1
|
Nielsen RB, Holm R, Pijpers I, Snoeys J, Nielsen UG, Nielsen CU. Oral etoposide and zosuquidar bioavailability in rats: Effect of co-administration and in vitro-in vivo correlation of P-glycoprotein inhibition. Int J Pharm X 2021; 3:100089. [PMID: 34977557 PMCID: PMC8683663 DOI: 10.1016/j.ijpx.2021.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 11/01/2022] Open
Abstract
P-glycoprotein inhibitors, like zosuquidar, have widely been used to study the role of P-glycoprotein in oral absorption. Still, systematic studies on the inhibitor dose-response relationship on intestinal drug permeation are lacking. In the present study, we investigated the effect of 0.79 nM-2.5 μM zosuquidar on etoposide permeability across Caco-2 cell monolayers. We also investigated etoposide pharmacokinetics after oral or IV administration to Sprague Dawley rats with co-administration of 0.063–63 mg/kg zosuquidar, as well as the pharmacokinetics of zosuquidar itself. Oral zosuquidar bioavailability was 2.6–4.2%, while oral etoposide bioavailability was 5.5 ± 0.9%, which increased with increasing zosuquidar doses to 35 ± 5%. The intestinal zosuquidar concentration required to induce a half-maximal increase in bioavailability was estimated to 180 μM. In contrast, the IC50 of zosuquidar on etoposide permeability in vitro was only 5–10 nM, and a substantial in vitro-in vivo discrepancy of at least four orders of magnitude was thereby identified. Overall, the present study provides valuable insights for future formulation development that applies fixed dose combinations of P-glycoprotein inhibitors to increase the absorption of poorly permeable P-glycoprotein substrate drugs.
Collapse
|
2
|
Huarte J, Espuelas S, Martínez-Oharriz C, Irache JM. Nanoparticles from Gantrez-based conjugates for the oral delivery of camptothecin. Int J Pharm X 2021; 3:100104. [PMID: 34825166 PMCID: PMC8604667 DOI: 10.1016/j.ijpx.2021.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
Camptothecin (CPT) exhibits a number of challenges for its oral administration, including a low aqueous solubility, a lactone ring susceptible to hydrolysis, and an affinity to the intestinal P-gp. The aim of this work was to evaluate nanoparticles from Gantrez-based conjugates as carriers for the oral delivery of CPT. For this purpose two different conjugates (G-mPEG and G-HPCD), obtained by the covalent binding of either HP-β-CD or methoxy-PEG (m-PEG) to the polymer backbone of Gantrez™ AN, were synthetized and characterized. Both excipients (m-PEG and HPCD) were selected due to their reported abilities to stabilize the lactone ring of CPT and disturb the effect of intestinal P-gp. The resulting nanoparticles (G-mPEG-NP and G-HPCD-NP) presented a similar size (about 200 nm) and zeta potential (close to −35 mV); although, G-mPEG-NP presented a higher CPT payload than G-HPCD-NP. On the contrary, in rats, nanoparticles based on Gantrez conjugates appeared to be capable of crossing the protective mucus layer and reach the intestinal epithelium, whereas conventional Gantrez nanoparticles displayed a mucoadhesive profile. Finally, the pharmacokinetic study revealed that both formulations were able to enhance the relative oral bioavailability of CPT; although this value was found to be 2.6-times higher for G-mPEG-NP than for G-HPCD-NP.
