1
|
Hung WK, Chandrasekaran S, Zaslaver O, Zhu M, Lam J, Hersch S, Mokarami P, Slavcev RA, Nafissi N. Ministring DNA (msDNA): a novel linear covalently-closed DNA with enhanced stability for gene and cell therapy applications. Sci Rep 2025; 15:15420. [PMID: 40316641 PMCID: PMC12048660 DOI: 10.1038/s41598-025-98730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/14/2025] [Indexed: 05/04/2025] Open
Abstract
The quality and fidelity of DNA vectors used in genetic medicine and gene therapy either as starting material for manufacturing or as therapeutic ingredients play a critical role in determining ultimate clinical success. Ministring DNA (msDNA), is a novel minivector that is a linear covalently-closed (LCC) double-stranded DNA molecule devoid of immunogenic bacterial sequences (e.g., origin of replication, antibiotic resistant cassette). Similar to traditional plasmids, msDNA is manufactured in vivo in E. coli and therefore benefits from the scalability of E. coli -based systems and the ~ 1000-fold enhanced fidelity conferred by the mismatch repair (MMR) mechanism. In this paper, we address the improved stability of msDNA. We show that due to the torsion-free structure, msDNA is more stable to chemical and mechanical stress than conventional plasmid DNA. Moreover, we demonstrate that lyophilization can further improve the long-term stability of msDNA, reducing the need for cold chain storage. Therefore, we propose that msDNA can be a new paradigm for genetic medicine by offering genetic material with lower immunogenicity, reduced risk of insertional mutagenesis, and higher fidelity and stability.
Collapse
Affiliation(s)
- Wai Kuen Hung
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | | | - Olga Zaslaver
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Ming Zhu
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Jamie Lam
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Steven Hersch
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Peyman Mokarami
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Roderick A Slavcev
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener, N2G 1C5, Canada
| | - Nafiseh Nafissi
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada.
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener, N2G 1C5, Canada.
| |
Collapse
|
2
|
Chen Y, Huang X, Zuo D, Li Y, Wang Y, Wang Q, Tian X, Ma Y, Wang W. Exploring the influence of different processing conditions on DNA quality of collagen peptides and the feasibility of its raw material traceability. Food Chem 2025; 463:141556. [PMID: 39393113 DOI: 10.1016/j.foodchem.2024.141556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
In this work, we have presented a new method for species origin verification of collagen peptides based on DNA techniques. First, we investigate the changes in DNA during the preparation of collagen peptides including the total amount of collagen peptide DNA and the DNA degradation under different processing conditions. Secondly, we discussed the possibility of using polymerase chain reaction (PCR) for follow-up detection of collagen peptides. The results showed that the total amount of DNA decreased as the treatment intensity increased. The size of the cleaved fragments of DNA are mainly concentrated between 200 and 500 bp. On this basis, the combined PCR results finally determined that trace collagen peptide DNA can be effectively amplified with amplicons of about 300 bp to complete the verification of the species origin of collagen peptide. This study provides a new strategy for determining the authenticity of food labels for bovine collagen peptides.
Collapse
Affiliation(s)
- Yuan Chen
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoli Huang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Doudou Zuo
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yangshuai Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qia Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunhao Ma
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; RandD Centre of Collagen Products, Xingjia Biotechnology Co. LTD., Tianjin 300457, China.
| |
Collapse
|
3
|
Yang LL, Ito D, Ushigome N, Wakayama S, Ooga M, Wakayama T. A novel, simplified method to prepare and preserve freeze-dried mouse sperm in plastic microtubes. J Reprod Dev 2023; 69:198-205. [PMID: 37357399 PMCID: PMC10435530 DOI: 10.1262/jrd.2023-034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/27/2023] Open
Abstract
Although freeze-drying sperm can save space, reduce maintenance costs, and facilitate the transportation of genetic samples, the current method requires breakable, custom-made, and expensive glass ampoules. In the present study, we developed a simple and economical method for collecting freeze-dried (FD) sperm using commercially available plastic microtubes. Mouse epididymal sperm suspensions were placed in 1.5 ml polypropylene tubes, frozen in liquid nitrogen, and dried in an acrylic freeze-drying chamber, after which they were closed under a vacuum. The drying duration did not differ between the microtube and glass ampoule methods (control); however, the sperm recovery rate was higher using the microtube method, and the physical damage to the sperm after rehydration was also reduced. Intracytoplasmic sperm injection (ICSI) using FD sperm stored in microtubes at -30°C yielded healthy offspring without reducing the success rate, even after 9 months of storage. Air infiltration into all microtubes stored at room temperature (RT) within 2 weeks of storage caused a drastic decrease in the fertilization rate of FD sperm; underwater storage did not prevent air infiltration. RT storage of FD sperm in microtubes for 1 week resulted in healthy offspring after ICSI (5-18%), but the addition of silica gel or CaCl2 did not improve the success rate. Our novel microtube method is currently the simplest and most effective method for treating FD sperm, contributing to the development of alternative low-cost approaches for preserving and transporting genetic resources.
