1
|
Li Y, Li XM, Wei LS, Ye JF. Advancements in mitochondrial-targeted nanotherapeutics: overcoming biological obstacles and optimizing drug delivery. Front Immunol 2024; 15:1451989. [PMID: 39483479 PMCID: PMC11524880 DOI: 10.3389/fimmu.2024.1451989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
In recent decades, nanotechnology has significantly advanced drug delivery systems, particularly in targeting subcellular organelles, thus opening new avenues for disease treatment. Mitochondria, critical for cellular energy and health, when dysfunctional, contribute to cancer, neurodegenerative diseases, and metabolic disorders. This has propelled the development of nanomedicines aimed at precise mitochondrial targeting to modulate their function, marking a research hotspot. This review delves into the recent advancements in mitochondrial-targeted nanotherapeutics, with a comprehensive focus on targeting strategies, nanocarrier designs, and their therapeutic applications. It emphasizes nanotechnology's role in enhancing drug delivery by overcoming biological barriers and optimizing drug design for specific mitochondrial targeting. Strategies exploiting mitochondrial membrane potential differences and specific targeting ligands improve the delivery and mitochondrial accumulation of nanomedicines. The use of diverse nanocarriers, including liposomes, polymer nanoparticles, and inorganic nanoparticles, tailored for effective mitochondrial targeting, shows promise in anti-tumor and neurodegenerative treatments. The review addresses the challenges and future directions in mitochondrial targeting nanotherapy, highlighting the need for precision, reduced toxicity, and clinical validation. Mitochondrial targeting nanotherapy stands at the forefront of therapeutic strategies, offering innovative treatment perspectives. Ongoing innovation and research are crucial for developing more precise and effective treatment modalities.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Li-si Wei
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Ulger O, Eş I, Proctor CM, Algin O. Stroke studies in large animals: Prospects of mitochondrial transplantation and enhancing efficiency using hydrogels and nanoparticle-assisted delivery. Ageing Res Rev 2024; 100:102469. [PMID: 39191353 DOI: 10.1016/j.arr.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One of the most frequent reasons for mortality and disability today is acute ischemic stroke, which occurs by an abrupt disruption of cerebral circulation. The intricate damage mechanism involves several factors, such as inflammatory response, disturbance of ion balance, loss of energy production, excessive reactive oxygen species and glutamate release, and finally, neuronal death. Stroke research is now carried out using several experimental models and potential therapeutics. Furthermore, studies are being conducted to address the shortcomings of clinical care. A great deal of research is being done on novel pharmacological drugs, mitochondria targeting compounds, and different approaches including brain cooling and new technologies. Still, there are many unanswered questions about disease modeling and treatment strategies. Before these new approaches may be used in therapeutic settings, they must first be tested on large animals, as most of them have been done on rodents. However, there are several limitations to large animal stroke models used for research. In this review, the damage mechanisms in acute ischemic stroke and experimental acute ischemic stroke models are addressed. The current treatment approaches and promising experimental methods such as mitochondrial transplantation, hydrogel-based interventions, and strategies like mitochondria encapsulation and chemical modification, are also examined in this work.
Collapse
Affiliation(s)
- Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara 06010, Turkiye; Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkiye.
