1
|
Raman SK, Roy T, Verma K, Yadav C, Verma S, Deivreddy VSR, Sofi HS, Bharti R, Sharma R, Bansode H, Kumar A, Sharma RK, Singh J, Mugale MN, Bajpai U, Jain V, Singh AK, Misra A. Dry powder Inhalation of lytic mycobacteriophages for adjunct therapy in a mouse model of infection with Mycobacteriumtuberculosis. Tuberculosis (Edinb) 2025; 152:102631. [PMID: 40088506 DOI: 10.1016/j.tube.2025.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Inhaled therapy of tuberculosis (TB) by a Dry Powder Inhalation (DPI) comprising mycobacteriophage D29 and TM4 was non-inferior to oral anti-tuberculosis therapy (ATT) with isoniazid and rifampicin in a mouse model of infection with Mycobacterium tuberculosis (Mtb). No pharmaceutical phage product of mycobacteriophages is approved for large-scale production. We scaled up preparation and downstream processing of phages, developed DPI formulations, and established methods for determining identity, purity, assay, stability, and critical quality attributes (CQA). We carried out cell-based assays of intracellular bactericidal activity and pharmacokinetics and comparative efficacy in Mtb-infected mice. Daily doses of the DPI containing ∼1010 Plaque Forming Units/dose DPI reduced Mtb colony forming units (CFU) in the lungs from 6.4 ± 0.3-log to 4.8 ± 0.7-log in four weeks, while oral human equivalent doses (HED) of isoniazid and rifampicin reduced CFU to 3.8 ± 0.8-log. Combining inhaled phages with oral drugs sterilized the lungs of one of four mice and reduced group mean CFU to 2.3-log. Inhalations significantly upregulated tumor necrosis factor (TNF) in lung tissue to ∼1500 pg/ml of homogenate, improved organ morphology, and reduced histopathology. The HD DPI may be a useful adjunct to oral drugs. Dose-finding animal efficacy studies are required before assessing preclinical safety.
Collapse
Affiliation(s)
- Sunil K Raman
- CSIR-Central Drug Research Institute, Lucknow, 226031, India; Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Trisha Roy
- CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Khushboo Verma
- CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Chunna Yadav
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sonia Verma
- CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Venkata Siva Reddy Deivreddy
- CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | | | - Reena Bharti
- CSIR-Central Drug Research Institute, Lucknow, 226031, India; Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Rahul Sharma
- ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, 282004, Uttar Pradesh, India
| | | | - Akhilesh Kumar
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rakesh Kumar Sharma
- CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Jyotsna Singh
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Madhav N Mugale
- CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, 110019, New Delhi, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Amit Kumar Singh
- ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, 282004, Uttar Pradesh, India
| | - Amit Misra
- CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India.
| |
Collapse
|
2
|
Almurshedi AS, Almarshad SN, Bukhari SI, Aldosari BN, Alhabardi SA, Alkathiri FA, Saleem I, Aldosar NS, Zaki RM. A Novel Inhalable Dry Powder to Trigger Delivery of Voriconazole for Effective Management of Pulmonary Aspergillosis. Pharmaceutics 2024; 16:897. [PMID: 39065594 PMCID: PMC11280232 DOI: 10.3390/pharmaceutics16070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a fatal fungal infection with a high mortality rate. Voriconazole (VCZ) is considered a first-line therapy for IPA and shows efficacy in patients for whom other antifungal treatments have been unsuccessful. The objective of this study was to develop a high-potency VCZ-loaded liposomal system in the form of a dry-powder inhaler (DPI) using the spray-drying technique to convert liposomes into a nanocomposite microparticle (NCMP) DPI, formulated using a thin-film hydration technique. The physicochemical properties, including size, morphology, entrapment efficiency, and loading efficiency, of the formulated liposomes were evaluated. The NCMPs were then examined to determine their drug content, production yield, and aerodynamic size. The L3NCMP was formulated using a 1:1 lipid/L-leucine ratio and was selected for in vitro studies of cell viability, antifungal activity, and stability. These formulated inhalable particles offer a promising approach to the effective management of IPA.
Collapse
Affiliation(s)
- Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Sarah N. Almarshad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Basmah N. Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Samiah A. Alhabardi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Fai A. Alkathiri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Noura S. Aldosar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef 62514, Egypt
| |
Collapse
|
3
|
Hickey AJ, Maloney SE, Kuehl PJ, Phillips JE, Wolff RK. Practical Considerations in Dose Extrapolation from Animals to Humans. J Aerosol Med Pulm Drug Deliv 2024; 37:77-89. [PMID: 38237032 PMCID: PMC11807867 DOI: 10.1089/jamp.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/06/2023] [Indexed: 04/21/2024] Open
Abstract
Animal studies are an important component of drug product development and the regulatory review process since modern practices have been in place, for almost a century. A variety of experimental systems are available to generate aerosols for delivery to animals in both liquid and solid forms. The extrapolation of deposited dose in the lungs from laboratory animals to humans is challenging because of genetic, anatomical, physiological, pharmacological, and other biological differences between species. Inhaled drug delivery extrapolation requires scrutiny as the aerodynamic behavior, and its role in lung deposition is influenced not only by the properties of the drug aerosol but also by the anatomy and pulmonary function of the species in which it is being evaluated. Sources of variability between species include the formulation, delivery system, and species-specific biological factors. It is important to acknowledge the underlying variables that contribute to estimates of dose scaling between species.
Collapse
Affiliation(s)
- Anthony J. Hickey
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Sara E. Maloney
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Philip J. Kuehl
- Division: Scientific Core Laboratories; Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | | | | |
Collapse
|
4
|
Yeshwante SB, Hanafin P, Miller BK, Rank L, Murcia S, Xander C, Annis A, Baxter VK, Anderson EJ, Jermain B, Konicki R, Schmalstig AA, Stewart I, Braunstein M, Hickey AJ, Rao GG. Pharmacokinetic Considerations for Optimizing Inhaled Spray-Dried Pyrazinoic Acid Formulations. Mol Pharm 2023; 20:4491-4504. [PMID: 37590399 PMCID: PMC10868345 DOI: 10.1021/acs.molpharmaceut.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of death with 1.6 million deaths worldwide reported in 2021. Oral pyrazinamide (PZA) is an integral part of anti-TB regimens, but its prolonged use has the potential to drive the development of PZA-resistant Mtb. PZA is converted to the active moiety pyrazinoic acid (POA) by the Mtb pyrazinamidase encoded by pncA, and mutations in pncA are associated with the majority of PZA resistance. Conventional oral and parenteral therapies may result in subtherapeutic exposure in the lung; hence, direct pulmonary administration of POA may provide an approach to rescue PZA efficacy for treating pncA-mutant PZA-resistant Mtb. The objectives of the current study were to (i) develop novel dry powder POA formulations, (ii) assess their feasibility for pulmonary delivery using physicochemical characterization, (iii) evaluate their pharmacokinetics (PK) in the guinea pig model, and (iv) develop a mechanism-based pharmacokinetic model (MBM) using in vivo PK data to select a formulation providing adequate exposure in epithelial lining fluid (ELF) and lung tissue. We developed three POA formulations for pulmonary delivery and characterized their PK in plasma, ELF, and lung tissue following passive inhalation in guinea pigs. Additionally, the PK of POA following oral, intravenous, and intratracheal administration was characterized in guinea pigs. The MBM was used to simultaneously model PK data following administration of POA and its formulations via the different routes. The MBM described POA PK well in plasma, ELF, and lung tissue. Physicochemical analyses and MBM predictions suggested that POA maltodextrin was the best among the three formulations and an excellent candidate for further development as it has: (i) the highest ELF-to-plasma exposure ratio (203) and lung tissue-to-plasma exposure ratio (30.4) compared with POA maltodextrin and leucine (75.7/16.2) and POA leucine salt (64.2/19.3) and (ii) the highest concentration in ELF (CmaxELF: 171 nM) within 15.5 min, correlating with a fast transfer into ELF after pulmonary administration (KPM: 22.6 1/h). The data from the guinea pig allowed scaling, using the MBM to a human dose of POA maltodextrin powder demonstrating the potential feasibility of an inhaled product.
