1
|
Chalcones: Promising therapeutic agents targeting key players and signaling pathways regulating the hallmarks of cancer. Chem Biol Interact 2023; 369:110297. [PMID: 36496109 DOI: 10.1016/j.cbi.2022.110297] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The need for innovative anticancer treatments with high effectiveness and low toxicity is urgent due to the development of malignancies that are resistant to chemotherapeutic agents and the poor specificity of existing anticancer treatments. Chalcones are 1,3-diaryl-2-propen-1-ones, which are the precursors for flavonoids and isoflavonoids. Chalcones are readily available from a wide range of natural resources and consist of very basic chemical scaffolds. Because the ease with which the synthesis it allows for the production of several chalcone derivatives. Various in-vitro and in-vivo studies indicate that naturally occurring and synthetic chalcone derivatives exhibit promising biological activities against cancer hallmarks such as proliferation, angiogenesis, invasion, metastasis, inflammation, stemness, and regulation of cancer epigenetics. According to their structure and functional groups, chalcones derivatives and their hybrid compounds exert a broad range of biological activities through targeting key elements and signaling molecules relevant to cancer progression. This review will provide valuable insights into the latest updates of chalcone groups as anticancer agents and extensively discuss their underlying molecular mechanisms of action.
Collapse
|
2
|
Briest F, Koziolek EJ, Albrecht J, Schmidt F, Bernsen MR, Haeck J, Kühl AA, Sedding D, Hartung T, Exner S, Welzel M, Fischer C, Grötzinger C, Brenner W, Baum RP, Grabowski P. Does the proteasome inhibitor bortezomib sensitize to DNA-damaging therapy in gastroenteropancreatic neuroendocrine neoplasms? - A preclinical assessment in vitro and in vivo. Neoplasia 2020; 23:80-98. [PMID: 33246310 PMCID: PMC7701025 DOI: 10.1016/j.neo.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Well-differentiated gastroenteropancreatic neuroendocrine neoplasms are rare tumors with a slow proliferation. They are virtually resistant to many DNA-damaging therapeutic approaches, such as chemo- and external beam therapy, which might be overcome by DNA damage inhibition induced by proteasome inhibitors such as bortezomib. METHODS AND RESULTS In this study, we assessed several combined treatment modalities in vitro and in vivo. By cell-based functional analyses, in a 3D in ovo and an orthotopic mouse model, we demonstrated sensitizing effects of bortezomib combined with cisplatin, radiation and peptide receptor radionuclide therapy (PRRT). By gene expression profiling and western blot, we explored the underlying mechanisms, which resulted in an impaired DNA damage repair. Therapy-induced DNA damage triggered extrinsic proapoptotic signaling as well as the induction of cell cycle arrest, leading to a decreased vital tumor volume and altered tissue composition shown by magnetic resonance imaging and F-18-FDG-PET in vivo, however with no significant additional benefit related to PRRT alone. CONCLUSIONS We demonstrated that bortezomib has short-term sensitizing effects when combined with DNA damaging therapy by interfering with DNA repair in vitro and in ovo. Nevertheless, due to high tumor heterogeneity after PRRT in long-term observations, we were not able to prove a therapeutic advantage of bortezomib-combined PRRT in an in vivo mouse model.
Collapse
Affiliation(s)
- Franziska Briest
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität (FU) Berlin, Berlin, Germany.