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara 06100, Turkiye; Department of Radiology, Medical Faculty, Ankara University, Ankara 06100, Turkiye; National MR Research Center (UMRAM), Bilkent University, Ankara 06800, Turkiye
| |
Collapse
|
3
|
Xu KZ, Xu P, li JJ, Zuo AF, Wang SB, Han F. Predictors and nomogram of in-hospital mortality in sepsis-induced myocardial injury: a retrospective cohort study. BMC Anesthesiol 2023; 23:230. [PMID: 37420185 PMCID: PMC10327384 DOI: 10.1186/s12871-023-02189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Sepsis-induced myocardial injury (SIMI) is a common organ dysfunction and is associated with higher mortality in patients with sepsis. We aim to construct a nomogram prediction model to assess the 28-day mortality in patients with SIMI. . METHOD We retrospectively extracted data from Medical Information Mart for Intensive Care (MIMIC-IV) open-source clinical database. SIMI was defined by Troponin T (higher than the 99th percentile of upper reference limit value) and patients with cardiovascular disease were excluded. A prediction model was constructed in the training cohort by backward stepwise Cox proportional hazards regression model. The concordance index (C-index), area under the receiver operating characteristics curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration plotting and decision-curve analysis (DCA) were used to evaluate the nomogram. RESULTS 1312 patients with sepsis were included in this study and 1037 (79%) of them presented with SIMI. The multivariate Cox regression analysis in all septic patients revealed that SIMI was independently associated with 28-day mortality of septic patients. The risk factors of diabetes, Apache II score, mechanical ventilation, vasoactive support, Troponin T and creatinine were included in the model and a nomogram was constructed based on the model. The C-index, AUC, NRI, IDI, calibration plotting and DCA showed that the performance of the nomogram was better than the single SOFA score and Troponin T. CONCLUSION SIMI is related to the 28-day mortality of septic patients. The nomogram is a well-performed tool to predict accurately the 28-day mortality in patients with SIMI.
Collapse
Affiliation(s)
- Kai-Zhi Xu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, 310000 China
| | - Ping Xu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, 310000 China
| | - Juan-Juan li
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, 310000 China
| | - A-Fang Zuo
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, 310000 China
| | - Shu-Bao Wang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, 310000 China
| | - Fang Han
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, 310000 China
| |
Collapse
|
4
|
Clifford MN, King LJ, Kerimi A, Pereira-Caro MG, Williamson G. Metabolism of phenolics in coffee and plant-based foods by canonical pathways: an assessment of the role of fatty acid β-oxidation to generate biologically-active and -inactive intermediates. Crit Rev Food Sci Nutr 2022; 64:3326-3383. [PMID: 36226718 DOI: 10.1080/10408398.2022.2131730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ω-Phenyl-alkenoic acids are abundant in coffee, fruits, and vegetables. Along with ω-phenyl-alkanoic acids, they are produced from numerous dietary (poly)phenols and aromatic amino acids in vivo. This review addresses how phenyl-ring substitution and flux modulates their gut microbiota and endogenous β-oxidation. 3',5'-Dihydroxy-derivatives (from alkyl-resorcinols, flavanols, proanthocyanidins), and 4'-hydroxy-phenolic acids (from tyrosine, p-coumaric acid, naringenin) are β-oxidation substrates yielding benzoic acids. In contrast, 3',4',5'-tri-substituted-derivatives, 3',4'-dihydroxy-derivatives and 3'-methoxy-4'-hydroxy-derivatives (from coffee, tea, cereals, many fruits and vegetables) are poor β-oxidation substrates with metabolism diverted via gut microbiota dehydroxylation, phenylvalerolactone formation and phase-2 conjugation, possibly a strategy to conserve limited pools of coenzyme A. 4'-Methoxy-derivatives (citrus fruits) or 3',4'-dimethoxy-derivatives (coffee) are susceptible to hepatic "reverse" hydrogenation suggesting incompatibility with enoyl-CoA-hydratase. Gut microbiota-produced 3'-hydroxy-4'-methoxy-derivatives (citrus fruits) and 3'-hydroxy-derivatives (numerous (poly)phenols) are excreted as the phenyl-hydracrylic acid β-oxidation intermediate suggesting incompatibility with hydroxy-acyl-CoA dehydrogenase, albeit with considerable inter-individual variation. Further investigation is required to explain inter-individual variation, factors determining the amino acid to which C6-C3 and C6-C1 metabolites are conjugated, the precise role(s) of l-carnitine, whether glycine might be limiting, and whether phenolic acid-modulation of β-oxidation explains how phenolic acids affect key metabolic conditions, such as fatty liver, carbohydrate metabolism and insulin resistance.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Laurence J King