Collapse
Affiliation(s)
- Shekhar B Yeshwante
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Patrick Hanafin
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brittany K Miller
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Laura Rank
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sebastian Murcia
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christian Xander
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ayano Annis
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Victoria K Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth J Anderson
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian Jermain
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Robyn Konicki
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alan A Schmalstig
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ian Stewart
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Miriam Braunstein
- Department of Microbiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anthony J Hickey
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina 27709, United States
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Yeshwante SB, Hanafin P, Miller BK, Rank L, Murcia S, Xander C, Annis A, Baxter VK, Anderson EJ, Jermain B, Konicki R, Schmalstig AA, Stewart I, Braunstein M, Hickey AJ, Rao GG. Pharmacokinetic considerations for optimizing inhaled spray-dried pyrazinoic acid formulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.534965. [PMID: 37066292 PMCID: PMC10103941 DOI: 10.1101/2023.04.01.534965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis ( Mtb ), remains a leading cause of death with 1.6 million deaths worldwide reported in 2021. Oral pyrazinamide (PZA) is an integral part of anti-TB regimens, but its prolonged use has the potential to drive development of PZA resistant Mtb . PZA is converted to the active moiety pyrazinoic acid (POA) by the Mtb pyrazinamidase encoded by pncA , and mutations in pncA are associated with the majority of PZA resistance. Conventional oral and parenteral therapies may result in subtherapeutic exposure in the lung, hence direct pulmonary administration of POA may provide an approach to rescue PZA efficacy for treating pncA- mutant PZA-resistant Mtb . The objectives of the current study were to i) develop novel dry powder POA formulations ii) assess their feasibility for pulmonary delivery using physicochemical characterization, iii) evaluate their pharmacokinetics (PK) in the guinea pig model and iv) develop a mechanism based pharmacokinetic model (MBM) using in vivo PK data to select a formulation providing adequate exposure in epithelial lining fluid (ELF) and lung tissue. We developed three POA formulations for pulmonary delivery and characterized their PK in plasma, ELF, and lung tissue following passive inhalation in guinea pigs. Additionally, the PK of POA following oral, intravenous and intratracheal administration was characterized in guinea pigs. The MBM was used to simultaneously model PK data following administration of POA and its formulations via the different routes. The MBM described POA PK well in plasma, ELF and lung tissue. Physicochemical analyses and MBM predictions suggested that POA maltodextrin was the best among the three formulations and an excellent candidate for further development as it has: (i) the highest ELF-to-plasma exposure ratio (203) and lung tissue-to-plasma exposure ratio (30.4) compared with POA maltodextrin and leucine (75.7/16.2) and POA leucine salt (64.2/19.3); (ii) the highest concentration in ELF ( Cmac ELF : 171 nM) within 15.5 minutes, correlating with a fast transfer into ELF after pulmonary administration ( k PM : 22.6 1/h). The data from the guinea pig allowed scaling, using the MBM to a human dose of POA maltodextrin powder demonstrating the potential feasibility of an inhaled product. Table of Contents TOC/Abstract Graphic
Collapse
|
6
|
Nainwal N, Sharma Y, Jakhmola V. Dry powder inhalers of antitubercular drugs. Tuberculosis (Edinb) 2022; 135:102228. [PMID: 35779497 DOI: 10.1016/j.tube.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 12/15/2022]
Abstract
Despite advancements in the medical and pharmaceutical fields, tuberculosis remains a major health problem globally. Patients do not widely accept the conventional approach to treating tuberculosis (TB) due to prolonged treatment periods with multiple high doses of drugs and associated side effects. A pulmonary route is a non-invasive approach to delivering drugs, hormones, nucleic acid, steroids, proteins, and peptides directly to the lungs, improving the efficacy of the treatment and consequently decreasing the adverse effect of the treatment. This route has been successfully developed for the treatment of various respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), tuberculosis (TB), lung cancer, and other pulmonary infections. The major approaches of inhalation delivery systems include nebulizers, metered-dose inhalers (MDIs), and dry powder inhalers (DPIs). However, dry powder inhalers (DPIs) are more advantageous due to their stability and ability to deliver a high dose of the drug to the lungs. The present review analyzes the modern therapeutic approach of inhaled dry powders, with a special focus on novel drug delivery system (NDDS) based DPIs for the treatment of TB. The article also discussed the challenges of preparing inhalable dry powder formulations for the treatment of TB. The clinical development of inhalable anti-TB drugs is also reviewed.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Yuwanshi Sharma
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
7
|
Spray-Dried Powder Formulation of Capreomycin Designed for Inhaled Tuberculosis Therapy. Pharmaceutics 2021; 13:pharmaceutics13122044. [PMID: 34959328 PMCID: PMC8706516 DOI: 10.3390/pharmaceutics13122044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022] Open
Abstract
Multi-drug-resistant tuberculosis (MDR-TB) is a huge public health problem. The treatment regimen of MDR-TB requires prolonged chemotherapy with multiple drugs including second-line anti-TB agents associated with severe adverse effects. Capreomycin, a polypeptide antibiotic, is the first choice of second-line anti-TB drugs in MDR-TB therapy. It requires repeated intramuscular or intravenous administration five times per week. Pulmonary drug delivery is non-invasive with the advantages of local targeting and reduced risk of systemic toxicity. In this study, inhaled dry powder formulation of capreomycin targeting the lung was developed using spray drying technique. Among the 16 formulations designed, the one containing 25% capreomycin (w/w) and spray-dried at an inlet temperature of 90 °C showed the best overall performance with the mass median aerodynamic diameter (MMAD) of 3.38 μm and a fine particle fraction (FPF) of around 65%. In the pharmacokinetic study in mice, drug concentration in the lungs was approximately 8-fold higher than the minimum inhibitory concentration (MIC) (1.25 to 2.5 µg/mL) for at least 24 h following intratracheal administration (20 mg/kg). Compared to intravenous injection, inhaled capreomycin showed significantly higher area under the curve, slower clearance and longer mean residence time in both the lungs and plasma.
Collapse
|
8
|
Son YJ, Miller DP, Weers JG. Optimizing Spray-Dried Porous Particles for High Dose Delivery with a Portable Dry Powder Inhaler. Pharmaceutics 2021; 13:pharmaceutics13091528. [PMID: 34575603 PMCID: PMC8470347 DOI: 10.3390/pharmaceutics13091528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This manuscript critically reviews the design and delivery of spray-dried particles for the achievement of high total lung doses (TLD) with a portable dry powder inhaler. We introduce a new metric termed the product density, which is simply the TLD of a drug divided by the volume of the receptacle it is contained within. The product density is given by the product of three terms: the packing density (the mass of powder divided by the volume of the receptacle), the drug loading (the mass of drug divided by the mass of powder), and the aerosol performance (the TLD divided by the mass of drug). This manuscript discusses strategies for maximizing each of these terms. Spray drying at low drying rates with small amounts of a shell-forming excipient (low Peclet number) leads to the formation of higher density particles with high packing densities. This enables ultrahigh TLD (>100 mg of drug) to be achieved from a single receptacle. The emptying of powder from capsules is directly proportional to the mass of powder in the receptacle, requiring an inhaled volume of about 1 L for fill masses between 40 and 50 mg and up to 3.2 L for a fill mass of 150 mg.