| | - Eva J Koziolek
- German Cancer Consortium (DKTK), Germany; Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Albrecht
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Germany
| | - Fränze Schmidt
- German Cancer Consortium (DKTK), Germany; Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute for Biochemistry and Biotechnology, Martin-Luther-University (MLU) Halle-Wittenberg, Halle (Saale), Germany
| | | | - Joost Haeck
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Anja A Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Dagmar Sedding
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Institute of Biology, Humboldt-Universität (HU) Berlin, Berlin, Germany
| | - Teresa Hartung
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Samantha Exner
- Department of Hepatology and Gastroenterology and Molecular Cancer Research Center, Tumor Targeting Laboratory, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martina Welzel
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Christian Fischer
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Carsten Grötzinger
- German Cancer Consortium (DKTK), Germany; Department of Hepatology and Gastroenterology and Molecular Cancer Research Center, Tumor Targeting Laboratory, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Winfried Brenner
- German Cancer Consortium (DKTK), Germany; Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Germany; Berlin Experimental Radionuclide Imaging Center (BERIC), Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Richard P Baum
- Department of Nuclear Medicine, Zentralklinik Bad Berka GmbH, Bad Berka, Germany; CURANOSTICUM Wiesbaden-Frankfurt, DKD Helios Clinic, Wiesbaden, Germany
| | - Patricia Grabowski
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Gastroenterology and Endocrinology, Zentralklinik Bad Berka GmbH, Bad Berka, Germany; Department of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Gao F, Huang G, Xiao J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med Res Rev 2020; 40:2049-2084. [PMID: 32525247 DOI: 10.1002/med.21698] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents have been the major challenges in the control and treatment of cancer, making an urgent need to develop novel anticancer agents with high efficacy. Chalcones, precursors of flavonoids and isoflavonoids, exhibit structural heterogeneity and can act on various drug targets. Chalcones which demonstrated potential in vitro and in vivo activity against both drug-susceptible and drug-resistant cancers, are useful templates for the development of novel anticancer agents. Hybridization of chalcone moiety with other anticancer pharmacophores could provide the hybrids which have the potential to overcome drug resistance and improve the specificity, so it represents a promising strategy to develop novel anticancer agents. This review emphasizes the development, the mechanisms of action as well as structure-activity relationships of chalcone hybrids with potential therapeutic application for many cancers in recent 10 years.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
4
|
de Oliveira EJT, Pessatto LR, de Freitas RON, Pelizaro BI, Rabacow APM, Vani JM, Monreal ACD, Mantovani MS, de Azevedo RB, Antoniolli-Silva ACMB, da Silva Gomes R, Oliveira RJ. New Bis copper complex ((Z) -4 - ((4-chlorophenyl) amino) -4-oxobut-2-enoyl) oxy): Cytotoxicity in 4T1 cells and their toxicogenic potential in Swiss mice. Toxicol Appl Pharmacol 2018; 356:127-138. [DOI: 10.1016/j.taap.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/25/2022]
|
5
|
Adaramoye OA, Erguen B, Nitzsche B, Höpfner M, Jung K, Rabien A. Antioxidant and antiproliferative potentials of methanol extract of Xylopia aethiopica (Dunal) A. Rich in PC-3 and LNCaP cells. J Basic Clin Physiol Pharmacol 2018; 28:403-412. [PMID: 28599387 DOI: 10.1515/jbcpp-2016-0156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/11/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Our previous studies showed that fruit methanol extract from Xylopia aethiopica (MEXA) exhibited antiproliferative activity in human cervical cancer cells via the induction of apoptosis. The present study was designed to assess the antiproliferative, antiangiogenic and antioxidant effects of MEXA on prostate cancer (PCa) cells (PC-3 and LNCaP). METHODS PC-3 and LNCaP cells were cultured and treated with MEXA (10, 50 and 100 μg/mL). The sodium 3'-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-methoxy-6-nitro) benzene sulfonic acid hydrate (XTT) and lactate dehydrogenase (LDH) assays were used to evaluate cell viability and cytotoxicity, respectively. DNA fragmentation was determined by cell death detection ELISA plus, and angiogenesis was assessed by chicken chorioallantoic membrane (CAM) assay. The antioxidant activities of MEXA were determined by DPPH and hydroxyl (OH) radicals' scavenging methods as well as through the inhibition of lipid peroxidation (LPO) in rats' liver homogenate. RESULTS MEXA at 100, 250 and 500 μg/mL scavenged DPPH by 48%, 62%, 70% and OH radical by 39%, 58%, 67%, respectively. MEXA significantly (p<0.05) inhibited LPO in a concentration-dependent manner. In addition, MEXA had antiproliferative effects on PC-3 and LNCaP with IC50 of 62.1 and 73.6 μg/mL, respectively, at 96 h. The LDH assay showed that MEXA had low toxicity in vitro at its IC50 values. The extent of DNA fragmentation by MEXA showed higher values in PC-3 and LNCaP, suggesting the possible induction of apoptosis. In contrast, MEXA did not affect the network of vessels in CAM, thus lacking anti-angiogenic property. CONCLUSIONS These findings suggest that MEXA induces antiproliferative activity in PCa cells through a mechanism that involves apoptosis. Therefore, MEXA may be a potential therapeutic agent for PCa.