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
| | - Asimina Kerimi
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Maria Gema Pereira-Caro
- Department of Food Science and Health, Instituto Andaluz de Investigacion y Formacion Agraria Pesquera Alimentaria y de la Produccion Ecologica, Sevilla, Spain
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| |
Collapse
|
5
|
Matter B, Bourne DWA, Kompella UB. A High-Throughput LC-MS/MS Method for the Simultaneous Quantification of Twenty-Seven Drug Molecules in Ocular Tissues. AAPS PharmSciTech 2022; 23:192. [PMID: 35819539 DOI: 10.1208/s12249-022-02333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to develop a validated LC-MS/MS analytical method for the simultaneous analysis of a large cassette containing a wide range of drug substances with positive, negative, or neutral charge and further apply the method to assess octanol partition coefficient and eye tissue recovery of the drug cassette. A twenty-seven-drug cassette (N-in-one) including beta blockers, NSAIDs, and corticosteroids that range from extremely hydrophilic (sotalol) to very hydrophobic (triamcinolone hexacetanide) was used to develop an LC-MS/MS assay using QTrap 4500. An LC-MS/MS method based on gradient elution, with an eighteen-minute run time including equilibration time, was developed and validated for the rapid and simultaneous quantitation of drugs with a wide range of lipophilicities. Scheduled multiple reaction monitoring was used to maximize the scan time for each peak, ensuring sufficient scans. Method validation included lower limit of quantitation (LLOQ) and intra- and inter-day reproducibility. The LLOQ ranged from 0.5 (sotalol) to 40 fmols (dexamethasone) on column with a %RSD < 20%. The method was tested by measuring octanol:water and octanol:buffer (PBS, pH 7.4) partition coefficients and by quantitation of the drug cassette extracted from rabbit aqueous humor and cornea. Measured partition coefficients correlated positively with predicted values (r2=0.5-0.7). Drug recovery was ≥ 79% from aqueous humor and between 61 and 67% on average from cornea. A rapid, sensitive LC-MS/MS method suitable for N-in-one drug delivery screening was developed for simultaneous quantification of twenty-seven drugs in aqueous solutions and eye tissues.
Collapse
Affiliation(s)
- Brock Matter
- Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., C238-V20, Aurora, Colorado, 80045, USA
| | - David W A Bourne
- Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., C238-V20, Aurora, Colorado, 80045, USA
| | - Uday B Kompella
- Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., C238-V20, Aurora, Colorado, 80045, USA.
| |
Collapse
|
6
|
Bulumulla C, Kularatne RN, Catchpole T, Takacs A, Christie A, Gilfoyle A, Nguyen TD, Stefan MC, Csaky KG. Investigating the Effect of Esterification on Retinal Pigment Epithelial Uptake Using Rhodamine B Derivatives. Transl Vis Sci Technol 2020; 9:18. [PMID: 32821515 PMCID: PMC7409196 DOI: 10.1167/tvst.9.6.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/12/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose This study investigated the effects of esterification and increased lipophilicity on cellular penetration, accumulation and retention in ARPE-19-nic cells using ester functionalized rhodamine B dyes. Methods Rhodamine B was esterified to generate four dyes with increasing lipophilicity. Cellular uptake, retention and mitochondrial localization were investigated in vitro using ARPE-19-nic cells using direct intracellular and extracellular and mitochondrial fluorescence quantitation, confocal and high-resolution live cell imaging and co-localization with Mito-GFP. Results Cellular penetrance, mitochondrial accumulation, and retention of the esterified dyes were increased in ARPE-19-nic cells compared with the nonesterified parent dye by direct fluorescence quantitation. Imaging demonstrated intracellular accumulation was confined to mitochondria as confirmed by colocalization with Mito-GFP. Conclusions Esterification is an effective way to increase lipophilicity of a dye to improve cellular penetration of chemical entities. These observations may be key to improving retinal drug delivery for retinal pigment epithelium–based diseases. Translational Relevance Understanding the intracellular distribution of drugs into retinal pigment epithelium cells is a critical component for identifying potential therapies for retinal pigment epithelium–based diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.,Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Karl G Csaky
- Retina Foundation of the Southwest, Dallas, TX, USA
| |
Collapse
|
7
|
Curry L, Almukhtar H, Alahmed J, Roberts R, Smith PA. Simvastatin Inhibits L-Type Ca2+-Channel Activity Through Impairment of Mitochondrial Function. Toxicol Sci 2019; 169:543-552. [DOI: 10.1093/toxsci/kfz068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Liam Curry