Collapse
Affiliation(s)
- Yoen-Ju Son
- Genentech, South San Francisco, CA 94080, USA;
| | | | - Jeffry G. Weers
- Cystetic Medicines, Inc., Burlingame, CA 94010, USA;
- Correspondence: ; Tel.: +1-650-339-3832
| |
Collapse
|
9
|
Tse JY, Koike A, Kadota K, Uchiyama H, Fujimori K, Tozuka Y. Porous particles and novel carrier particles with enhanced penetration for efficient pulmonary delivery of antitubercular drugs. Eur J Pharm Biopharm 2021; 167:116-126. [PMID: 34363979 DOI: 10.1016/j.ejpb.2021.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/31/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to design dry powder inhaler formulations using a hydrophilic polymeric polysaccharide, phytoglycogen (PyG), as a multi-functional additive that increases the phagocytic activity of macrophage-like cells and enhances pulmonary delivery of drugs. The safety and usefulness of PyG were determined using in vitro cell-based studies. Dry powder inhaler formulations of an antitubercular drug, rifampicin, were fabricated by spray drying with PyG. The cytotoxicity, effects on phagocytosis, particle size, and morphology were evaluated. The aerosolization properties of the powder formulations were evaluated using an Andersen cascade impactor (ACI). Scanning electron microscope images of the particles on each ACI stage were captured to observe the deposition behavior. PyG showed no toxicity in A549, Calu-3, or RAW264.7 cell lines. At concentrations of 0.5 and 1 g/L, PyG facilitated the cellular uptake of latex beads and the expression of pro-inflammatory cytokine genes in RAW264.7 cells. Formulations with outstanding inhalation potential were produced. The fine particle fraction (aerodynamic size 2-7 µm) of the porous particle batch reached nearly 60%, whereas in the formulation containing wrinkled carrier particles, the extra-fine particle fraction (aerodynamic particle size < 2 μm) was 25.0% ± 1.7%. The deposition of porous and wrinkled particles on individual ACI stages was distinct. The inclusion of PyG dramatically improved the inhalation performance of porous and wrinkled powder formulations. These easily inhaled immunostimulatory carrier particles may advance the state of research by enhancing the therapeutic effect and alveolar delivery of antitubercular drugs.
Collapse
Affiliation(s)
- Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Atsushi Koike
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
10
|
Rossi I, Bettini R, Buttini F. Resistant Tuberculosis: the Latest Advancements of Second-line Antibiotic Inhalation Products. Curr Pharm Des 2021; 27:1436-1452. [PMID: 33480336 DOI: 10.2174/1381612827666210122143214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Drug-resistant tuberculosis (TB) can be considered the man-made result of interrupted, erratic or inadequate TB therapy. As reported in WHO data, resistant Mycobacterium tuberculosis (Mtb) strains continue to constitute a public health crisis. Mtb is naturally able to survive host defence mechanisms and to resist most antibiotics currently available. Prolonged treatment regimens using the available first-line drugs give rise to poor patient compliance and a rapid evolution of strains resistant to rifampicin only or to both rifampicin and isoniazid (multi drug-resistant, MDR-TB). The accumulation of mutations may give rise to extensively drug-resistant strains (XDR-TB), i.e. strains with resistance also to fluoroquinolones and to the injectable aminoglycoside, which represent the second-line drugs. Direct lung delivery of anti-tubercular drugs, as an adjunct to conventional routes, provides high concentrations within the lungs, which are the intended target site of drug delivery, representing an interesting strategy to prevent or reduce the development of drug-resistant strains. The purpose of this paper is to describe and critically analyse the most recent and advanced results in the formulation development of WHO second-line drug inhalation products, with particular focus on dry powder formulation. Although some of these formulations have been developed for other lung infectious diseases (Pseudomonas aeruginosa, nontuberculous mycobacteria), they could be valuable to treat MDR-TB and XDR-TB.
Collapse
Affiliation(s)
- Irene Rossi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
11
|
Pitner RA, Durham PG, Stewart IE, Reed SG, Cassell GH, Hickey AJ, Carter D. A Spray-Dried Combination of Capreomycin and CPZEN-45 for Inhaled Tuberculosis Therapy. J Pharm Sci 2019; 108:3302-3311. [PMID: 31152746 PMCID: PMC6759370 DOI: 10.1016/j.xphs.2019.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/25/2022]
Abstract
Tuberculosis (TB) remains the single most serious infectious disease attributable to a single-causative organism. A variety of drugs have been evaluated for pulmonary delivery as dry powders: capreomycin sulfate has shown efficacy and was safely delivered by inhalation at high doses to human volunteers, whereas CPZEN-45 is a new drug that has also been shown to kill resistant TB. The studies here combine these drugs-acting by different mechanisms-as components of single particles by spray-drying, yielding a new combination drug therapy. The spray-dried combination powder was prepared in an aerodynamic particle size range suitable for pulmonary delivery. Physicochemical storage stability was demonstrated for a period of 6 months. The spray-dried combination powders of capreomycin and CPZEN-45 have only moderate affinity for mucin, indicating that delivered drug will not be bound by these mucins in the lung and available for microbicidal effects. The pharmacokinetics of disposition in guinea pigs demonstrated high local concentrations of drug following direct administration to the lungs and subsequent systemic bioavailability. Further studies are required to demonstrate the in vivo efficacy of the combination to confirm the therapeutic potential of this novel combination.
Collapse
Affiliation(s)
- Ragan A Pitner
- PAI Life Sciences, Seattle, Washington 98102; Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109
| | - Phillip G Durham
- RTI International, Research Triangle Park, North Carolina 27709; Department of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ian E Stewart
- RTI International, Research Triangle Park, North Carolina 27709
| | - Steven G Reed
- Infectious Disease Research Institute (IDRI), Seattle, Washington 98102
| | - Gail H Cassell
- Infectious Disease Research Institute (IDRI), Seattle, Washington 98102
| | - Anthony J Hickey
- RTI International, Research Triangle Park, North Carolina 27709; Department of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Darrick Carter
- PAI Life Sciences, Seattle, Washington 98102; Infectious Disease Research Institute (IDRI), Seattle, Washington 98102.
| |
Collapse
|
12
|
Aerosol immunization by alginate coated mycobacterium (BCG/MIP) particles provide enhanced immune response and protective efficacy than aerosol of plain mycobacterium against M.tb. H37Rv infection in mice. BMC Infect Dis 2019; 19:568. [PMID: 31262260 PMCID: PMC6604382 DOI: 10.1186/s12879-019-4157-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022] Open
Abstract
Background With the aim of preparing a more effective, safe and economical vaccine for tuberculosis, inhalable live mycobacterium formulations were evaluated. Methods Alginate particles in the size range of 2–4 μm were prepared by encapsulating live Bacille Calmette–Guérin (BCG) and “Mycobacterium indicus pranii” (MIP). These particles were characterized for their size, stability and release profile. Mice were immunized with liquid aerosol or dry powder aerosol (DPA) alginate encapsulated mycobacterium particles and their in-vitro recall response and infection with mycobacterium H37Rv were investigated. Results It was found that the DPA of alginate encapsulated mycobacterium particles invoked superior immune response and provided higher protection in mice than the liquid aerosol. The BCG encapsulated in alginate particles (BEAP) and MIP encapsulated in alginate particles (MEAP) were engulfed by bone marrow dendritic cells (BMDCs) and co-localized with lysosome. The MEAP/BEAP activated BMDCs exhibited higher chemotaxis movement and had enhanced ability of antigen presentation to T cells. The in-vitro recall response of BEAP/MEAP immunized mice when compared in terms of proliferation index and Interferon gamma (IFN-gamma) released by splenocytes and mediastinal lymph node cells was found to be higher than mice immunized by liquid aerosol of BCG/MIP. Finally, different groups of immunized mice were infected with M. tb H37Rv and after 16 weeks the Colony forming units (CFUs) in lung and spleen estimated. The bacilli burden in the BEAP/MEAP immunized mice was significantly less than the respective liquid aerosol immunized mice and the histopathology of BEAP/MEAP immunized mice lungs showed very little damage. Conclusions These inhale-able vaccines formulation of alginate coated live mycobacterium are more immunogenic as compared to the aerosol of bacilli and they provide better protection in mice when infected with H37Rv. Electronic supplementary material The online version of this article (10.1186/s12879-019-4157-2) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Jadhav M, Khan T, Bhavsar C, Momin M, Omri A. Novel therapeutic approaches for targeting TB and HIV reservoirs prevailing in lungs. Expert Opin Drug Deliv 2019; 16:687-699. [PMID: 31111766 DOI: 10.1080/17425247.2019.1621287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Coinfection with Mycobacterium tuberculosis is the leading cause of death in HIV positive patients. In 2017, about 0.3 million HIV positive people died of tuberculosis. There is high load of mycobacteria and HIV in the lungs and eradication of the same is vital for patient survival. AREAS COVERED This review focuses on the pathogenesis of HIV-TB coinfection and the current management approaches of this coinfection. It presents a detailed discussion of current investigations in novel drug delivery systems for effective targeting of HIV-TB lung reservoirs, especially via pulmonary drug delivery. Additionally, emphasis is given to the need of HIV-TB cotargeting, an unmet need in management of HIV-TB coinfection. EXPERT OPINION To achieve the goal of complete eradication of HIV-TB reservoirs in lungs requires focused research strategies to be undertaken in the area of pulmonary delivery systems. These endeavors could eventually lead to better patient compliance and improved treatment outcomes. The treatment regimen of HIV-TB coinfection is associated with a major drawback of low therapeutic concentration of drugs in lungs. Nanotechnology provides an excellent platform for delivery of anti-TB and anti-HIV drugs via the pulmonary route thereby serving as a viable and effective means of managing the mycobacterial and HIV reservoirs in the lungs.