Collapse
|
6
|
Antiangiogenic Effect of Flavonoids and Chalcones: An Update. Int J Mol Sci 2017; 19:ijms19010027. [PMID: 29271940 PMCID: PMC5795978 DOI: 10.3390/ijms19010027] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
Chalcones are precursors of flavonoid biosynthesis in plants. Both flavonoids and chalcones are intensively investigated because of a large spectrum of their biological activities. Among others, anticancer and antiangiogenic effects account for the research interest of these substances. Because of an essential role in cancer growth and metastasis, angiogenesis is considered to be a promising target for cancer treatment. Currently used antiangiogenic agents are either synthetic compounds or monoclonal antibodies. However, there are some limitations of their use including toxicity and high price, making the search for new antiangiogenic compounds very attractive. Nowadays it is well known that several natural compounds may modulate basic steps in angiogenesis. A lot of studies, also from our lab, showed that phytochemicals, including polyphenols, are potent modulators of angiogenesis. This review paper is focused on the antiangiogenic effect of flavonoids and chalcones and discusses possible underlying cellular and molecular mechanisms.
Collapse
|
7
|
Virk JK, Bansal P, Gupta V, Kumar S, Singh R, Rawal RK. First report of isolation of maleamic acid from natural source Polygonatum cirrhifolium—A potential chemical marker for identification. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1402185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jaswinder Kaur Virk
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Parveen Bansal
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Vikas Gupta
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Sanjiv Kumar
- Department of AYUSH, National Medicinal Plants Board, New Delhi, India
| | - Ranjit Singh
- CT Institute of Pharmaceutical Sciences, CT Group of Institutes, Jalandhar, Punjab, India
| | - Ravindra Kumar Rawal
- Department of Pharmaceutical Chemistry & Analysis, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
8
|
Adaramoye O, Erguen B, Nitzsche B, Höpfner M, Jung K, Rabien A. Punicalagin, a polyphenol from pomegranate fruit, induces growth inhibition and apoptosis in human PC-3 and LNCaP cells. Chem Biol Interact 2017; 274:100-106. [PMID: 28709945 DOI: 10.1016/j.cbi.2017.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/14/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is an international health problem and search for its effective treatment is in progress. Punicalagin (PN), polyphenol from pomegranate fruit, is known to exhibit potent anticancer activity in lung, breast and cervical cells. However, there is paucity of information on its effect in PCa. This study evaluated anti-proliferative effects of PN and its effects on extrinsic pathway of apoptosis in PCa cells, and angiogenesis in chicken chorioallantoic membrane (CAM). Antioxidant activities of PN were determined by 2,2-diphenyl-1-picryhydrazyl (DPPH) radical scavenging and inhibition of lipid peroxidation (LPO) methods. PCa (PC-3 and LNCaP) and normal prostate (BPH-1) cells were cultured and treated with PN (10, 50 and 100 μM). Cytotoxicity and viability effects of PN were determined by lactate dehydrogenase (LDH) and XTT assays, respectively. Antiangiogenic effects were measured using CAM assay, while apoptosis was assessed by DNA fragmentation, enrichment factor by Cell Death Detection ELISA kit and expressions of caspases-3 and -8. Results showed that PN (10-200 μM) significantly scavenged DPPH and inhibited LPO in a concentration-dependent manner. Furthermore, PN (10-100 μM) concentration-dependently inhibited viability in PC-3 and LNCaP, while viability in BPH-1 was insignificantly affected. PN had low toxicity on cells in vitro at concentrations tested. Also, PN (100 μM) increased enrichment factor in PC-3 (2.34 ± 0.05) and LNCaP (2.31 ± 0.26) relative to control (1.00 ± 0.00). In addition, PN (50 μM) decreased the network of vessels in CAM, suggesting its anti-angiogenic effect. Moreso, PN increased the expressions of caspases-3 and -8 in PC-3. Overall, PN exerts anti-proliferative activity in PCa cells via induction of apoptosis and anti-angiogenic effect.