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Hani Almukhtar
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jala Alahmed
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard Roberts
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Paul A Smith
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
8
|
Treyer A, Mateus A, Wiśniewski JR, Boriss H, Matsson P, Artursson P. Intracellular Drug Bioavailability: Effect of Neutral Lipids and Phospholipids. Mol Pharm 2018; 15:2224-2233. [DOI: 10.1021/acs.molpharmaceut.8b00064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andrea Treyer
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
| | - André Mateus
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | - Pär Matsson
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
- Science for Life Laboratory Drug Discovery and Development Platform (SciLifelab DDD-P), Uppsala 75123, Sweden
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
9
|
Yang H, Li X, Cai Y, Wang Q, Li W, Liu G, Tang Y. In silico prediction of chemical subcellular localization via multi-classification methods. MEDCHEMCOMM 2017; 8:1225-1234. [PMID: 30108833 PMCID: PMC6072212 DOI: 10.1039/c7md00074j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
Abstract
Chemical subcellular localization is closely related to drug distribution in the body and hence important in drug discovery and design. Although many in vivo and in vitro methods have been developed, in silico methods play key roles in the prediction of chemical subcellular localization due to their low costs and high performance. For that purpose, machine learning-based methods were developed here. At first, 614 unique compounds localized in the lysosome, mitochondria, nucleus and plasma membrane were collected from the literature. 80% of the compounds were used to build the models and the rest as the external validation set. Both fingerprints and molecular descriptors were used to describe the molecules, and six machine learning methods were applied to build the multi-classification models. The performance of the models was measured by 5-fold cross-validation and external validation. We further detected key substructures for each localization and analyzed potential structure-localization relationships, which could be very helpful for molecular design and modification. The key substructures can also be used as features complementary to fingerprints to improve the performance of the models.
Collapse
Affiliation(s)
- Hongbin Yang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China .
| | - Xiao Li
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China .
| | - Yingchun Cai
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China .
| | - Qin Wang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China .
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China .
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China .
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China .
| |
Collapse
|
10
|
Mateus A, Treyer A, Wegler C, Karlgren M, Matsson P, Artursson P. Intracellular drug bioavailability: a new predictor of system dependent drug disposition. Sci Rep 2017; 7:43047. [PMID: 28225057 PMCID: PMC5320532 DOI: 10.1038/srep43047] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/17/2017] [Indexed: 11/26/2022] Open
Abstract
Intracellular drug exposure is influenced by cell- and tissue-dependent expression of drug-transporting proteins and metabolizing enzymes. Here, we introduce the concept of intracellular bioavailability (Fic) as the fraction of extracellular drug available to bind intracellular targets, and we assess how Fic is affected by cellular drug disposition processes. We first investigated the impact of two essential drug transporters separately, one influx transporter (OATP1B1; SLCO1B1) and one efflux transporter (P-gp; ABCB1), in cells overexpressing these proteins. We showed that OATP1B1 increased Fic of its substrates, while P-gp decreased Fic. We then investigated the impact of the concerted action of multiple transporters and metabolizing enzymes in freshly-isolated human hepatocytes in culture configurations with different levels of expression and activity of these proteins. We observed that Fic was up to 35-fold lower in the configuration with high expression of drug-eliminating transporters and enzymes. We conclude that Fic provides a measurement of the net impact of all cellular drug disposition processes on intracellular bioavailable drug levels. Importantly, no prior knowledge of the involved drug distribution pathways is required, allowing for high-throughput determination of drug access to intracellular targets in highly defined cell systems (e.g., single-transporter transfectants) or in complex ones (including primary human cells).