Collapse
Affiliation(s)
- Li Ly Yang
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Natsuki Ushigome
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Masatoshi Ooga
- Graduate School of Veterinary Science, Azabu University, Kanagawa 252-5201, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| |
Collapse
|
4
|
Nickles G, Ludwikoski I, Bok JW, Keller NP. Comprehensive Guide to Extracting and Expressing Fungal Secondary Metabolites with Aspergillus fumigatus as a Case Study. Curr Protoc 2021; 1:e321. [PMID: 34958718 DOI: 10.1002/cpz1.321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fungal secondary metabolites (SMs) have captured the interest of natural products researchers in academia and industry for decades. In recent years, the high rediscovery rate of previously characterized metabolites is making it increasingly difficult to uncover novel compounds. Additionally, the vast majority of fungal SMs reside in genetically intractable fungi or are silent under normal laboratory conditions in genetically tractable fungi. The fungal natural products community has broadly overcome these barriers by altering the physical growth conditions of the fungus and heterologous/homologous expression of biosynthetic gene cluster regulators or proteins. The protocols described here summarize vital methodologies needed when researching SM production in fungi. We also summarize the growth conditions, genetic backgrounds, and extraction protocols for every published SM in Aspergillus fumigatus, enabling readers to easily replicate the production of previously characterized SMs. Readers will also be equipped with the tools for developing their own strategy for expressing and extracting SMs from their given fungus or a suitable heterologous model system. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Making glycerol stocks from spore suspensions Alternate Protocol 1: Creating glycerol stocks from non-sporulating filamentous fungi Basic Protocol 2: Activating spore-suspension glycerol stocks Basic Protocol 3: Extracting secondary metabolites from Aspergillus spp grown on solid medium Alternate Protocol 2: Extracting secondary metabolites from Aspergillus spp using ethyl acetate Alternate Protocol 3: High-volume metabolite extraction using ethyl acetate Alternate Protocol 4: Extracting secondary metabolites from Aspergillus spp in liquid medium Support Protocol: Creating an overlay culture Basic Protocol 4: Extracting DNA from filamentous fungi Basic Protocol 5: Creating a DNA construct with double-joint PCR Alternate Protocol 5: Creating a DNA construct with yeast recombineering Basic Protocol 6: Transformation of Aspergillus spp Basic Protocol 7: Co-culturing fungi and bacteria for extraction of secondary metabolites.
Collapse
Affiliation(s)
- Grant Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Isabelle Ludwikoski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
5
|
Li Z, Han X, Hong X, Li X, Gao J, Zhang H, Zheng A. Lyophilization Serves as an Effective Strategy for Drug Development of the α9α10 Nicotinic Acetylcholine Receptor Antagonist α-Conotoxin GeXIVA[1,2]. Mar Drugs 2021; 19:md19030121. [PMID: 33668830 PMCID: PMC7996264 DOI: 10.3390/md19030121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
α-Conotoxin GeXIVA[1,2] is a highly potent and selective antagonist of the α9α10 nicotinic acetylcholine receptor (nAChR) subtype. It has the advantages of strong efficacy, no tolerance, and no effect on motor function, which has been expected help patients with neuropathic pain. However, drug development for clinical use is severely limited owing to its instability. Lyophilization is applied as the most preferred method to solve this problem. The prepared lyophilized powder is characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR). Molecular simulation is also used to explore the internal distribution and forces formed in the system. The analgesic effect on paclitaxel-induced neuropathic pain following single and 14-day repeated administrations are evaluated by the von Frey test and the tail-flick test. Trehalose combined with mannitol in a ratio of 1:1 is employed as the excipients in the determined formulation, where trehalose acts as the stabilizer and mannitol acts as the bulking agent, according to the results of DSC, PXRD, and FTIR. Both GeXIVA[1,2] (API) and GeXIVA[1,2] lyophilized powder (formulation) could produce stable analgesic effect. These results indicated that GeXIVA[1,2] lyophilized powder could improve the stability and provide an effective strategy to push it into clinical use as a new analgesic drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aiping Zheng
- Correspondence: ; Tel.: +86-010-66931694 or +86-13520467936
| |
Collapse
|
6
|
Fabre AL, Luis A, Colotte M, Tuffet S, Bonnet J. High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere. PLoS One 2017; 12:e0188547. [PMID: 29190767 PMCID: PMC5708797 DOI: 10.1371/journal.pone.0188547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023] Open
Abstract
Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius’ law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats.