Collapse
Affiliation(s)
- Judit Huarte
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Socorro Espuelas
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | | | - Juan M Irache
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| |
Collapse
|
3
|
Liu X, Adane E, Tang F, Leggas M. Pharmacokinetic modeling of the blood-stable camptothecin analog AR-67 in two different formulations. Biopharm Drug Dispos 2019; 40:265-275. [PMID: 31292985 DOI: 10.1002/bdd.2199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/17/2019] [Accepted: 07/05/2019] [Indexed: 11/06/2022]
Abstract
AR-67 is a lipophilic camptothecin analog currently under clinical investigation using a Cremophor EL based formulation. However, as potential toxicity limitations exist in the clinical use of Cremophor, an alternative cyclodextrin (SBE-β-CD) based formulation has been proposed. Pharmacokinetic (PK) studies were conducted in mice and the SBE-β-CD based formulation was compared with the Cremophor EL formulation. PK studies were conducted following intravenous or oral administration of AR-67 in either Cremophor or SBE-β-CD formulation in mice. Noncompartmental analysis was used to determine the plasma and tissue drug distribution. A non-linear mixed effects (population) PK model was developed to fit both the oral and intravenous data and to estimate key PK parameters. The effect of formulation was explored as a covariate in the PK model. AR-67 in the SBE-β-CD formulation had similar plasma PK and biodistribution to that in the Cremophor EL formulation. The proposed two-compartment model described the plasma PK of AR-67 in both formulations adequately. AR-67 in the SBE-β-CD formulation exhibited dose linearity following both oral and intravenous administration. Our studies indicate that SBE-β-CD is a viable alternative to Cremophor EL as a pharmaceutical excipient for formulating AR-67.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Eyob Adane
- Department of Pharmacy Practice, College of Pharmacy, Ohio Northern University, Ada, OH, USA
| | - Fei Tang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 323 Bio Pharm Complex, 789 South Limestone St, Lexington, KY, USA
| | - Markos Leggas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 323 Bio Pharm Complex, 789 South Limestone St, Lexington, KY, USA
| |
Collapse
|
4
|
Tang F, Tsakalozou E, Arnold SM, Ng CM, Leggas M. Population pharmacokinetic analysis of AR-67, a lactone stable camptothecin analogue, in cancer patients with solid tumors. Invest New Drugs 2019; 37:1218-1230. [PMID: 30820810 DOI: 10.1007/s10637-019-00744-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/06/2019] [Indexed: 01/11/2023]
Abstract
Background AR-67 is a novel camptothecin analogue at early stages of drug development. The phase 1 clinical trial in cancer patients with solid tumors was completed and a population pharmacokinetic model (POP PK) was developed to facilitate further development of this investigational agent. Methods Pharmacokinetic data collected in the phase 1 clinical trial were utilized for the development of a population POP PK by implementing the non-linear mixed effects approach. Patient characteristics at study entry were evaluated as covariates in the model. Subjects (N = 26) were treated at nine dosage levels (1.2-12.4 mg/m2/day) on a daily × 5 schedule. Hematological toxicity data were modeled against exposure metrics. Results A two-compartment POP PK model best described the disposition of AR-67 by fitting a total of 328 PK observations from 25 subjects. Following covariate model selection, age remained as a significant covariate on central volume. The final model provided a good fit for the concentration versus time data and PK parameters were estimated with good precision. Clearance, inter-compartmental clearance, central volume and peripheral volume were estimated to be 32.2 L/h, 28.6 L/h, 6.83 L and 25.0 L, respectively. Finally, exposure-pharmacodynamic analysis using Emax models showed that plasma drug concentration versus time profiles are better predictors of AR-67-related hematologic toxicity were better predictors of leukopenia and thrombocytopenia, as compared to total dose. Conclusions A POP PK model was developed to characterize AR-67 pharmacokinetics and identified age as a significant covariate. Exposure PK metrics Cmax and AUC were shown to predict hematological toxicity. Further efforts to identify clinically relevant determinants of AR-67 disposition and effects in a larger patient population are warranted.
