1
|
Cueto-Díaz EJ, Gálvez-Martínez S, Colin-García M, Mateo-Martí E. A New Approach in Prebiotic Chemistry Studies: Proline Sorption Triggered by Mineral Surfaces Analysed Using XPS. Life (Basel) 2023; 13:life13040908. [PMID: 37109437 PMCID: PMC10141706 DOI: 10.3390/life13040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
The role of minerals in the origin of life and prebiotic evolution remains unknown and controversial. Mineral surfaces have the potential to facilitate prebiotic polymerization due to their ability to adsorb and concentrate biomolecules that subsequently can catalyse reactions; however, the precise nature of the interaction between the mineral host and the guest biomolecule still needs to be understood. In this context, we spectroscopically characterized, using infrared, X-ray photoemission spectroscopy (XPS) and X-ray diffraction (XRD) techniques, the interaction between L-proline and montmorillonite, olivine, iron disulphide, and haematite (minerals of prebiotic interest), by evaluating their interaction from a liquid medium. This work provides insight into the chemical processes occurring between proline, the only cyclic amino acid, and this selection of minerals, each of them bearing a particular chemical and crystal structures. Proline was successfully adsorbed on montmorillonite, haematite, olivine, and iron disulphide in anionic and zwitterionic chemical forms, being the predominant form directly related to the mineral structure and composition. Silicates (montmorillonite) dominate adsorption, whereas iron oxides (haematite) show the lowest molecular affinity. This approach will help to understand structure-affinity relationship between the mineral surfaces and proline, one of the nine amino acids generated in the Miller-Urey experiment.
Collapse
|
2
|
Gebauer S, Grenfell JL, Lammer H, de Vera JPP, Sproß L, Airapetian VS, Sinnhuber M, Rauer H. Atmospheric Nitrogen When Life Evolved on Earth. ASTROBIOLOGY 2020; 20:1413-1426. [PMID: 33121251 DOI: 10.1089/ast.2019.2212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The amount of nitrogen (N2) present in the atmosphere when life evolved on our planet is central for understanding the production of prebiotic molecules and, hence, is a fundamental quantity to constrain. Estimates of atmospheric molecular nitrogen partial surface pressures during the Archean, however, widely vary in the literature. In this study, we apply a model that combines newly gained insights into atmospheric escape, magma ocean duration, and outgassing evolution. Results suggest <420 mbar surface molecular nitrogen at the time when life originated, which is much lower compared with estimates in previous works and hence could impact our understanding of the production rate of prebiotic molecules such as hydrogen cyanide. Our revised values provide new input for atmospheric chamber experiments that simulate prebiotic chemistry on the early Earth. Our results that assume negligible nitrogen escape rates are in agreement with research based on solidified gas bubbles and the oxidation of iron in micrometeorites at 2.7 Gyr ago, which suggest that the atmospheric pressure was probably less than half the present-day value. Our results contradict previous studies that assume N2 partial surface pressures during the Archean were higher than those observed today and suggest that, if the N2 partial pressure were low in the Archean, it would likely be low in the Hadean as well. Furthermore, our results imply a biogenic nitrogen fixation rate from 9 to 14 Teragram N2 per year (Tg N2/year), which is consistent with modern marine biofixation rates and, hence, indicate an oceanic origin of this fixation process.
Collapse
Affiliation(s)
- Stefanie Gebauer
- Institute for Planetary Research (PF), German Aerospace Centre (DLR), Berlin, Germany
| | - John Lee Grenfell
- Institute for Planetary Research (PF), German Aerospace Centre (DLR), Berlin, Germany
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | | | - Laurenz Sproß
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
- Institute for Physics, University of Graz, Graz, Austria
| | - Vladimir S Airapetian
- NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
- American University, NW Washington, District of Columbia, USA
| | - Miriam Sinnhuber
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Heike Rauer
- Institute for Planetary Research (PF), German Aerospace Centre (DLR), Berlin, Germany
- Institute for Geological Sciences, Planetology and Remote Sensing, Freie Universität Berlin (FUB), Berlin, Germany
- Centre for Astronomy and Astrophysics, Technische Universität Berlin (TUB), Berlin, Germany
| |
Collapse
|
4
|
Oxidative coupling of methane in a corona discharge plasma reactor using HY zeolite as a catalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2014. [DOI: 10.1007/s11144-014-0741-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Follmann H, Brownson C. Darwin’s warm little pond revisited: from molecules to the origin of life. Naturwissenschaften 2009; 96:1265-92. [PMID: 19760276 DOI: 10.1007/s00114-009-0602-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/05/2009] [Accepted: 08/10/2009] [Indexed: 11/26/2022]
Affiliation(s)
- Hartmut Follmann
- Institute of Biology, University of Kassel, 34109, Kassel, Germany.
| | | |
Collapse
|
6
|
Zaia DAM, Zaia CTBV, De Santana H. Which amino acids should be used in prebiotic chemistry studies? ORIGINS LIFE EVOL B 2008; 38:469-88. [PMID: 18925425 DOI: 10.1007/s11084-008-9150-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 09/30/2008] [Indexed: 11/25/2022]
Abstract
The adsorption of amino acids on minerals and their condensation under conditions that resemble those of prebiotic earth is a well studied subject. However, which amino acids should be used in these experiments is still an open question. The main goal of this review is to attempt to answer this question. There were two sources of amino acids for the prebiotic earth: (1) exogenous -- meaning that the amino acids were synthesized outside the earth and delivered to our planet by interplanetary dust particles (IDPs), meteorites, comets, etc. and (2) endogenous -- meaning that they were synthesized on earth in atmospheric mixtures, hydrothermal vents, etc. For prebiotic chemistry studies, the use of a mixture of amino acids from both endogenous and exogenous sources is suggested. The exogenous contribution of amino acids to this mixture is very different from the average composition of proteins, and contains several non-protein amino acids. On the other hand, the mixture of amino acids from endogenous sources is seems to more closely resemble the amino acid composition of terrestrial proteins.
Collapse
Affiliation(s)
- Dimas A M Zaia
- Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| | | | | |
Collapse
|