1
|
Tran P, Park JS. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs. Int J Pharm 2021; 610:121247. [PMID: 34740762 DOI: 10.1016/j.ijpharm.2021.121247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022]
Abstract
Many new chemical entities (NCEs) have been discovered with the development of the pharmaceutical industry. However, the main disadvantage of these drugs is their low aqueous solubility, which results in poor bioavailability, posing a challenge for pharmaceutical scientists in the field of drug development. Solid dispersion (SD) technology is one of the most successful techniques used to resolve these problems. SD has been widely used to improve the solubility and bioavailability of poorly water-soluble drugs using several methods such as melting, supercritical fluid (SCF), solvent evaporation, spray drying, hot-melt extrusion, and freeze-drying. Among them, SCF with carbon dioxide (CO2) has recently attracted great attention owing to its enhanced dissolution and bioavailability with non-toxic, economical, non-polluting, and high-efficiency properties. Compared with the conventional methods using organic solvents in the preparation of the formulation (solvent evaporation method), SCF used CO2 to replace the organic solvent with high pressure to avoid the limitation of solvent residues. The solubility of a substance in CO2 plays an important role in the success of the formulation. In the present review, the various processes involved in SCF technology, application of SCF to prepare SD, and future perspectives of SCF are described.
Collapse
Affiliation(s)
- Phuong Tran
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Kankala RK, Xu PY, Chen BQ, Wang SB, Chen AZ. Supercritical fluid (SCF)-assisted fabrication of carrier-free drugs: An eco-friendly welcome to active pharmaceutical ingredients (APIs). Adv Drug Deliv Rev 2021; 176:113846. [PMID: 34197896 DOI: 10.1016/j.addr.2021.113846] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 02/09/2023]
Abstract
Despite the success in developing various pharmaceutical formulations, most of the active pharmaceutical ingredients (APIs)/drugs, according to the Biopharmaceutics Classification System (BCS), often suffer from various intrinsic limitations of solubility and permeability, substantially hindering their bioavailability in vivo. Regardless of the fact that the availability of different particle fabrication approaches (top-down and bottom-up) towards pharmaceutical manufacturing, the supercritical fluid (SCF) technology has emerged as one of the highly effective substitutes due to the environmentally benign nature and processing convenience, as well as the economically promising character of SCFs. The exceptional features of SCFs have endowed the fabrication of various APIs either solely or in combination with the compatible supramolecular species towards achieving improved drug delivery. Operating such APIs in high-pressure conditions often results in arbitrary-sized particulate forms, ranging from micron-sized to sub-micron/nano-sized particles. Comparatively, these SCF-processed particles offer enhanced tailorable physicochemical and morphological properties (size, shape, and surface), as well as improved performance efficacy (bioavailability and therapy) over the unprocessed APIs. Although the "carrier-based" delivery is practical among diverse delivery systems, the direct fabrication of APIs into suitable particulate forms, referred to as "carrier-free" delivery, has increased attention towards improving the bioavailability and conveying a high payload of the APIs. This review gives a comprehensive emphasis on the SCF-assisted fabrication of diverse APIs towards exploring their great potential in drug delivery. Initially, we discuss various challenges of drug delivery and particle fabrication approaches. Further, different supercritical carbon dioxide (SC-CO2)-based fabrication approaches depending on the character of SCFs are explicitly described, highlighting their advantages and suitability in processing diverse APIs. Then, we provide detailed insights on various processing factors affecting the properties and morphology of SCF-processed APIs and their pharmaceutical applications, emphasizing their performance efficacy when administered through multiple routes of administration. Finally, we summarize this compilation with exciting perspectives based on the lessons learned so far and moving forward in terms of challenges and opportunities in the scale-up and clinical translation of these drugs using this innovative technology.
Collapse
|
3
|
Economidou SN, Pere CPP, Reid A, Uddin MJ, Windmill JF, Lamprou DA, Douroumis D. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:743-755. [DOI: 10.1016/j.msec.2019.04.063] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/21/2019] [Accepted: 04/20/2019] [Indexed: 10/27/2022]
|
4
|
Park HJ, Yoon TJ, Son WS, Lee CJ, Kim SN, Song SU, Lee YW. Precipitation of VEGF from mesenchymal stem cell culture supernatant using the PCA process. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Pere CPP, Economidou SN, Lall G, Ziraud C, Boateng JS, Alexander BD, Lamprou DA, Douroumis D. 3D printed microneedles for insulin skin delivery. Int J Pharm 2018; 544:425-432. [PMID: 29555437 DOI: 10.1016/j.ijpharm.2018.03.031] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/20/2018] [Accepted: 03/15/2018] [Indexed: 01/01/2023]
Abstract
In this study, polymeric microneedle patches were fabricated by stereolithography, a 3D printing technique, for the transdermal delivery of insulin. A biocompatible resin was photopolymerized to build pyramid and cone microneedle designs followed by inkjet print coating of insulin formulations. Trehalose, mannitol and xylitol were used as drug carriers with the aim to preserve insulin integrity and stability but also to facilitate rapid release rates. Circular dichroism and Raman analysis demonstrated that all carriers maintained the native form of insulin, with xylitol presenting the best performance. Franz cell release studies were used for in vitro determination of insulin release rates in porcine skin. Insulin was released rapidly within 30 min irrespectively of the microneedle design. 3D printing was proved an effective technology for the fabrication of biocompatible and scalable microneedle patches.
