machineries of modification, furthermore, they have emerged as therapeutic targets for a variety of psychiatric illnesses, including alcohol dependence. It is worth mentioning that the dysregulated expression of ncRNAs has been regularly detected in individuals with alcohol dependence. An in-depth knowledge of the roles of ncRNAs and m6A modification may be valuable for the development of a novel treatment against alcohol dependence. In general, a more profound understanding of the practical roles of ncRNAs might make important contributions to the precise diagnosis and/or actual management of alcohol dependence. Here, in this review, we mostly focused on up-to-date knowledge regarding alterations and/or modifications in the expression of ncRNAs in individuals with alcohol dependence. Then, we present prospects for future research and therapeutic applications with a novel concept of the engram system.
Collapse
Affiliation(s)
| | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
8
|
Ahmad F, Sudesh R, Ahmed AT, Haque S. Roles of HOTAIR Long Non-coding RNA in Gliomas and Other CNS Disorders. Cell Mol Neurobiol 2024; 44:23. [PMID: 38366205 PMCID: PMC10873238 DOI: 10.1007/s10571-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
HOX transcript antisense intergenic RNA (HOTAIR) is a long non-coding RNA (lncRNA) which is increasingly being perceived as a tremendous molecular mediator of brain pathophysiology at multiple levels. Epigenetic regulation of target gene expression carried out by HOTAIR is thorough modulation of chromatin modifiers; histone methyltransferase polycomb repressive complex 2 (PRC2) and histone demethylase lysine-specific demethylase 1 (LSD1). Incidentally, HOTAIR was the first lncRNA shown to elicit sponging of specific microRNA (miRNA or miR) species in a trans-acting manner. It has been extensively studied in various cancers, including gliomas and is regarded as a prominent pro-tumorigenic and pro-oncogenic lncRNA. Indeed, the expression of HOTAIR may serve as glioma grade predictor and prognostic biomarker. The objective of this timely review is not only to outline the multifaceted pathogenic roles of HOTAIR in the development and pathophysiology of gliomas and brain cancers, but also to delineate the research findings implicating it as a critical regulator of overall brain pathophysiology. While the major focus is on neuro-oncology, wherein HOTAIR represents a particularly potent underlying pathogenic player and a suitable therapeutic target, mechanisms underlying the regulatory actions of HOTAIR in neurodegeneration, traumatic, hypoxic and ischemic brain injuries, and neuropsychiatric disorders are also presented.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - A Toufeeq Ahmed
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102 2801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, 13306, United Arab Emirates
| |
Collapse
|
9
|
Zhang L, Hu Z, Bai W, Peng Y, Lin Y, Cong Z. Fucoxanthin ameliorates traumatic brain injury by suppressing the blood-brain barrier disruption. iScience 2023; 26:108270. [PMID: 37965135 PMCID: PMC10641514 DOI: 10.1016/j.isci.2023.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Fucoxanthin is the most abundant marine carotenoid extracted from seaweed. Our previous study has shown that fucoxanthin inhibited oxidative stress after traumatic brain injury (TBI). However, the effects of fucoxanthin on TBI-induced blood-brain barrier (BBB) destruction have not been well understood. In the present study, we found that fucoxanthin improved neurological dysfunction, reduced brain edema, attenuated cortical lesion volume, and decreased dendrites loss after TBI in vivo. Moreover, fucoxanthin suppressed BBB leakage, preserved tight junction (TJ) and adherens junction (AJ) proteins, and inhibited MMP-9 expression. Furthermore, fucoxanthin alleviated apoptosis and ferroptosis, and activated mitophagy in endothelial cells (ECs) after TBI. However, the protection of fucoxanthin on BBB was attenuated when mitophagy was inhibited. Importantly, fucoxanthin also provided protective effects in bEnd.3 cells after TBI. Taken together, our results suggested that fucoxanthin played a key role in the protection of BBB after TBI through mitophagy.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Wanshan Bai
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Yaonan Peng
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| |
Collapse
|