Collapse
Affiliation(s)
- Oluwatosin Adaramoye
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Drug Metabolism and Toxicology Section, Department of Biochemistry, University of Ibadan, Nigeria.
| | - Bettina Erguen
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute for Urologic Research, Berlin, Germany
| | - Anja Rabien
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute for Urologic Research, Berlin, Germany
| |
Collapse
|
9
|
Chalcone derivatives cause accumulation of colon cancer cells in the G2/M phase and induce apoptosis. Life Sci 2016; 150:32-8. [PMID: 26916824 DOI: 10.1016/j.lfs.2016.02.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 11/22/2022]
Abstract
AIMS Chalcones, naturally occurring open-chain polyphenols abundant in plants, have demonstrated antiproliferative activity in several cancer cell lines. In the present study, the potential anticancer activity of two synthetic analogues named Ch1 and Ch2 in colon cancer cell line was investigated. MAIN METHODS Antiproliferative activities of both synthetic analogues were assessed by Growth Inhibition Assay (MTT) and xCELLigence cell analysis. Apoptosis was assessed by annexin V/PI staining (early stage) or by DNA fragmentation (final stage). To study the cell death mechanism induced by tested substances, we assessed a series of assays including measurements of the caspase 3 activity, membrane mitochondrial potential (MMP) changes, reactive oxygen species (ROS) production by flow cytometry and expression of important apoptosis-related genes by realtime PCR. KEY FINDINGS We found concentration and time-dependent cytotoxicity, inhibition of proliferation of Caco-2 cells after Ch1 and Ch2 treatment in parallel with G2/M phase cell cycle arrest and increased cell proportion in subG0/G1 population with annexin V positivity. We demonstrated that both Ch1 and Ch2 induced caspase-dependent cell death associated with increased ROS production, suppressed Bcl-2 and Bcl-xL and enhanced Bax expression. Treatment of Ch1 also suppressed α-, α1- and β5-tubulins, on the other hand Ch2 only suppressed α-tubulin expression. SIGNIFICANCE Presented chalcones induce apoptosis by intrinsic pathways, and therefore may be an interesting strategy for cancer therapy.
Collapse
|
10
|
Adaramoye O, Erguen B, Oyebode O, Nitzsche B, Höpfner M, Jung K, Rabien A. Antioxidant, antiangiogenic and antiproliferative activities of root methanol extract of Calliandra portoricensis in human prostate cancer cells. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2015; 13:185-93. [PMID: 26006031 DOI: 10.1016/s2095-4964(15)60175-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Prostate cancer (PCa) is a major health concern. Calliandra portoricensis (CP) is traditionally known for its analgesic, anti-ulcerogenic and anticonvulsant properties. However, its antiproliferative properties for PCa still need to be investigated. METHODS Antioxidant activities of CP were determined by 1,1-diphenyl-2-picryhydrazyl (DPPH) and hydroxyl (OH(-)) radicals-scavenging methods. PC-3 and LNCaP (androgen-refractory and androgen-dependent PCa-derived cell lines) were cultured and treated with CP (10, 50 and 100 μg/mL). Effects of CP on cells were determined by cytotoxicity assay (lactate dehydrogenase, LDH) and viability assay (sodium 3'-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-methoxy-6-nitro) benzene sulfonic acid hydrate, XTT). DNA fragmentation was detected by cell death detection enzyme-linked immunosorbent assay plus kit. CP was tested as an inhibitor of angiogenesis using chicken chorioallantoic membrane (CAM) assay. RESULTS CP showed significant scavenging of DPPH and OH(-) radicals. CP significantly (P<0.05) inhibited lipid peroxidation in a dose-dependent manner. Precisely, CP (10, 50 and 100 μg/mL) inhibited PC-3 and LNCaP growth by 7%, 74% and 92%, and 27%, 73%, and 85% respectively at 48 h. CP had low toxicity in vitro at its half inhibitory concentration dose. Detection of cell death induced by CP at 50 μg/mL showed higher enrichment factors in LNCaP (7.38±0.95) than PC-3 (3.48±0.55). Also, treatment with CP (50 μg/mL) significantly reduced network of vessels in CAM, suggesting its antiangiogenic potential. CONCLUSION Calliandra portoricensis elicited antioxidant, antiangiogenic and antiproliferative effects in PCa cells.