Collapse
Affiliation(s)
- André Mateus
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Andrea Treyer
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden.,Cardiovascular and Metabolic Diseases Innovative Medicines, DMPK, AstraZeneca R&D, Mölndal SE-431 83, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden.,Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Box 580, Uppsala SE-751 23, Sweden.,Science for Life Laboratory Drug Discovery and Development platform (SciLifelab DDD-P), Uppsala University, Uppsala SE-751 23, Sweden
| |
Collapse
|
11
|
Chien HC, Zur AA, Maurer TS, Yee SW, Tolsma J, Jasper P, Scott DO, Giacomini KM. Rapid Method To Determine Intracellular Drug Concentrations in Cellular Uptake Assays: Application to Metformin in Organic Cation Transporter 1-Transfected Human Embryonic Kidney 293 Cells. Drug Metab Dispos 2016; 44:356-64. [PMID: 26700958 PMCID: PMC6047207 DOI: 10.1124/dmd.115.066647] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022] Open
Abstract
Because of the importance of intracellular unbound drug concentrations in the prediction of in vivo concentrations that are determinants of drug efficacy and toxicity, a number of assays have been developed to assess in vitro unbound concentrations of drugs. Here we present a rapid method to determine the intracellular unbound drug concentrations in cultured cells, and we apply the method along with a mechanistic model to predict concentrations of metformin in subcellular compartments of stably transfected human embryonic kidney 293 (HEK293) cells. Intracellular space (ICS) was calculated by subtracting the [(3)H]-inulin distribution volume (extracellular space, ECS) from the [(14)C]-urea distribution volume (total water space, TWS). Values obtained for intracellular space (mean ± S.E.M.; μl/10(6) cells) of monolayers of HEK cells (HEK-empty vector [EV]) and cells overexpressing human organic cation transporter 1 (HEK-OCT1), 1.21± 0.07 and 1.25±0.06, respectively, were used to determine the intracellular metformin concentrations. After incubation of the cells with 5 µM metformin, the intracellular concentrations were 26.4 ± 7.8 μM and 268 ± 11.0 μM, respectively, in HEK-EV and HEK-OCT1. In addition, intracellular metformin concentrations were lower in high K(+) buffer (140 mM KCl) compared with normal K(+) buffer (5.4 mM KCl) in HEK-OCT1 cells (54.8 ± 3.8 μM and 198.1 ± 11.2 μM, respectively; P < 0.05). Our mechanistic model suggests that, depending on the credible range of assumed physiologic values, the positively charged metformin accumulates to particularly high levels in endoplasmic reticulum and/or mitochondria. This method together with the computational model can be used to determine intracellular unbound concentrations and to predict subcellular accumulation of drugs in other complex systems such as primary cells.
Collapse
Affiliation(s)
- Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (H.C.C., A.A.Z., S.W.Y., K.M.G.); Systems Modeling and Simulation (T.S.M.) and Cardiovascular and Metabolic Disease Research Unit (D.O.S.), Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts; RES Group, Inc. (J.T., P.J.) Needham, Massachusetts
| | - Arik A Zur
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (H.C.C., A.A.Z., S.W.Y., K.M.G.); Systems Modeling and Simulation (T.S.M.) and Cardiovascular and Metabolic Disease Research Unit (D.O.S.), Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts; RES Group, Inc. (J.T., P.J.) Needham, Massachusetts
| | - Tristan S Maurer
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (H.C.C., A.A.Z., S.W.Y., K.M.G.); Systems Modeling and Simulation (T.S.M.) and Cardiovascular and Metabolic Disease Research Unit (D.O.S.), Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts; RES Group, Inc. (J.T., P.J.) Needham, Massachusetts
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (H.C.C., A.A.Z., S.W.Y., K.M.G.); Systems Modeling and Simulation (T.S.M.) and Cardiovascular and Metabolic Disease Research Unit (D.O.S.), Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts; RES Group, Inc. (J.T., P.J.) Needham, Massachusetts
| | - John Tolsma
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (H.C.C., A.A.Z., S.W.Y., K.M.G.); Systems Modeling and Simulation (T.S.M.) and Cardiovascular and Metabolic Disease Research Unit (D.O.S.), Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts; RES Group, Inc. (J.T., P.J.) Needham, Massachusetts
| | - Paul Jasper
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (H.C.C., A.A.Z., S.W.Y., K.M.G.); Systems Modeling and Simulation (T.S.M.) and Cardiovascular and Metabolic Disease Research Unit (D.O.S.), Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts; RES Group, Inc. (J.T., P.J.) Needham, Massachusetts
| | - Dennis O Scott