Collapse
Affiliation(s)
- Mrunal Jadhav
- a Department of pharmaceutical chemistry and QA , SVKM's Dr. Bhanuben nanavati college of pharmacy , Mumbai , India
| | - Tabassum Khan
- a Department of pharmaceutical chemistry and QA , SVKM's Dr. Bhanuben nanavati college of pharmacy , Mumbai , India
| | - Chintan Bhavsar
- a Department of pharmaceutical chemistry and QA , SVKM's Dr. Bhanuben nanavati college of pharmacy , Mumbai , India
| | - Munira Momin
- a Department of pharmaceutical chemistry and QA , SVKM's Dr. Bhanuben nanavati college of pharmacy , Mumbai , India
| | - Abdelwahab Omri
- b Department of chemistry & biochemistry , Laurentian university , Sudbury , ON , Canada
| |
Collapse
|
14
|
High dose dry powder inhalers to overcome the challenges of tuberculosis treatment. Int J Pharm 2018; 550:398-417. [PMID: 30179703 DOI: 10.1016/j.ijpharm.2018.08.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is a major global health burden. The emergence of the human immunodeficiency virus (HIV) epidemic and drug resistance has complicated global TB control. Pulmonary delivery of drugs using dry powder inhalers (DPI) is an emerging approach to treat TB. In comparison with the conventional pulmonary delivery for asthma and chronic obstructive pulmonary disease (COPD), TB requires high dose delivery to the lung. However, high dose delivery depends on the successful design of the inhaler device and the formulation of highly aerosolizable powders. Particle engineering techniques play an important role in the development of high dose dry powder formulations. This review focuses on the development of high dose dry powder formulations for TB treatment with background information on the challenges of the current treatment of TB and the potential for pulmonary delivery. Particle engineering techniques with a particular focus on the spray drying and a summary of the developed dry powder formulations using different techniques are also discussed.
Collapse
|
15
|
Kukut Hatipoglu M, Hickey AJ, Garcia-Contreras L. Pharmacokinetics and pharmacodynamics of high doses of inhaled dry powder drugs. Int J Pharm 2018; 549:306-316. [PMID: 30077761 DOI: 10.1016/j.ijpharm.2018.07.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/17/2018] [Accepted: 07/22/2018] [Indexed: 12/13/2022]
Abstract
For many years, administration of drugs by inhalation has been the mainstay treatment for obstructive respiratory disorders such as asthma and chronic obstructive pulmonary disease. Antibiotics and other drugs have been administered for decades as aerosols to treat other pulmonary disease in a clinical setting, but it was until the early 1980's that colistin was formally marketed as a solution for nebulization in Europe (Colomycin, Pharmax, Bexley). The solubility of other drugs and the size of the dose required to achieve therapeutic concentrations at the site of action, made treatment times long and difficult to be performed at home. High dose dry powder delivery is a potentially effective way to deliver low potency drugs such as antibiotics. There are three major barriers to achieving the desired pharmacodynamic effect with these compounds: aerosol delivery, lung deposition and clearance. The powder formulation and device technology influence aerosol generation and may influence the size of the dose that can be achieved by inhalation in one puff. The site of deposition in the lungs is dictated by mechanisms of deposition which are influenced by the aerosol properties, particularly aerodynamic particle size distribution and the anatomy and physiology of the lungs. Finally, mechanisms of clearance dictate the local and systemic disposition of the drug, which in turn affects its pharmacokinetics and ultimately the pharmacodynamic effect and efficacy of treatment. Each of these factors will be considered and the implications for antimicrobial agent delivery as a high dose delivery example will be given.
Collapse
Affiliation(s)
- Manolya Kukut Hatipoglu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
16
|
Patil TS, Deshpande AS. Nanostructured lipid carriers-based drug delivery for treating various lung diseases: A State‐of‐the‐Art Review. Int J Pharm 2018; 547:209-225. [DOI: 10.1016/j.ijpharm.2018.05.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023]
|
17
|
Thuboy B, Kellermann T, Castel S, Norman J, Joubert A, Garcia-Prats AJ, Hesseling AC, Wiesner L. The determination of capreomycin in human plasma by LC-MS/MS using ion-pairing chromatography and solid-phase extraction. Biomed Chromatogr 2018; 32:e4269. [PMID: 29726023 DOI: 10.1002/bmc.4269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 11/06/2022]
Abstract
A bioanalytical method was developed and validated for the quantification of capreomycin (Cm) analogs, Cm IA and Cm IB, in human plasma. This implemented ion-pairing solid phase extraction, followed by ion-pairing high-performance liquid chromatography, with tandem mass spectrometry detection. Chromatographic separation was achieved using a Discovery C18 , 5 μm, 4.6 × 50 mm analytical column. An isocratic mobile phase consisting of water and acetonitrile with 0.1% formic acid and 4mm heptafluorobutyric acid (80:20; v/v) was used at a flow-rate of 500 μL/min. An AB Sciex API 3000 mass spectrometer at unit resolution, in multiple reaction monitoring mode, was used for detection. Electrospray ionization was used for ion production. The method was successfully validated for the range 469-30,000 ng/mL for Cm IA and for Cm IB, with cefotaxime as the internal standard. The within- and between-day precision determinations for Cm IA and IB, expressed as the percentage coefficient of variation, were < 20.0% at the lower limit of quantification (LLOQ) and < 8.2% at all other test concentrations. Recovery of both analogs was > 72.3% and reproducible at the low, medium and high end of the calibration range. No significant matrix effects were observed for the analyte. The assay performed well when applied to clinical samples generated from children in a clinical multidrug resistant tuberculosis research study in South Africa.
Collapse
Affiliation(s)
- Blessings Thuboy
- Pharmacy Department, College of Medicine, University of Malawi, Blantyre, Malawi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Tracy Kellermann
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Sandra Castel
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Jennifer Norman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Anton Joubert
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Anthony J Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
18
|
Patil TS, Deshpande AS, Deshpande S, Shende P. Targeting pulmonary tuberculosis using nanocarrier-based dry powder inhalation: current status and futuristic need. J Drug Target 2018; 27:12-27. [DOI: 10.1080/1061186x.2018.1455842] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Tulshidas S. Patil
- School of Pharmacy & Technology Management, SVKM’s NMIMS, Shirpur, Maharashtra, India
| | - Ashwini S. Deshpande
- School of Pharmacy & Technology Management, SVKM’s NMIMS, Shirpur, Maharashtra, India
| | - Shirish Deshpande
- School of Pharmacy & Technology Management, SVKM’s NMIMS, Shirpur, Maharashtra, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, Maharashtra, India
| |
Collapse
|
19
|
Foreman TW, Veatch AV, LoBato DN, Didier PJ, Doyle-Meyers LA, Russell-Lodrigue KE, Lackner AA, Kousoulas KG, Khader SA, Kaushal D, Mehra S. Nonpathologic Infection of Macaques by an Attenuated Mycobacterial Vaccine Is Not Reactivated in the Setting of HIV Co-Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2811-2820. [PMID: 28935575 PMCID: PMC5718104 DOI: 10.1016/j.ajpath.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022]
Abstract
Failure to replace Bacille Calmette-Guerin vaccines with efficacious anti-tuberculosis (TB) vaccines have prompted outside-the-box thinking, including pulmonary vaccination to elicit local immunity. Inhalational MtbΔsigH, a stress-response-attenuated strain, protected against lethal TB in macaques. While live mycobacterial vaccines show promising efficacy, HIV co-infection and the resulting immunodeficiency prompts safety concerns about their use. We assessed the persistence and safety of MtbΔsigH, delivered directly to the lungs, in the setting of HIV co-infection. Macaques were aerosol-vaccinated with ΔsigH and subsequently challenged with SIVmac239. Bronchoalveolar lavage and tissues were sampled for mycobacterial persistence, pathology, and immune correlates. Only 35% and 3.5% of lung samples were positive for live bacilli and granulomas, respectively. Our results therefore suggest that the nonpathologic infection of macaque lungs by ΔsigH was not reactivated by simian immunodeficiency virus, despite high viral levels and massive ablation of pulmonary CD4+ T cells. Protective pulmonary responses were retained, including vaccine-induced bronchus-associated lymphoid tissue and CD8+ effector memory T cells. Despite acute simian immunodeficiency virus infection, all animals remained asymptomatic of pulmonary TB. These findings highlight the efficacy of mucosal vaccination via this attenuated strain and will guide its further development to potentially combat TB in HIV-endemic areas. Our results also suggest that a lack of pulmonary pathology is a key correlate of the safety of live mycobacterial vaccines.