Collapse
Affiliation(s)
| | - Bettina Erguen
- Department of Urology, University Hospital Charite, 10117 Berlinermany
| | - Olubukola Oyebode
- Membrane Biochemistry and Biophysics Section, Department of Biochemistry, University of Ibadan, Ibadan 20005, Nigeria
| | - Bianca Nitzsche
- Institute of Physiology, University Hospital Charite, 10117 Berlin, Germany
| | - Michael Höpfner
- Institute of Physiology, University Hospital Charite, 10117 Berlin, Germany
| | - Klaus Jung
- Department of Urology, University Hospital Charite, 10117 Berlinermany
| | - Anja Rabien
- Department of Urology, University Hospital Charite, 10117 Berlinermany
| |
Collapse
|
11
|
Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem 2015; 98:69-114. [PMID: 26005917 DOI: 10.1016/j.ejmech.2015.05.004] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/16/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.
Collapse
Affiliation(s)
- Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| | - Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
12
|
Lobo G, Monasterios M, Rodrigues J, Gamboa N, Capparelli MV, Martínez-Cuevas J, Lein M, Jung K, Abramjuk C, Charris J. Synthesis, crystal structure and effect of indeno[1,2-b]indole derivatives on prostate cancer in vitro. Potential effect against MMP-9. Eur J Med Chem 2015; 96:281-95. [DOI: 10.1016/j.ejmech.2015.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
|
13
|
Jiang H, Yin M, Li Y, Liu B, Zhao J, Wu W. An efficient synthesis of 2,5-diimino-furans via Pd-catalyzed cyclization of bromoacrylamides and isocyanides. Chem Commun (Camb) 2014; 50:2037-9. [DOI: 10.1039/c3cc47724j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Ismail B, Ghezali L, Gueye R, Limami Y, Pouget C, Leger DY, Martin F, Beneytout JL, Duroux JL, Diab-Assaf M, Fagnere C, Liagre B. Novel methylsulfonyl chalcones as potential antiproliferative drugs for human prostate cancer: involvement of the intrinsic pathway of apoptosis. Int J Oncol 2013; 43:1160-8. [PMID: 23877542 DOI: 10.3892/ijo.2013.2024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/03/2013] [Indexed: 11/06/2022] Open
Abstract
Limited success has been achieved in extending the survival of patients with metastatic and hormone-refractory prostate cancer (HRPC). There is a strong need for novel agents in the treatment and prevention of HRPC. In the present study, the apoptotic mechanism of action of RG003 (2'-hydroxy-4-methylsulfonylchalcone) and RG005 (4'-chloro-2'-hydroxy-4-methylsulfonylchalcone) in association with intracellular signalling pathways was investigated in the hormone-independent prostate carcinoma cells PC-3 and DU145. We showed that these compounds induced apoptosis through the intrinsic pathway but not through the extrinsic one. We showed that synthetic chalcones induced an activation of caspase-9 but not caspase-8 in PC-3 cells. Even if both chalcones induced apoptosis in PC-3 cells, a dominant effect of RG003 treatment was observed resulting in a disruption of ∆ψm, caspase-9 and caspase-3 activation, PARP cleavage and DNA fragmentation. Furthermore, in regard to our results, it is clear that the simultaneous inhibition of Akt and NF-κB signalling can significantly contribute to the anticancer effects of RG003 and RG005 in PC-3 prostate cancer cells. NF-κB inhibition was correlated with the reduction of COX-2 expression and induction of apoptosis. Our results clearly indicate for the first time that RG003 and RG005 exert their potent anti‑proliferative and pro-apoptotic effects through the modulation of Akt/NF-κB/COX-2 signal transduction pathways in PC-3 prostate cancer cells with a dominant effect for RG003.