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (H.C.C., A.A.Z., S.W.Y., K.M.G.); Systems Modeling and Simulation (T.S.M.) and Cardiovascular and Metabolic Disease Research Unit (D.O.S.), Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts; RES Group, Inc. (J.T., P.J.) Needham, Massachusetts
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (H.C.C., A.A.Z., S.W.Y., K.M.G.); Systems Modeling and Simulation (T.S.M.) and Cardiovascular and Metabolic Disease Research Unit (D.O.S.), Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts; RES Group, Inc. (J.T., P.J.) Needham, Massachusetts
| |
Collapse
|
12
|
Bhuvaneswar CG, Ruskin JN, Katzman AR, Wood N, Pitman RK. Pilot study of the effect of lipophilic vs. hydrophilic beta-adrenergic blockers being taken at time of intracardiac defibrillator discharge on subsequent PTSD symptoms. Neurobiol Learn Mem 2014; 112:248-52. [PMID: 24389538 DOI: 10.1016/j.nlm.2013.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
A pathophysiological model of posttraumatic stress disorder (PTSD) posits that an overly strong stress response at the time of the traumatic event leads to overconsolidation of the event's memory in part through a central β-adrenergic mechanism. We hypothesized that the presence of a β-blocker in the patient's brain at the time of the traumatic event would reduce the PTSD outcome by blocking this effect. The unpredictable, uncontrollable discharge of an implantable intracardiac defibrillator (ICD) is experienced by most patients as highly stressful, and it has previously been shown to be capable of causing PTSD symptoms. The present pilot study evaluated a convenience sample of 18 male cardiac patients who had been taking either a lipophilic β-blocker (which penetrates the blood-brain barrier) or a hydrophilic β-blocker (which does not) at the time of a discharge of their ICD. The self- report PTSD Checklist-Specific Version quantified 17 PTSD symptoms pertaining to the ICD discharge during the month preceding the evaluation. There was a statistical trend for patients who had been taking a lipophilic β-blocker at the time of the ICD discharge to have (35%) less severe PTSD symptoms than patients who had been taking a hydrophilic β-blocker (one-tailed p=0.07, g=0.64). Further, prospective, randomized, controlled studies are suggested.
Collapse
Affiliation(s)
- Chaya G Bhuvaneswar
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jeremy N Ruskin
- Department of Internal Medicine, Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anna Roglieri Katzman
- Department of Psychiatry, Division of Psychiatric Neuroscience, Massachusetts General Hospital, Boston, MA, United States
| | - Nellie Wood
- Department of Psychiatry, Division of Psychiatric Neuroscience, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Roger K Pitman
- Department of Psychiatry, Division of Psychiatric Neuroscience, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
13
|
Min KA, Zhang X, Yu JY, Rosania GR. Computational approaches to analyse and predict small molecule transport and distribution at cellular and subcellular levels. Biopharm Drug Dispos 2013; 35:15-32. [PMID: 24218242 DOI: 10.1002/bdd.1879] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/15/2013] [Accepted: 11/01/2013] [Indexed: 12/31/2022]
Abstract
Quantitative structure-activity relationship (QSAR) studies and mechanistic mathematical modeling approaches have been independently employed for analysing and predicting the transport and distribution of small molecule chemical agents in living organisms. Both of these computational approaches have been useful for interpreting experiments measuring the transport properties of small molecule chemical agents, in vitro and in vivo. Nevertheless, mechanistic cell-based pharmacokinetic models have been especially useful to guide the design of experiments probing the molecular pathways underlying small molecule transport phenomena. Unlike QSAR models, mechanistic models can be integrated from microscopic to macroscopic levels, to analyse the spatiotemporal dynamics of small molecule chemical agents from intracellular organelles to whole organs, well beyond the experiments and training data sets upon which the models are based. Based on differential equations, mechanistic models can also be integrated with other differential equations-based systems biology models of biochemical networks or signaling pathways. Although the origin and evolution of mathematical modeling approaches aimed at predicting drug transport and distribution has occurred independently from systems biology, we propose that the incorporation of mechanistic cell-based computational models of drug transport and distribution into a systems biology modeling framework is a logical next step for the advancement of systems pharmacology research.