Collapse
Affiliation(s)
- Fei Tang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536, USA
| | - Eleftheria Tsakalozou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536, USA
| | - Susanne M Arnold
- Department of Internal Medicine, Division of Medical Oncology, Markey Cancer Center, University of Kentucky, 800 Rose St., Lexington, KY 40536, Lexington, KY, 40536, USA.,National Cancer Institute Designated Markey Cancer Center, Lexington Kentucky, Lexington, KY, USA
| | - Chee M Ng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536, USA.,National Cancer Institute Designated Markey Cancer Center, Lexington Kentucky, Lexington, KY, USA
| | - Markos Leggas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536, USA. .,National Cancer Institute Designated Markey Cancer Center, Lexington Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Therapeutic Potential and Utility of Elacridar with Respect to P-glycoprotein Inhibition: An Insight from the Published In Vitro, Preclinical and Clinical Studies. Eur J Drug Metab Pharmacokinet 2018; 42:915-933. [PMID: 28374336 DOI: 10.1007/s13318-017-0411-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The occurrence of efflux mechanisms via Permeability-glycoprotein (P-gp) recognized as an important physiological process impedes drug entry or transport across membranes into tissues. In some instances, either low oral bioavailability or lack of brain penetration has been attributed to P-gp mediated efflux activity. Therefore, the objective of development of P-gp inhibitors was to facilitate the attainment of higher drug exposures in tissues. Many third-generation P-gp inhibitors such as elacridar, tariquidar, zosuquidar, etc. have entered clinical development to fulfil the promise. The body of evidence from in vitro and in vivo preclinical and clinical data reviewed in this paper provides the basis for an effective blockade of P-gp efflux mechanism by elacridar. However, clinical translation of the promise has been elusive not just for elacridar but also for other P-gp inhibitors in this class. The review provides introspection and perspectives on the lack of clinical translation of this class of drugs and a broad framework of strategies and considerations in the potential application of elacridar and other P-gp inhibitors in oncology therapeutics.
Collapse
|
6
|
Lazareva NF, Baryshok VP, Lazarev IM. Silicon-containing analogs of camptothecin as anticancer agents. Arch Pharm (Weinheim) 2017; 351. [PMID: 29239010 DOI: 10.1002/ardp.201700297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
The plant pentacyclic alkaloid camptothecin and its structural analogs were extensively studied. These compounds are interesting due to the antitumor activity associated with their ability to inhibit topoisomerase I in tumor cells. During the last decades of the 20th century, a large number of the silicon-containing camptothecins (silatecans) were synthesized. 7-tert-Butyldimethylsilyl-10-hydroxy-camptothecin (DB-67 or AR-67) has enhanced lipophilicity and demonstrates a antitumor activity superior to its carbon analog. To date, certain silatecans are under clinical trials and their ultimate role in cancer therapy appears promising. In this review, we present chemical methodologies for the synthesis of silicon-containing camptothecins, their chemical properties, biological activity, and results of clinical trials.
Collapse
Affiliation(s)
- Nataliya F Lazareva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| | - Viktor P Baryshok
- Irkutsk National Research Technical University, Irkutsk, Russian Federation
| | - Igor M Lazarev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| |
Collapse
|
7
|
Otero JA, Barrera B, de la Fuente A, Prieto JG, Marqués M, Álvarez AI, Merino G. Short communication: The gain-of-function Y581S polymorphism of the ABCG2 transporter increases secretion into milk of danofloxacin at the therapeutic dose for mastitis treatment. J Dairy Sci 2014; 98:312-7. [PMID: 25465626 DOI: 10.3168/jds.2014-8288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/23/2014] [Indexed: 01/16/2023]
Abstract
The ATP-binding cassette transporter ABCG2 restricts the exposure of certain drugs and natural compounds in different tissues and organs. Its expression in the mammary gland is induced during lactation and is responsible for the active secretion of many compounds into milk, including antimicrobial agents. This particular function of ABCG2 may affect drug efficacy against mastitis and the potential presence of drug residues in the milk. Previous in vitro and in vivo studies showed increased transport of several compounds, including fluoroquinolones, by the bovine ABCG2 Y581S polymorphism. Our main purpose was to study the potential effect of this bovine ABCG2 polymorphism on the secretion into milk of the antimicrobial danofloxacin administered at the therapeutic dose of 6mg/kg used for mastitis treatment. In addition, the effect of this polymorphism on the relative mRNA and protein levels of ABCG2 by quantitative real-time PCR and Western blot were studied. Danofloxacin 18% (6mg/kg) was administered to 6 Y/Y homozygous and 5 Y/S heterozygous cows. Danofloxacin levels in milk and milk-to-plasma concentration ratios were almost 1.5- and 2-fold higher, respectively, in Y/S cows compared with the Y/Y cows, showing a higher capacity of this variant to transport danofloxacin into milk. Furthermore, the higher activity of this polymorphism is not linked to higher ABCG2 mRNA or protein levels. These results demonstrate the relevant effect of the Y581S polymorphism of the bovine ABCG2 transporter in the secretion into milk of danofloxacin after administration of 6mg/kg, with potentially important consequences for mastitis treatment and for milk residue handling.