Collapse
Affiliation(s)
- Taylor W Foreman
- Tulane National Primate Research Center, Covington, Louisiana; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ashley V Veatch
- Tulane National Primate Research Center, Covington, Louisiana
| | - Denae N LoBato
- Tulane National Primate Research Center, Covington, Louisiana
| | - Peter J Didier
- Tulane National Primate Research Center, Covington, Louisiana
| | | | | | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, Louisiana; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Konstantin G Kousoulas
- Center for Biomedical Research Excellence, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana; Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana.
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, Louisiana; Center for Biomedical Research Excellence, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana; Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana.
| |
Collapse
|
20
|
Dry powder inhaler for pulmonary drug delivery: human respiratory system, approved products and therapeutic equivalence guideline. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0359-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Sommerfeld Ross S, Gharse S, Sanchez L, Fiegel J. Dry powder aerosols to co-deliver antibiotics and nutrient dispersion compounds for enhanced bacterial biofilm eradication. Int J Pharm 2017; 531:14-23. [PMID: 28826725 DOI: 10.1016/j.ijpharm.2017.08.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/20/2017] [Accepted: 08/02/2017] [Indexed: 02/01/2023]
Abstract
The purpose of this study was to formulate a dry powder for inhalation containing a combination treatment for eradication of Pseudomonas aeruginosa bacterial biofilms. Dry powders containing an antibiotic (ciprofloxacin hydrochloride, CH) and nutrient dispersion compound (glutamic acid, GA) at a ratio determined to eliminate the biofilms were generated by spray drying. Leucine was added to the spray dried formulation to aid powder flowability. A central composite design of experiments was performed to determine the effects of solution and processing parameters on powder yield and aerodynamic properties. Combinations of CH and GA eradicated bacterial biofilms at lower antibiotic concentrations compared to CH alone. Spray dried powders were produced with yields up to 43% and mass mean aerodynamic diameters (MMAD) in the respirable range. Powder yield was primarily affected by variables that determine cyclone efficiency, i.e. atomizer and solution flow rates and solution concentration; while MMAD was mainly determined by solution concentration. Fine particle fractions (FPF)<4.46μm and <2.82μm of the powders ranged from 56 to 70% and 35 to 46%, respectively. This study demonstrates that dry powder aerosols containing high concentrations of a combination treatment effective against P. aeruginosa biofilms could be developed with high yield, aerodynamic properties appropriate for inhalation, and no loss of potency.
Collapse
Affiliation(s)
- S Sommerfeld Ross
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA, 52242, USA
| | - S Gharse
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA, 52242, USA
| | - L Sanchez
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - J Fiegel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA, 52242, USA; Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
22
|
Giovagnoli S, Schoubben A, Ricci M. The long and winding road to inhaled TB therapy: not only the bug’s fault. Drug Dev Ind Pharm 2017; 43:347-363. [DOI: 10.1080/03639045.2016.1272119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Aurelie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
23
|
Lee HJ, Kang JH, Lee HG, Kim DW, Rhee YS, Kim JY, Park ES, Park CW. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:4017-4030. [PMID: 28008226 PMCID: PMC5167478 DOI: 10.2147/dddt.s120356] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others (P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well fitted into the Higuchi and zero-order models, respectively.
Collapse
Affiliation(s)
- Hyo-Jung Lee
- College of Pharmacy, Chungbuk National University
| | - Ji-Hyun Kang
- College of Pharmacy, Chungbuk National University
| | - Hong-Goo Lee
- College of Pharmacy, Chungbuk National University
| | - Dong-Wook Kim
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju
| | - Yun-Seok Rhee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju
| | - Ju-Young Kim
- College of Pharmacy, Woosuk University, Wanju-gun
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | | |
Collapse
|
24
|
Parumasivam T, Chang RYK, Abdelghany S, Ye TT, Britton WJ, Chan HK. Dry powder inhalable formulations for anti-tubercular therapy. Adv Drug Deliv Rev 2016; 102:83-101. [PMID: 27212477 DOI: 10.1016/j.addr.2016.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB) is an intracellular infectious disease caused by the airborne bacterium, Mycobacterium tuberculosis. Despite considerable research efforts, the treatment of TB continues to be a great challenge in part due to the requirement of prolonged therapy with multiple high-dose drugs and associated side effects. The delivery of pharmacological agents directly to the respiratory system, following the natural route of infection, represents a logical therapeutic approach for treatment or vaccination against TB. Pulmonary delivery is non-invasive, avoids first-pass metabolism in the liver and enables targeting of therapeutic agents to the infection site. Inhaled delivery also potentially reduces the dose requirement and the accompanying side effects. Dry powder is a stable formulation of drug that can be stored without refrigeration compared to liquids and suspensions. The dry powder inhalers are easy to use and suitable for high-dose formulations. This review focuses on the current innovations of inhalable dry powder formulations of drug and vaccine delivery for TB, including the powder production method, preclinical and clinical evaluations of inhaled dry powder over the last decade. Finally, the risks associated with pulmonary therapy are addressed. A novel dry powder formulation with high percentages of respirable particles coupled with a cost effective inhaler device is an appealing platform for TB drug delivery.
Collapse
Affiliation(s)
- Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Sharif Abdelghany
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Jordan, Amman 1192, Jordan
| | - Tian Tian Ye
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Warwick John Britton
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, NSW 2006, Australia; Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
25
|
Durham PG, Young EF, Braunstein MS, Welch JT, Hickey AJ. A dry powder combination of pyrazinoic acid and its n-propyl ester for aerosol administration to animals. Int J Pharm 2016; 514:384-391. [PMID: 27130363 DOI: 10.1016/j.ijpharm.2016.04.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 11/18/2022]
Abstract
Combining the advantage of higher efficacy due to local pulmonary administration of pyrazinoic acid (POA) and potent effect of pyrazinoic acid ester (PAE) delivered as an aerosol would aid in tuberculosis therapy. A combination spray dried dry powder, composed of POA, PAE (n-propyl POA), maltodextrin and leucine, was prepared for aerosol delivery to animals. Solid-state characteristics of morphology (scanning electron microscopy) crystallinity (X-ray powder diffraction), thermal properties (thermogravimetric analysis and differential scanning calorimetry) and moisture content (Karl Fisher) were evaluated. Particle size distributions, by volume (laser diffraction) for the dispersed powder and by mass (inertial impaction) were determined. Efficient delivery of the powder to a nose only animal exposure chamber employed a novel rotating brush/micro-fan apparatus. Spherical, crystalline particles were prepared. The volume median diameter, ∼1.5μm, was smaller than the mass median aerodynamic diameter, ∼3.0μm, indicating modest aggregation. Drug content variations were observed across the particle size distribution and may be explained by PAE evaporative losses. Delivery to the nose-only exposure chamber indicated that boluses could be administered at approximately 3min intervals to avoid aerosol accumulation and effect uniform dose delivery with successive doses suitable for future pharmacokinetic and pharmacodynamic studies.