Collapse
Affiliation(s)
- Anne-Lise Fabre
- Imagene, R&D department, Université de Bordeaux, ENSTBB, 146 Rue Léo Saignat, Bordeaux, France
- Imagene, production platform, Rue Henri Desbruères, Genopole campus 1, Bât 6, Evry, France
- * E-mail:
| | - Aurélie Luis
- Imagene, R&D department, Université de Bordeaux, ENSTBB, 146 Rue Léo Saignat, Bordeaux, France
| | - Marthe Colotte
- Imagene, production platform, Rue Henri Desbruères, Genopole campus 1, Bât 6, Evry, France
| | - Sophie Tuffet
- Imagene, R&D department, Université de Bordeaux, ENSTBB, 146 Rue Léo Saignat, Bordeaux, France
| | - Jacques Bonnet
- Imagene, R&D department, Université de Bordeaux, ENSTBB, 146 Rue Léo Saignat, Bordeaux, France
- Institut Bergonié- Université de Bordeaux, INSERM U1218, 229 Cours de l'Argonne, Bordeaux, France
| |
Collapse
|
7
|
Zhang M, Oldenhof H, Sydykov B, Bigalk J, Sieme H, Wolkers WF. Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Sci Rep 2017; 7:6198. [PMID: 28740099 PMCID: PMC5524761 DOI: 10.1038/s41598-017-06542-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/14/2017] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to investigate preservation of biomolecular structures, particularly DNA, in freeze-dried fibroblasts, after loading with trehalose via freezing-induced uptake. Cells were freeze-dried with trehalose alone or in a mixture of albumin and trehalose. Albumin was added to increase the glass transition temperature and storage stability. No viable cells were recovered after freeze-drying and rehydration. FTIR studies showed that membrane phase behavior of freeze-dried cells resembles that of fresh cells. However, one day after rehydration membrane phase separation was observed, irrespective of the presence or absence of trehalose during freeze-drying. Freeze-drying did not affect the overall protein secondary structure. Analysis of DNA damage via single cell gel electrophoresis (‘comet assay’) showed that DNA damage progressively increased with storage duration and temperature. DNA damage was prevented during storage at 4 °C. It is shown that trehalose reduces DNA damage during storage, whereas addition of albumin did not seem to have an additional protective effect on storage stability (i.e. DNA integrity) despite the fact that albumin increased the glass transition temperature. Taken together, DNA in freeze-dried somatic cells can be preserved using trehalose as protectant and storage at or below 4 °C.
Collapse
Affiliation(s)
- Miao Zhang
- Institute of Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bulat Sydykov
- Institute of Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany
| | - Judith Bigalk
- Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Willem F Wolkers
- Institute of Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
8
|
Yang HW, Ye L, Guo XD, Yang C, Compans RW, Prausnitz MR. Ebola Vaccination Using a DNA Vaccine Coated on PLGA-PLL/γPGA Nanoparticles Administered Using a Microneedle Patch. Adv Healthc Mater 2017; 6. [PMID: 28075069 DOI: 10.1002/adhm.201600750] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/30/2016] [Indexed: 11/07/2022]
Abstract
Ebola DNA vaccine is incorporated into PLGA-PLL/γPGA nanoparticles and administered to skin using a microneedle (MN) patch. The nanoparticle delivery system increases vaccine thermostability and immunogenicity compared to free vaccine. Vaccination by MN patch produces stronger immune responses than intramuscular administration.