Collapse
Affiliation(s)
- Cristiane Patricia Pissinato Pere
- Medway School of Pharmacy, University of Kent, Medway Campus, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Sophia N Economidou
- Medway School of Pharmacy, University of Kent, Medway Campus, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Gurprit Lall
- Medway School of Pharmacy, University of Kent, Medway Campus, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Clémentine Ziraud
- Polytech Marseille Filière Matériaux, Luminy Case 925, 13288 Marseille Cedex 09, France
| | - Joshua S Boateng
- Faculty of Engineering & Sciences, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Bruce D Alexander
- Faculty of Engineering & Sciences, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Dimitrios A Lamprou
- Medway School of Pharmacy, University of Kent, Medway Campus, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Dennis Douroumis
- Faculty of Engineering & Sciences, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom.
| |
Collapse
|
6
|
Miyazaki Y, Sugihara H, Nishiura A, Kadota K, Tozuka Y, Takeuchi H. Appropriate selection of an aggregation inhibitor of fine particles used for inhalation prepared by emulsion solvent diffusion. Drug Dev Ind Pharm 2016; 43:30-41. [DOI: 10.1080/03639045.2016.1201099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yuta Miyazaki
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
- Laboratory of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | | | | | - Kazunori Kadota
- Laboratory of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yuichi Tozuka
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
- Laboratory of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Hirofumi Takeuchi
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
7
|
Effect of process parameters on the recrystallization and size control of puerarin using the supercritical fluid antisolvent process. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
8
|
|
9
|
Li D, Liu L, Yu H, Zhai Z, Zhang Y, Guo B, Yang C, Liu B. A molecular simulation study of the protection of insulin bioactive structure by trehalose. J Mol Model 2014; 20:2496. [DOI: 10.1007/s00894-014-2496-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
|
10
|
Bioactive insulin microparticles produced by supercritical fluid assisted atomization with an enhanced mixer. Int J Pharm 2013; 454:174-82. [DOI: 10.1016/j.ijpharm.2013.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/18/2013] [Accepted: 07/02/2013] [Indexed: 11/24/2022]
|
11
|
Oak M, Singh J. Controlled Delivery of Basal Level of insulin From Chitosan–Zinc–Insulin-Complex-Loaded Thermosensitive Copolymer. J Pharm Sci 2012; 101:1079-96. [DOI: 10.1002/jps.22823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/31/2011] [Accepted: 10/28/2011] [Indexed: 11/09/2022]
|
12
|
Yesil-Celiktas O, Senyay D. The Breadth and Intensity of Supercritical Particle Formation Research with an Emphasis on Publication and Patent Disclosures. Ind Eng Chem Res 2010. [DOI: 10.1021/ie100115x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova-Izmir, Turkey
| | - Deniz Senyay
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova-Izmir, Turkey
| |
Collapse
|
13
|
Elshemey WM, Mohammad IA, Elsayed AA. Wide-angle X-ray scattering as a probe for insulin denaturation. Int J Biol Macromol 2010; 46:471-7. [DOI: 10.1016/j.ijbiomac.2010.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
|
14
|
Herrero M, Mendiola JA, Cifuentes A, Ibáñez E. Supercritical fluid extraction: Recent advances and applications. J Chromatogr A 2009; 1217:2495-511. [PMID: 20022016 DOI: 10.1016/j.chroma.2009.12.019] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
Among the different extraction techniques used at analytical and preparative scale, supercritical fluid extraction (SFE) is one of the most used. This review covers the most recent developments of SFE in different fields, such as food science, natural products, by-product recovery, pharmaceutical and environmental sciences, during the period 2007-2009. The revision is focused on the most recent advances and applications in the different areas; among them, it is remarkable the strong impact of SFE to extract high value compounds from food and natural products but also its increasing importance in areas such as heavy metals recovery, enantiomeric resolution or drug delivery systems.
Collapse
Affiliation(s)
- Miguel Herrero
- Instituto de Fermentaciones Industriales (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | |
Collapse
|