Collapse
Affiliation(s)
- P G Durham
- RTI International, Research Triangle Park, NC, USA.
| | - E F Young
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill Chapel Hill, NC, USA.
| | - M S Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill Chapel Hill, NC, USA.
| | - J T Welch
- Department of Chemistry, University at Albany-SUNY, Albany, NY, USA.
| | - A J Hickey
- RTI International, Research Triangle Park, NC, USA.
| |
Collapse
|
26
|
Arora S, Kappl M, Haghi M, Young PM, Traini D, Jain S. An investigation of surface properties, local elastic modulus and interaction with simulated pulmonary surfactant of surface modified inhalable voriconazole dry powders using atomic force microscopy. RSC Adv 2016. [DOI: 10.1039/c6ra01154c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
l-Leucine modified voriconazole spray dried micropartcles.
Collapse
Affiliation(s)
- Sumit Arora
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Michael Kappl
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Mehra Haghi
- Respiratory Technology
- Woolcock Institute of Medical Research and Discipline of Pharmacology
- Sydney Medical School
- The University of Sydney
- Australia
| | - Paul M. Young
- Respiratory Technology
- Woolcock Institute of Medical Research and Discipline of Pharmacology
- Sydney Medical School
- The University of Sydney
- Australia
| | - Daniela Traini
- Respiratory Technology
- Woolcock Institute of Medical Research and Discipline of Pharmacology
- Sydney Medical School
- The University of Sydney
- Australia
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| |
Collapse
|
27
|
Arora S, Haghi M, Young PM, Kappl M, Traini D, Jain S. Highly respirable dry powder inhalable formulation of voriconazole with enhanced pulmonary bioavailability. Expert Opin Drug Deliv 2015; 13:183-93. [DOI: 10.1517/17425247.2016.1114603] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Inhaled drug treatment for tuberculosis: Past progress and future prospects. J Control Release 2015; 240:127-134. [PMID: 26596254 DOI: 10.1016/j.jconrel.2015.11.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023]
Abstract
Since the 1990s the rising incidence of multiple drug resistant TB, particularly in the context of human immunodeficiency virus co-infected patients, has threatened global TB control. At that time funding agencies began to support formal investigation of aerosol therapy which until then had been the subject of case reports of individual investigators. Over the last decade, proponents of aerosol therapy have increased in number within the TB research community as the incidence of multiple and extremely drug resistant TB has increased dramatically around the world. Aerosol therapy offers the potential to deliver drug at target concentrations directly into the lungs, use the alveolar-capillary interface to achieve systemic levels, while reducing the risk of systemic toxicity seen with parentally administered doses. In addition, there are insufficient new drugs in the pipeline to anticipate the appearance of a new regimen in time to assure future control of drug resistance. Consequently, alternative strategies are critical to achieving global TB control, and inhaled therapies should be considered as one such strategy.
Collapse
|
29
|
Durham PG, Zhang Y, German N, Mortensen N, Dhillon J, Mitchison DA, Fourie PB, Hickey AJ. Spray Dried Aerosol Particles of Pyrazinoic Acid Salts for Tuberculosis Therapy. Mol Pharm 2015; 12:2574-81. [DOI: 10.1021/acs.molpharmaceut.5b00118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P. G. Durham
- RTI International, Research Triangle
Park, North Carolina 27709, United States
| | - Y. Zhang
- RTI International, Research Triangle
Park, North Carolina 27709, United States
| | - N. German
- RTI International, Research Triangle
Park, North Carolina 27709, United States
| | - N. Mortensen
- RTI International, Research Triangle
Park, North Carolina 27709, United States
| | - J. Dhillon
- St George’s Hospital, University of London, London SW17 0QT, U.K
| | - D. A. Mitchison
- St George’s Hospital, University of London, London SW17 0QT, U.K
| | - P. B. Fourie
- Department of Medical Microbiology, University of Pretoria, Hatfield 0028, South Africa
| | - A. J. Hickey
- RTI International, Research Triangle
Park, North Carolina 27709, United States
| |
Collapse
|
30
|
Cambronero-Rojas A, Torres-Vergara P, Godoy R, von Plessing C, Sepúlveda J, Gómez-Gaete C. Capreomycin oleate microparticles for intramuscular administration: Preparation, in vitro release and preliminary in vivo evaluation. J Control Release 2015; 209:229-37. [DOI: 10.1016/j.jconrel.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 04/24/2015] [Accepted: 05/03/2015] [Indexed: 01/24/2023]
|
31
|
Zhou QT, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev 2015; 85:83-99. [PMID: 25451137 DOI: 10.1016/j.addr.2014.10.022] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 11/16/2022]
Abstract
Respiratory infections represent a major global health problem. They are often treated by parenteral administrations of antimicrobials. Unfortunately, systemic therapies of high-dose antimicrobials can lead to severe adverse effects and this calls for a need to develop inhaled formulations that enable targeted drug delivery to the airways with minimal systemic drug exposure. Recent technological advances facilitate the development of inhaled anti-microbial therapies. The newer mesh nebulisers have achieved minimal drug residue, higher aerosolisation efficiencies and rapid administration compared to traditional jet nebulisers. Novel particle engineering and intelligent device design also make dry powder inhalers appealing for the delivery of high-dose antibiotics. In view of the fact that no new antibiotic entities against multi-drug resistant bacteria have come close to commercialisation, advanced formulation strategies are in high demand for combating respiratory 'super bugs'.
Collapse
Affiliation(s)
- Qi Tony Zhou
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sharon Shui Yee Leung
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zhi Hui Loh
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
32
|
Pham DD, Fattal E, Tsapis N. Pulmonary drug delivery systems for tuberculosis treatment. Int J Pharm 2014; 478:517-29. [PMID: 25499020 DOI: 10.1016/j.ijpharm.2014.12.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023]
Abstract
Tuberculosis (TB) remains a major global health problem as it is the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus (HIV). Conventional treatments fail either because of poor patient compliance to the drug regimen or due to the emergence of multidrug-resistant tuberculosis. The aim of this review is to give an update on the information available on tuberculosis, its pathogenesis and current antitubercular chemotherapies. Direct lung delivery of anti-TB drugs using pulmonary delivery systems is then reviewed since it appears as an interesting strategy to improve first and second line drugs. A particular focus is place on research performed on inhalable dry powder formulations of antitubercular drugs to target alveolar macrophages where the bacteria develop. Numerous studies show that anti-TB drugs can be incorporated into liposomes, microparticles or nanoparticles which can be delivered as dry powders to the deep lungs for instantaneous, targeted and/or controlled release. Treatments of infected animals show a significant reduction of the number of viable bacteria as well as a decrease in tissue damage. These new formulations appear as interesting alternatives to deliver directly drugs to the lungs and favor efficient TB treatment.
Collapse
Affiliation(s)
- Dinh-Duy Pham
- Univ Paris-Sud Institut Galien Paris-Sud, CNRS UMR 8612, LabEx LERMIT, Châtenay-Malabry, France; University of Medicine and Pharmacy, Faculty of Pharmacy, Pharmaceutics Department, 41-43 Dinh Tien Hoang, District 1, Ho Chi Minh City, Viet Nam; Ton Duc Thang University, Faculty of Applied Science, Division of Pharmacotechnology and Biopharmacy, Ho Chi Minh City, Viet Nam.
| | - Elias Fattal
- Univ Paris-Sud Institut Galien Paris-Sud, CNRS UMR 8612, LabEx LERMIT, Châtenay-Malabry, France
| | - Nicolas Tsapis
- Univ Paris-Sud Institut Galien Paris-Sud, CNRS UMR 8612, LabEx LERMIT, Châtenay-Malabry, France.