Collapse
Affiliation(s)
- Bassel Ismail
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, GDR CNRS 3049, Limoges, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cytotoxic 3,4,5-trimethoxychalcones as mitotic arresters and cell migration inhibitors. Eur J Med Chem 2013; 63:501-10. [PMID: 23524161 DOI: 10.1016/j.ejmech.2013.02.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 12/28/2022]
Abstract
Based on classical colchicine site ligands and a computational model of the colchicine binding site on beta tubulin, two classes of chalcone derivatives were designed, synthesized and evaluated for inhibition of tubulin assembly and toxicity in human cancer cell lines. Docking studies suggested that the chalcone scaffold could fit the colchicine site on tubulin in an orientation similar to that of the natural product. In particular, a 3,4,5-trimethoxyphenyl ring adjacent to the carbonyl group appeared to benefit the ligand-tubulin interaction, occupying the same subcavity as the corresponding moiety in colchicine. Consistent with modeling predictions, several 3,4,5-trimethoxychalcones showed improved cytotoxicity to murine acute lymphoblastic leukemia cells compared with a previously described parent compound, and inhibited tubulin assembly in vitro as potently as colchicine. The most potent chalcones inhibited the growth of human leukemia cell lines at nanomolar concentrations, caused microtubule destabilization and mitotic arrest in human cervical cancer cells, and inhibited human breast cancer cell migration in scratch wound and Boyden chamber assays.
Collapse
|
16
|
Rodrigues JR, Charris J, Camacho J, Barazarte A, Gamboa N, Nitzsche B, Höpfner M, Lein M, Jung K, Abramjuk C. N′-Formyl-2-(5-nitrothiophen-2-yl)benzothiazole-6-carbohydrazide as a potential anti-tumour agent for prostate cancer in experimental studies. J Pharm Pharmacol 2012; 65:411-22. [DOI: 10.1111/j.2042-7158.2012.01607.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 09/21/2012] [Indexed: 12/22/2022]
Abstract
Abstract
Objectives
Benzothiazoles (BZTs) represent organic compounds with different biological actions. In this study we aimed to investigate ten newly synthesized BZT derivatives as potential anti-tumour agents against prostate cancer in vitro and in vivo.
Methods
The cytotoxic effect of these compounds was screened on the human prostate cancer cell lines PC-3 and LNCaP. The most effective compound, N′-formyl-2-(5-nitrothiophen-2-yl)benzothiazole-6-carbohydrazide, was further characterized regarding its dose- and time-dependent effects on cell viability and proliferation (XTT test) as well as on adhesion and spreading (real-time cell analyzer xCelligence), migration (scratch-wound repair assay) and invasion (Boyden chamber) of the cells. This BZT derivative was also tested as an inhibitor of angiogenesis (chicken chorioallantoic membrane assay), clonogenic activity (soft agar) and matrix metalloproteinase 9 (gelatin zymography).
Key findings
N′-Formyl-2-(5-nitrothiophen-2-yl)benzothiazole-6-carbohydrazide significantly inhibited all tested properties of the prostate cancer cell lines and showed low toxic in vitro and in vivo effects. The in vitro anti-tumour activity of this compound was confirmed by the in vivo effects on PC-3 xenografts in nude mice. Tumour growth was decreased in treated compared with untreated mice.