Collapse
Affiliation(s)
- Kyoung Ah Min
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | |
Collapse
|
14
|
Mateus A, Matsson P, Artursson P. Rapid Measurement of Intracellular Unbound Drug Concentrations. Mol Pharm 2013; 10:2467-78. [DOI: 10.1021/mp4000822] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- André Mateus
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Research Institute for Medicines
and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University
of Lisbon, 1649-003 Lisbon, Portugal
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Uppsala University Drug Optimization
and Pharmaceutical Profiling Platform (UDOPP)—a node of the
Chemical Biology Consortium Sweden (CBCS), Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Uppsala University Drug Optimization
and Pharmaceutical Profiling Platform (UDOPP)—a node of the
Chemical Biology Consortium Sweden (CBCS), Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
15
|
Hroudová J, Fišar Z. In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol Lett 2012; 213:345-52. [PMID: 22842584 DOI: 10.1016/j.toxlet.2012.07.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/04/2012] [Accepted: 07/19/2012] [Indexed: 12/11/2022]
Abstract
Mitochondria represent a possible drug target with unexplored therapeutic and toxicological potential. The possibility was suggested that antidepressants, mood stabilizers and other drugs may show some therapeutic and/or toxic effects through their action on mitochondrial functions. There are no sufficient data about the effect of these drugs on mitochondrial respiration in the brain. We investigated the in vitro effects of amitriptyline, fluoxetine, tianeptine, ketamine, lithium, valproate, olanzapine, chlorpromazine and propranolol on mitochondrial respiration in crude mitochondrial fractions of pig brains. Respiration was energized using substrates of complex I or complex II and dose dependent drug-induced changes in mitochondrial respiratory rate were measured by high-resolution respirometry. Antidepressants, but not mood stabilizers, ketamine and propranolol were found to inhibit mitochondrial respiratory rate. The effective dose of antidepressants reaching half the maximal respiratory rate was in the range of 0.07-0.46 mmol/L. Partial inhibition was found for all inhibitors. Differences between individual drugs with similar physicochemical properties indicate selectivity of drug-induced changes in mitochondrial respiratory rate. Our findings suggest that mood stabilizers do not interfere with brain mitochondrial respiration, whereas direct mitochondrial targeting is involved in mechanisms of action of pharmacologically different antidepressants.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| | | |
Collapse
|
16
|
Durazo SA, Kompella UB. Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion 2011; 12:190-201. [PMID: 22138492 DOI: 10.1016/j.mito.2011.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/04/2011] [Accepted: 11/11/2011] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction including oxidative stress and DNA mutations underlies the pathology of various diseases including Alzheimer's disease and diabetes, necessitating the development of mitochondria targeted therapeutic agents. Nanotechnology offers unique tools and materials to target therapeutic agents to mitochondria. As discussed in this paper, a variety of functionalized nanosystems including polymeric and metallic nanoparticles as well as liposomes are more effective than plain drug and non-functionalized nanosystems in delivering therapeutic agents to mitochondria. Although the field is in its infancy, studies to date suggest the superior therapeutic activity of functionalized nanosystems for treating mitochondrial defects.
Collapse
Affiliation(s)
- Shelley A Durazo
- Nanomedicine and Drug Delivery Laboratory, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | |
Collapse
|