| |
Collapse
|
33
|
Kaewjan K, Srichana T. Nano spray-dried pyrazinamide-l-leucine dry powders, physical properties and feasibility used as dry powder aerosols. Pharm Dev Technol 2014; 21:68-75. [DOI: 10.3109/10837450.2014.971373] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Hoppentocht M, Hoste C, Hagedoorn P, Frijlink H, de Boer A. In vitro evaluation of the DP-4M PennCentury™ insufflator. Eur J Pharm Biopharm 2014; 88:153-9. [DOI: 10.1016/j.ejpb.2014.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 11/24/2022]
|
35
|
Controlled delivery of inhaled therapeutic agents. J Control Release 2014; 190:182-8. [DOI: 10.1016/j.jconrel.2014.05.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 05/28/2014] [Indexed: 01/17/2023]
|
36
|
Mortensen NP, Durham P, Hickey AJ. The role of particle physico-chemical properties in pulmonary drug delivery for tuberculosis therapy. J Microencapsul 2014; 31:785-95. [DOI: 10.3109/02652048.2014.932029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Hoppentocht M, Hagedoorn P, Frijlink H, de Boer A. Developments and strategies for inhaled antibiotic drugs in tuberculosis therapy: A critical evaluation. Eur J Pharm Biopharm 2014; 86:23-30. [DOI: 10.1016/j.ejpb.2013.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 01/17/2023]
|
38
|
Chan JGY, Tyne AS, Pang A, Chan HK, Young PM, Britton WJ, Duke CC, Traini D. A Rifapentine-Containing Inhaled Triple Antibiotic Formulation for Rapid Treatment of Tubercular Infection. Pharm Res 2013; 31:1239-53. [DOI: 10.1007/s11095-013-1245-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/20/2013] [Indexed: 10/26/2022]
|
39
|
Hickey AJ, Misra A, Fourie PB. Dry Powder Antibiotic Aerosol Product Development: Inhaled Therapy for Tuberculosis. J Pharm Sci 2013; 102:3900-7. [DOI: 10.1002/jps.23705] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 07/24/2013] [Indexed: 11/12/2022]
|
40
|
Giovagnoli S, Marenzoni ML, Nocchetti M, Santi C, Blasi P, Schoubben A, Ricci M. Synthesis, characterization and in vitro extracellular and intracellular activity against Mycobacterium tuberculosis infection of new second-line antitubercular drug-palladium complexes. ACTA ACUST UNITED AC 2013; 66:106-21. [PMID: 24341950 DOI: 10.1111/jphp.12162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/16/2013] [Indexed: 02/01/2023]
Abstract
OBJECTIVES The aim of this work was to characterize novel palladium (Pd) complexes with second-line antitubercular drugs, namely capreomycin (C), kanamycin (K) and ofloxacin (Ofx), and to address the in vitro extracellular and intracellular activity against Mycobacterium tuberculosis infection. METHODS Synthesis reaction kinetics and complex properties were assessed. Kf was calculated from the transition state quasi-equilibrium approximation and Arrhenius plot. The complexes were characterized for qualitative solubility, stoichiometry, powder size and morphology, element analysis, and thermal behaviour. Structural analyses were performed by Fourier transform infrared spectroscopy and nuclear magnetic resonance. Activity was evaluated against H37Ra M. tuberculosis strain and in infected THP-1 cells, and compared with that of the parent drugs. KEY FINDINGS The complexes showed log Kf of 6 for CPd and OfxPd, and 10 for KPd indicating good stability. Stoichiometry of 1:1, 2: 3 and 1:3 resulted for OfxPd, KPd, and CPd. OfxPd structure matched that in literature, while K and C had more complex structures with possible multiple coexisting species. The complexes had extracellular activity comparable with drugs and an improved efficacy against intracellular infection of M. tuberculosis. CONCLUSIONS The novel anti-tuberculosis (TB) complexes had promising properties, and extracellular and intracellular activity, which makes them potential tools for intracellular targeting of pulmonary TB.
Collapse
|
41
|
Capreomycin supergenerics for pulmonary tuberculosis treatment: Preparation, in vitro, and in vivo characterization. Eur J Pharm Biopharm 2013; 83:388-95. [DOI: 10.1016/j.ejpb.2012.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 12/14/2022]
|
42
|
Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: a new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother 2013; 57:2613-9. [PMID: 23529740 DOI: 10.1128/aac.02346-12] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) threatens global TB control. The lengthy treatment includes one of the injectable drugs kanamycin, amikacin, and capreomycin, usually for the first 6 months. These drugs have potentially serious toxicities, and when given as intramuscular injections, dosing can be painful. Advances in particulate drug delivery have led to the formulation of capreomycin as the first antituberculosis drug available as a microparticle dry powder for inhalation and clinical study. Delivery by aerosol may result in successful treatment with lower doses. Here we report a phase I, single-dose, dose-escalating study aimed at demonstrating safety and tolerability in healthy subjects and measuring pharmacokinetic (PK) parameters. Twenty healthy adults (n = 5 per group) were recruited to self-administer a single dose of inhaled dry powder capreomycin (25-mg, 75-mg, 150-mg, or 300-mg nominal dose) using a simple, handheld delivery device. Inhalations were well tolerated by all subjects. The most common adverse event was mild to moderate transient cough, in five subjects. There were no changes in lung function, audiometry, or laboratory parameters. Capreomycin was rapidly absorbed after inhalation. Systemic concentrations were detected in each dose group within 20 min. Peak and mean plasma concentrations of capreomycin were dose proportional. Serum concentrations exceeded 2 μg/ml (MIC for Mycobacterium tuberculosis) following the highest dose; the half-life (t1/2) was 4.8 ± 1.0 h. A novel inhaled microparticle dry powder formulation of capreomycin was well tolerated. A single 300-mg dose rapidly achieved serum drug concentrations above the MIC for Mycobacterium tuberculosis, suggesting the potential of inhaled therapy as part of an MDR-TB treatment regimen.
Collapse
|
43
|
Chan JGY, Chan HK, Prestidge CA, Denman JA, Young PM, Traini D. A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. Eur J Pharm Biopharm 2013; 83:285-92. [DOI: 10.1016/j.ejpb.2012.08.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/18/2012] [Accepted: 08/10/2012] [Indexed: 01/24/2023]
|
44
|
Stegemann S, Kopp S, Borchard G, Shah V, Senel S, Dubey R, Urbanetz N, Cittero M, Schoubben A, Hippchen C, Cade D, Fuglsang A, Morais J, Borgström L, Farshi F, Seyfang KH, Hermann R, van de Putte A, Klebovich I, Hincal A. Developing and advancing dry powder inhalation towards enhanced therapeutics. Eur J Pharm Sci 2013; 48:181-94. [DOI: 10.1016/j.ejps.2012.10.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 10/22/2012] [Accepted: 10/26/2012] [Indexed: 01/04/2023]
|
45
|
Hanif SNM, Garcia-Contreras L. Pharmaceutical aerosols for the treatment and prevention of tuberculosis. Front Cell Infect Microbiol 2012; 2:118. [PMID: 22973562 PMCID: PMC3435512 DOI: 10.3389/fcimb.2012.00118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/23/2012] [Indexed: 01/13/2023] Open
Abstract
Historically, pharmaceutical aerosols have been employed for the treatment of obstructive airway diseases, such as asthma and chronic obstructive pulmonary disease, but in the past decades their use has been expanded to treat lung infections associated with cystic fibrosis and other respiratory diseases. Tuberculosis (TB) is acquired after inhalation of aerosol droplets containing the bacilli from the cough of infected individuals. Even though TB affects other organs, the lungs are the primary site of infection, which makes the pulmonary route an ideal alternative route to administer vaccines or drug treatments. Optimization of formulations and delivery systems for anti-TB vaccines and drugs, as well as the proper selection of the animal model to evaluate those is of paramount importance if novel vaccines or drug treatments are to be successful. Pharmaceutical aerosols for patient use are generated from metered dose inhalers, nebulizers, and dry powder inhalers (DPIs). In addition to the advantages of providing more efficient delivery of the drug, low cost, and portability, pharmaceutical dry powder aerosols are more stable than inhalable liquid dosage forms and do not require refrigeration. Methods to manufacture dry powders in respirable sizes include micronization, spray drying, and other proprietary technologies. Inhalable dry powders are characterized in terms of their drug content, particle size, and dispersibility to ensure deposition in the appropriate lung region and effective aerosolization from the device. These methods will be illustrated as they were applied for the manufacture and characterization of powders containing anti-tubercular agents and vaccines for pulmonary administration. The influence of formulation, selection of animal model, method of aerosol generation, and administration on the efficacy demonstrated in a given study will be illustrated by the evaluation of pharmaceutical aerosols of anti-TB drugs and vaccines in guinea pigs by our group.