Collapse
Affiliation(s)
- Hung-Wei Yang
- Institute of Medical Science and Technology; National Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan R.O.C
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; 311 Ferst Drive Atlanta GA 30332 USA
| | - Ling Ye
- Department of Microbiology and Immunology and Emory Vaccine Center; Emory University School of Medicine; 1648 Pierce Drive Atlanta GA 30322 USA
| | - Xin Dong Guo
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; 311 Ferst Drive Atlanta GA 30332 USA
- College of Materials Science and Engineering; Beijing University of Chemical Technology; 15 Beisanhuandong Road Chaoyang District, Beijing China
| | - Chinglai Yang
- Department of Microbiology and Immunology and Emory Vaccine Center; Emory University School of Medicine; 1648 Pierce Drive Atlanta GA 30322 USA
| | - Richard W. Compans
- Department of Microbiology and Immunology and Emory Vaccine Center; Emory University School of Medicine; 1648 Pierce Drive Atlanta GA 30322 USA
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; 311 Ferst Drive Atlanta GA 30332 USA
| |
Collapse
|
9
|
Muller R, Betsou F, Barnes MG, Harding K, Bonnet J, Kofanova O, Crowe JH. Preservation of Biospecimens at Ambient Temperature: Special Focus on Nucleic Acids and Opportunities for the Biobanking Community. Biopreserv Biobank 2016; 14:89-98. [DOI: 10.1089/bio.2015.0022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - Fay Betsou
- Integrated Biobank of Luxembourg, Luxembourg, Luxembourg
| | | | - Keith Harding
- Damar Research Scientists, Damar, Cupar Muir, United Kingdom
| | - Jacques Bonnet
- Imagene, Genopole Campus 1, Evry, France
- Université de Bordeaux Segalen, Institut Bergonié, Bordeaux, France
| | - Olga Kofanova
- Integrated Biobank of Luxembourg, Luxembourg, Luxembourg
| | - John H. Crowe
- Department of Molecular and Cellular Biology, University of California, Davis, California
| | | |
Collapse
|
10
|
van der Heijden I, Beijnen JH, Nuijen B. Long term stability of lyophilized plasmid DNA pDERMATT. Int J Pharm 2013; 453:648-50. [PMID: 23792100 DOI: 10.1016/j.ijpharm.2013.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
In this short note we report on the shelf-life stability of pDERMATT (plasmid DNA encoding recombinant MART-1 and tetanus toxin fragment-c) 2mg lyophilized powder for reconstitution for intradermal administration, used in an in-house, investigator-initiated clinical phase I study. pDERMATT was stored at 25°C/60% relative humidity (6 months), 2-8°C (24 months), and -20°C (66 months) in the dark and analyzed at several timepoints during the conduct of the clinical study for appearance, identity, purity (plasmid topology), content and residual water content. pDERMATT appeared stable at all storage conditions for the periods tested which, although patient inclusion in the study was significantly delayed, ensured the clinical supply needs. This study shows that lyophilization is an useful tool to preserve the quality of the pDNA and can prevent the need for costly and time-consuming additional manufacture of drug product in case of study delays, not uncommon at the early stage of drug development. To our knowledge, this is the first study reporting shelf life stability of a pDNA formulation for more than 5 years.
Collapse
Affiliation(s)
- Iris van der Heijden
- Department of Pharmacy and Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
11
|
A systematic study on lyophilization process of polymersomes for long-term storage using doxorubicin-loaded (PEG)3–PLA nanopolymersomes. Eur J Pharm Sci 2012; 46:405-14. [DOI: 10.1016/j.ejps.2012.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 11/20/2022]
|
12
|
Smyth TJ, Betker J, Wang W, Anchordoquy TJ. Moisture content impacts the stability of DNA adsorbed onto gold microparticles. J Pharm Sci 2011; 100:4845-54. [PMID: 21732371 DOI: 10.1002/jps.22697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/08/2011] [Accepted: 06/17/2011] [Indexed: 11/09/2022]
Abstract
Particle-mediated epidermal delivery (PMED) of small quantities of DNA (0.5-4.0 μg) has been reported to both induce an immune response and protect against disease in human subjects. In order for the PMED of DNA to be a viable technique for vaccination, the adsorbed DNA must be stable during shipping and storage. Here, we report that the storage stability of plasmid DNA adsorbed to 2-μm gold particles is strongly dependent on sample water content. Gold/DNA samples stored at 60°C and 6% relative humidity (RH) maintained supercoil content after 4-month storage, whereas storage at higher RHs facilitated degradation. Storage with desiccants had stabilizing effects on DNA similar to storage at 6% RH. However, storage with "indicating" Drierite and phosphorus pentoxide resulted in enhanced rates of DNA degradation.