Conclusions
These results suggest the potential capacity of BZTs and in particular N′-formyl-2-(5-nitrothiophen-2-yl)benzothiazole-6-carbohydrazide as anti-tumour agents for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Juan R Rodrigues
- Department of Urology, University Hospital Charité, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
| | - Jaime Charris
- Laboratory of Organic Synthesis and Laboratory of Biochemistry, School of Pharmacy, Central University of Venezuela, Caracas, Venezuela
| | - José Camacho
- Laboratory of Organic Synthesis and Laboratory of Biochemistry, School of Pharmacy, Central University of Venezuela, Caracas, Venezuela
| | - Arthur Barazarte
- Laboratory of Organic Synthesis and Laboratory of Biochemistry, School of Pharmacy, Central University of Venezuela, Caracas, Venezuela
| | - Neira Gamboa
- Laboratory of Organic Synthesis and Laboratory of Biochemistry, School of Pharmacy, Central University of Venezuela, Caracas, Venezuela
| | - Bianca Nitzsche
- Berlin Institute for Urologic Research, Berlin, Germany
- Department of Physiology, University Hospital Charité, Berlin, Germany
| | - Michael Höpfner
- Department of Physiology, University Hospital Charité, Berlin, Germany
| | - Michael Lein
- Department of Urology, University Hospital Charité, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
- Department of Urology, University Teaching Hospital, Offenbach, Germany
| | - Klaus Jung
- Department of Urology, University Hospital Charité, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
| | - Claudia Abramjuk
- Department of Urology, University Hospital Charité, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
- Department of Experimental Medicine, University Hospital Charité, Berlin, Germany
| |
Collapse
|
17
|
Rodrigues JR, Ferrer R, Gamboa N, Charris J, Antunes F. Potential antitumour and pro-oxidative effects of (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate (QNACR). J Enzyme Inhib Med Chem 2012; 28:1300-6. [DOI: 10.3109/14756366.2012.736385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Juan R. Rodrigues
- Laboratory of Biochemistry of Oxidants and Antioxidants, Centre and Department of Chemistry and Biochemistry, School of Sciences, University of Lisbon,
Lisbon, Portugal
| | - Rosa Ferrer
- Laboratory of Organic Synthesis and Biochemistry, School of Pharmacy, Central University of Venezuela,
Los Chaguaramos, Caracas, Venezuela
| | - Neira Gamboa
- Laboratory of Organic Synthesis and Biochemistry, School of Pharmacy, Central University of Venezuela,
Los Chaguaramos, Caracas, Venezuela
| | - Jaime Charris
- Laboratory of Organic Synthesis and Biochemistry, School of Pharmacy, Central University of Venezuela,
Los Chaguaramos, Caracas, Venezuela
| | - Fernando Antunes
- Laboratory of Biochemistry of Oxidants and Antioxidants, Centre and Department of Chemistry and Biochemistry, School of Sciences, University of Lisbon,
Lisbon, Portugal
| |
Collapse
|
18
|
Domínguez JN, Gamboa de Domínguez N, Rodrigues J, Acosta ME, Caraballo N, León C. Synthesis and antimalarial activity of urenyl Bis-chalcone in vitro and in vivo. J Enzyme Inhib Med Chem 2012; 28:1267-73. [DOI: 10.3109/14756366.2012.733383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- José N. Domínguez
- Laboratorio de Síntesis Orgánica, Facultad de Farmacia, Universidad Central de Venezuela,
Caracas 1051, Venezuela
| | - Neira Gamboa de Domínguez
- Laboratorio de Bioquímica, Facultad de Farmacia, Universidad Central de Venezuela,
Caracas 1051, Venezuela
| | - Juan Rodrigues
- Laboratorio de Bioquímica, Facultad de Farmacia, Universidad Central de Venezuela,
Caracas 1051, Venezuela
| | - María Eugenia Acosta
- Laboratorio de Bioquímica, Facultad de Farmacia, Universidad Central de Venezuela,
Caracas 1051, Venezuela
| | - Noris Caraballo
- Departamento de Biología y Química, Universidad Pedagógica Experimental Libertador, Instituto Pedagógico de Caracas,
Caracas 1020, Venezuela
| | - Caritza León