Collapse
Affiliation(s)
- J A Otero
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon, Campus de Vegazana 24071, Leon, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana 24071, Leon, Spain
| | - B Barrera
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon, Campus de Vegazana 24071, Leon, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana 24071, Leon, Spain
| | - A de la Fuente
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon, Campus de Vegazana 24071, Leon, Spain
| | - J G Prieto
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon, Campus de Vegazana 24071, Leon, Spain; Instituto de Biomedicina (IBIOMED), University of Leon, Campus de Vegazana 24071, Leon, Spain
| | - M Marqués
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana 24071, Leon, Spain
| | - A I Álvarez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon, Campus de Vegazana 24071, Leon, Spain
| | - G Merino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon, Campus de Vegazana 24071, Leon, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana 24071, Leon, Spain.
| |
Collapse
|
8
|
Matsuda Y, Konno Y, Hashimoto T, Nagai M, Taguchi T, Satsukawa M, Yamashita S. In vivo assessment of the impact of efflux transporter on oral drug absorption using portal vein-cannulated rats. Drug Metab Dispos 2013; 41:1514-21. [PMID: 23686319 DOI: 10.1124/dmd.113.051680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to evaluate the impact of intestinal efflux transporters on the in vivo oral absorption process. Three model drugs-fexofenadine (FEX), sulfasalazine (SASP), and topotecan (TPT)-were selected as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and P-gp and BCRP substrates, respectively. The drugs were orally administered to portal vein-cannulated rats after pretreatment with zosuquidar (ZSQ), P-gp inhibitor, and/or Ko143, BCRP inhibitor. Intestinal availability (Fa·Fg) of the drugs was calculated from the difference between portal and systemic plasma concentrations. When rats were orally pretreated with ZSQ, Fa·Fg of FEX increased 4-fold and systemic clearance decreased to 75% of the control. In contrast, intravenous pretreatment with ZSQ did not affect Fa·Fg of FEX, although systemic clearance decreased significantly. These data clearly show that the method presented herein using portal vein-cannulated rats can evaluate the effects of intestinal transporters on Fa·Fg of drugs independently of variable systemic clearance. In addition, it was revealed that 71% of FEX taken up into enterocytes underwent selective efflux via P-gp to the apical surface, while 79% of SASP was effluxed by Bcrp. In the case of TPT, both transporters were involved in its oral absorption. Quantitative analysis indicated a 3.5-fold higher contribution from Bcrp than P-gp. In conclusion, the use of portal vein-cannulated rats enabled the assessment of the impact of efflux transporters on intestinal absorption of model drugs. This experimental system is useful for clarifying the cause of low bioavailability of various drugs.
Collapse
Affiliation(s)
- Yoshiki Matsuda
- Pharmacokinetics and Safety Research Department, Central Research Laboratories, Kaken Pharmaceutical Co., Ltd., 14, Shinomiya Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan.
| | | | | | | | | | | | | |
Collapse
|