Collapse
Affiliation(s)
- Tyson J Smyth
- University of Colorado School of Pharmacy, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
13
|
Quaak SGL, Haanen JBAG, Beijnen JH, Nuijen B. Naked plasmid DNA formulation: effect of different disaccharides on stability after lyophilisation. AAPS PharmSciTech 2010; 11:344-50. [PMID: 20204715 PMCID: PMC2850488 DOI: 10.1208/s12249-010-9391-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 02/01/2010] [Indexed: 11/30/2022] Open
Abstract
Since plasmid DNA (pDNA) is unstable in solution, lyophilisation can be used to increase product shelf life. To prevent stress on pDNA molecules during lyophilisation, cryo- and lyoprotectants have to be added to the formulation. This study assessed the effect of disaccharides on naked pDNA stability after lyophilisation using accelerated stability studies. Naked pDNA was lyophilised with sucrose, trehalose, maltose or lactose in an excipient/DNA w/w ratio of 20. To one part of the vials extra residual moisture was introduced by placing the vials half opened in a 25°C/60% RH climate chamber, before placing all vials in climate chambers (25°C/60% RH and 40°C/75% RH) for stability studies. An ex vivo human skin model was used to assess the effect of disaccharides on transfection efficiency. Lyophilisation resulted in amorphous cakes for all disaccharides with a residual water content of 0.8% w/w. Storage at 40°C/75% RH resulted in decreasing supercoiled (SC) purity levels (sucrose and trehalose maintained approximately 80% SC purity), but not in physical collapse. The addition of residual moisture (values between 7.5% and 10% w/w) resulted in rapid collapse except for trehalose and decreasing SC purity for all formulations. In a separate experiment disaccharide formulation solutions show a slight but significant reduction (<3% with sucrose and maltose) in transfection efficiency when compared to pDNA dissolved in water. We demonstrate that disaccharides, like sucrose and trehalose, are effective lyoprotectants for naked pDNA.
Collapse
|
14
|
Flores-Fernández GM, Solá RJ, Griebenow K. The relation between moisture-induced aggregation and structural changes in lyophilized insulin. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.11.0016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Objectives
Long-term stability is a critical factor in the successful development of protein pharmaceuticals. Due to the relative instability of proteins in aqueous solutions, they are formulated frequently and stored as lyophilized powders. Exposure of such powders to moisture constitutes a substantial storage problem leading to aggregation and inactivation. We have investigated the structural consequences of moisture sorption by lyophilized insulin under controlled humidity conditions by employing Fourier transform-infrared (FT-IR) microscopy.
Methods
Lyophilized insulin samples were stored in humidity chambers under controlled conditions at 50°C. Protein aggregation studies were carried out by redissolving the insulin samples and measuring the amount of both soluble protein and insoluble aggregates. Near-UV circular dichroism spectra were collected to assess the tertiary structure. FT-IR microscopy studies were carried out to investigate secondary structural changes in solid-state insulin after incubation at different relative humidities.
Key findings
It was found that sorption of moisture was accompanied by small structural changes in lyophilized insulin at low levels of relative humidity (i.e. 11%). At higher relative humidity levels, structural changes were becoming more pronounced and were characterized by a loss in the α-helix and increase in β-sheet content. The magnitude of the structural changes in tendency paralleled the solid-state instability data (i.e. formation of buffer-insoluble aggregates and loss in tertiary structure upon reconstitution).
Conclusions
The results support the hypothesis that water sorption by lyophilized proteins enables structural transitions which can lead to protein aggregation and other deleterious phenomena.
Collapse
Affiliation(s)
| | - Ricardo J Solá
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| |
Collapse
|
15
|
Bonnet J, Colotte M, Coudy D, Couallier V, Portier J, Morin B, Tuffet S. Chain and conformation stability of solid-state DNA: implications for room temperature storage. Nucleic Acids Res 2009; 38:1531-46. [PMID: 19969539 PMCID: PMC2836546 DOI: 10.1093/nar/gkp1060] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is currently wide interest in room temperature storage of dehydrated DNA. However, there is insufficient knowledge about its chemical and structural stability. Here, we show that solid-state DNA degradation is greatly affected by atmospheric water and oxygen at room temperature. In these conditions DNA can even be lost by aggregation. These are major concerns since laboratory plastic ware is not airtight. Chain-breaking rates measured between 70 degrees C and 140 degrees C seemed to follow Arrhenius' law. Extrapolation to 25 degrees C gave a degradation rate of about 1-40 cuts/10(5) nucleotides/century. However, these figures are to be taken as very tentative since they depend on the validity of the extrapolation and the positive or negative effect of contaminants, buffers or additives. Regarding the secondary structure, denaturation experiments showed that DNA secondary structure could be preserved or fully restored upon rehydration, except possibly for small fragments. Indeed, below about 500 bp, DNA fragments underwent a very slow evolution (almost suppressed in the presence of trehalose) which could end in an irreversible denaturation. Thus, this work validates using room temperature for storage of DNA if completely protected from water and oxygen.
Collapse
Affiliation(s)
- Jacques Bonnet
- Université de Bordeaux-plateforme Génomique Fonctionnelle, Institut Bergonié-INSERM U916 VINCO, Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
|