- Departamento de Biología y Química, Universidad Pedagógica Experimental Libertador, Instituto Pedagógico de Caracas,
Caracas 1020, Venezuela
| |
Collapse
|
19
|
Varinska L, van Wijhe M, Belleri M, Mitola S, Perjesi P, Presta M, Koolwijk P, Ivanova L, Mojzis J. Anti-angiogenic activity of the flavonoid precursor 4-hydroxychalcone. Eur J Pharmacol 2012; 691:125-33. [PMID: 22721615 DOI: 10.1016/j.ejphar.2012.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/23/2012] [Accepted: 06/10/2012] [Indexed: 12/11/2022]
Abstract
Angiogenesis, the growth of new blood vessels, is necessary for cancerous tumors to keep growing and spreading. Suppression of abnormal angiogenesis may provide therapeutic strategies for the treatment of angiogenesis-dependent disorders. In the present study, we describe the in vitro and in vivo anti-angiogenic activities of the flavonoid precursor 4-hydroxychalcone (Q797). This chalcone (22μg/ml) suppressed several steps of angiogenesis, including endothelial cell proliferation, migration and tube formation without showing any signs of cytotoxicity. Moreover, we found a selective effect on activated endothelial cells, in particular with resting endothelial cells and the human epithelial tumor cell lines (HeLa, MCF-7, A549). In addition, Q797 was able to modulate both vascular endothelial growth factor (VEGF)- and basic fibroblast growth factor (FGF)- induced phosphorylation of extracellular signal-regulated kinase (ERK)-1/-2 and Akt kinase. It did not influence the nuclear translocation of p65 subunit of the nuclear factor-κB (NF-κB) when human endothelial cells were stimulated with tumor necrosis factor (TNF)-α. Taken together this indicates that the Q797-mediated inhibition of in vitro angiogenic features of endothelial cells is most likely caused by suppression of growth factor pathways. The potent inhibitory effect of Q797 on bFGF-driven neovascularization was also demonstrated in vivo using the chick chorioallantoic membrane (CAM) assay. In summary, this chalcone could serve as a new leading structure in the discovery of new potent synthetic angiogenesis inhibitors.
Collapse
Affiliation(s)
- Lenka Varinska
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 04011 Kosice, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rabien A, Ergün B, Erbersdobler A, Jung K, Stephan C. RECK overexpression decreases invasive potential in prostate cancer cells. Prostate 2012; 72:948-54. [PMID: 22025325 DOI: 10.1002/pros.21498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 09/15/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND RECK is a tumor suppressor which inhibits metastasis and angiogenesis. Based on RECK expression in prostate cancer tissue and cell lines, our aim was to investigate functional relevance of RECK for prostate carcinoma. METHODS RECK protein levels were determined by Western blotting in the human prostate cell lines BPH-1, DU-145, LNCaP, PC-3, and in tissue of 12 normal/tumor matches of patients after radical prostatectomy. Functional characteristics of DU-145 cells with stable RECK overexpression included proliferation, invasion, regulation of matrix metalloproteinases MMP-2, MMP-9, and MMP-14 measured by zymography (MMP-2 and -9) or commercially available assays. RESULTS RECK was expressed in cell lines and tissue with a significant decrease in malignant tissue (P = 0.002). RECK overexpression caused an up to 80% decrease in invasion for DU-145 cells (P < 0.001) and a decrease of pro-MMP-9 (42%) and of pro-/active MMP-14 (up to 53% of control). Proliferation was not affected by RECK overexpression. CONCLUSIONS The considerable anti-invasive potential of RECK points to new therapeutic possibilities for prostate cancer.
Collapse
Affiliation(s)
- Anja Rabien
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
21
|
Effect of quinolinyl acrylate derivatives on prostate cancer in vitro and in vivo. Invest New Drugs 2011; 30:1426-33. [DOI: 10.1007/s10637-011-9716-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/29/2011] [Indexed: 11/26/2022]
|