Collapse
Affiliation(s)
- Shumaila N M Hanif
- Department of Pharmaceutical Sciences, Collage of Pharmacy, University of Oklahoma Health Sciences Center Oklahoma City, OK, USA
| | | |
Collapse
|
46
|
Garcia-Contreras L, Muttil P, Fallon JK, Kabadi M, Gerety R, Hickey AJ. Pharmacokinetics of sequential doses of capreomycin powder for inhalation in guinea pigs. Antimicrob Agents Chemother 2012; 56:2612-8. [PMID: 22330920 PMCID: PMC3346614 DOI: 10.1128/aac.06145-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/01/2012] [Indexed: 11/20/2022] Open
Abstract
The global control of tuberculosis (TB) is at risk by the spread of multidrug-resistant TB (MDR TB). Treatment of MDR TB is lengthy and involves injected drugs, such as capreomycin, that have severe side effects. It was previously reported that a single daily dose of inhaled capreomycin had a positive effect on the bacterial burden of TB-infected guinea pigs. The modest effect observed was possibly due to a dose that resulted in insufficient time of exposure to therapeutic systemic and local levels of the drug. In order to determine the length of time that systemic and local drug concentrations are above therapeutic levels during the treatment period, the present study investigated the disposition of capreomycin powders after sequential pulmonary administration of doses of 20 mg/kg of body weight. Capreomycin concentrations in bronchoalveolar lavage fluid and lung tissue of animals receiving a series of one, two, or three doses of capreomycin inhalable powder were significantly higher (50- to 100-fold) at all time points than plasma concentrations at the same time points or those observed in animals receiving capreomycin solution by intramuscular (i.m.) injection (10- to 100-fold higher). Notably, at the end of each dosing period, capreomycin concentrations in the lungs were approximately 100-fold higher than those in plasma and severalfold higher than the MIC, suggesting that sufficient capreomycin remains in the lung environment to kill Mycobacterium tuberculosis. No accumulation of capreomycin powder was detected in the lungs after 3 pulmonary doses. These results indicate that the systemic disposition of capreomycin after inhalation is the same as when injected i.m. with the advantage that higher drug concentrations are present at all times in the lungs, the primary site of infection.
Collapse
Affiliation(s)
- L. Garcia-Contreras
- Division of Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Pavan Muttil
- Division of Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- College of Pharmacy, The University of New Mexico, Albuquerque, New Mexico, USA
| | - John K. Fallon
- Division of Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Anthony J. Hickey
- Division of Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Medicine in Need, Cambridge, Massachusetts, USA
- RTI, Research Triangle Park, North Carolina, USA
| |
Collapse
|
47
|
Abstract
The emergence of multidrug-resistant tuberculosis (MDR-TB) has led to a renewed interest in the use of second-line antibiotic agents. Unfortunately, there are currently dearths of information, data, and computational models that can be used to help design rational regimens for administration of these drugs. To help fill this knowledge gap, an exploratory physiologically based pharmacokinetic (PBPK) model, supported by targeted experimental data, was developed to predict the absorption, distribution, metabolism, and excretion (ADME) of the second-line agent capreomycin, a cyclic peptide antibiotic often grouped with the aminoglycoside antibiotics. To account for interindividual variability, Bayesian inference and Monte Carlo methods were used for model calibration, validation, and testing. Along with the predictive PBPK model, the first for an antituberculosis agent, this study provides estimates of various key pharmacokinetic parameter distributions and supports a hypothesized mechanism for capreomycin transport into the kidney.
Collapse
|
48
|
Cholo MC, Steel HC, Fourie PB, Germishuizen WA, Anderson R. Clofazimine: current status and future prospects. J Antimicrob Chemother 2011; 67:290-8. [PMID: 22020137 DOI: 10.1093/jac/dkr444] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clofazimine, a lipophilic riminophenazine antibiotic, possesses both antimycobacterial and anti-inflammatory activities. However, its efficacy has been demonstrated only in the treatment of leprosy, not in human tuberculosis, despite the fact that this agent is impressively active in vitro against multidrug-resistant strains of Mycobacterium tuberculosis. Recent insights into novel targets and mechanisms of antimicrobial and anti-inflammatory activity coupled with the acquisition of innovative drug delivery technologies have, however, rekindled interest in clofazimine as a potential therapy for multidrug- and extensively multidrug-resistant tuberculosis in particular, as well as several autoimmune diseases. The primary objective of this review is to critically evaluate these recent developments and to assess their potential impact on improving the therapeutic efficacy and versatility of clofazimine.
Collapse
Affiliation(s)
- Moloko C Cholo
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | | | | | | | | |
Collapse
|
49
|
El-Gendy N, Pornputtapitak W, Berkland C. Nanoparticle agglomerates of fluticasone propionate in combination with albuterol sulfate as dry powder aerosols. Eur J Pharm Sci 2011; 44:522-33. [PMID: 21964203 DOI: 10.1016/j.ejps.2011.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
Particle engineering strategies remain at the forefront of aerosol research for localized treatment of lung diseases and represent an alternative for systemic drug therapy. With the hastily growing popularity and complexity of inhalation therapy, there is a rising demand for tailor-made inhalable drug particles capable of affording the most proficient delivery to the lungs and the most advantageous therapeutic outcomes. To address this formulation demand, nanoparticle agglomeration was used to develop aerosols of the asthma therapeutics, fluticasone or albuterol. In addition, a combination aerosol was formed by drying agglomerates of fluticasone nanoparticles in the presence of albuterol in solution. Powders of the single drug nanoparticle agglomerates or of the combined therapeutics possessed desirable aerodynamic properties for inhalation. Powders were efficiently aerosolized (∼75% deposition determined by cascade impaction) with high fine particle fraction and rapid dissolution. Nanoparticle agglomeration offers a unique approach to obtain high performance aerosols from combinations of asthma therapeutics.
Collapse
Affiliation(s)
- Nashwa El-Gendy
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, United States
| | | | | |
Collapse
|
50
|
Kaialy W, Martin GP, Larhrib H, Ticehurst MD, Kolosionek E, Nokhodchi A. The influence of physical properties and morphology of crystallised lactose on delivery of salbutamol sulphate from dry powder inhalers. Colloids Surf B Biointerfaces 2011; 89:29-39. [PMID: 21962946 DOI: 10.1016/j.colsurfb.2011.08.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/18/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
The aim of this work was to investigate the mechanistic evaluation of physicochemical properties of new engineered lactose on aerosolisation performance of salbutamol sulphate (SS) delivered from dry powder inhaler (DPI). Different crystallised lactose particles were obtained from binary mixtures of butanol:acetone. The sieved fractions (63-90 μm) of crystallised lactose were characterised in terms of size, shape, flowability, true density and aerosolisation performance (using multiple twin stage impinger (MSLI), Aerolizer(®) inhaler device, and salbutamol sulphate as a model drug). Compared to commercial lactose, crystallised lactose particles were less elongated, covered with fine lactose particles, and had a rougher surface morphology. The crystallised lactose powders had a considerably lower bulk and tap density and poorer flow when compared to commercial lactose. Engineered carrier with better flow showed improved drug content homogeneity, reduced amounts of drug "deposited" on the inhaler device and throat, and a smaller drug aerodynamic diameter upon inhalation. Aerodynamic diameter of salbutamol sulphate increased as lactose aerodynamic diameter decreased (linear, R(2)=0.9191) and/or as fine particle lactose content increased (linear, R(2)=0.8653). Improved drug aerosolisation performance in the case of crystallised lactose particles was attributed to lower drug-carrier adhesion forces due to a rougher surface and higher fine particle content. In conclusion, this work proved that using binary combinations of solvents in crystallisation medium is vital in modification of the physicochemical and micromeritic properties of carriers to achieve a desirable aerosolisation performance from DPI formulations. Among all lactose samples, lactose particles crystallised from pure butanol generated the highest overall DPI formulations desirability.
Collapse
Affiliation(s)
- Waseem Kaialy
- Chemistry and Drug Delivery Group, Medway School of Pharmacy, University of Kent, Kent, UK
| | | | | | | | | | | |
Collapse
|