1
|
Siontas O, Ahn S. Challenges in AAV-Based Retinal Gene Therapies and the Role of Magnetic Nanoparticle Platforms. J Clin Med 2024; 13:7385. [PMID: 39685843 DOI: 10.3390/jcm13237385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Retinal diseases, leading to various visual impairments and blindness, are on the rise. However, the advancement of retinal gene therapies offers new hope for treatment of such diseases. Among different vector systems for conferring therapeutic genetic load to retinal cells, adeno-associated viruses (AAVs) have been most intensively explored and have already successfully gained multiple clinical approvals. AAV-based retinal gene therapies have shown great promise in treating retinal disorders, but usually rely on the heavily disruptive administration methods such as subretinal injection. This is because the clinically well-established, minimally invasive alternative of intravitreal injection (IVI) necessitates AAVs to traverse the retinal inner limiting membrane (ILM), which is hard to penetrate in higher eye models, like human or porcine eyes. Additionally, AAVs' natural transduction preference, known as tropism, is commonly not specific to cells of only one target retinal layer, which is another ongoing challenge in retinal gene therapy. This review examines strategies to overcome these obstacles with a focus on the potential of magnetic nanoparticles (MNPs) for improved retinal AAV delivery.
Collapse
Affiliation(s)
- Oliver Siontas
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, 4056 Basel, Switzerland
| | - Seungkuk Ahn
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, 4056 Basel, Switzerland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
2
|
Ahn S, Siontas O, Koester J, Krol J, Fauser S, Müller DJ. Magnetically Guided Adeno-Associated Virus Delivery for the Spatially Targeted Transduction of Retina in Eyes. Adv Healthc Mater 2024; 13:e2401577. [PMID: 38848510 DOI: 10.1002/adhm.202401577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Adeno-associated viruses (AAVs) are intensively explored for gene therapies in general and have found promising applications for treating retina diseases. However, controlling the specificity (tropism) and delivery of AAVs to selected layers, cell types, and areas of the retina is a major challenge to further develop retinal gene therapies. Magnetic nanoparticles (MNPs) provide effective delivery platforms to magnetically guide therapeutics to target cells. Yet, how MNPs can deliver AAVs to transfect particular retina layers and cells remains elusive. Here, it is demonstrated that MNPs can be used to transport different AAVs through the retina and to modulate the selective transduction of specific retinal layers or photoreceptor cells in ex vivo porcine explants and whole eyes. Thereby, transduction is triggered by bringing the viruses in close proximity to the target cell layer and by controlling their interaction time. It is shown that this magnetically guided approach to transport AAVs to selected areas and layers of the retina does not require the cell-specific optimization of the AAV tropism. It is anticipated that the new approach to control the delivery of AAVs and to selectively transduce cellular systems can be applied to many other tissues or organs to selectively deliver genes of interest.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, Basel, 4056, Switzerland
| | - Oliver Siontas
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, Basel, 4056, Switzerland
| | - Janis Koester
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Department of Ophthalmology, Basel, 4070, Switzerland
| | - Jacek Krol
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Department of Ophthalmology, Basel, 4070, Switzerland
| | - Sascha Fauser
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Department of Ophthalmology, Basel, 4070, Switzerland
| | - Daniel J Müller
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, Basel, 4056, Switzerland
| |
Collapse
|
3
|
Azadpour B, Aharipour N, Paryab A, Omid H, Abdollahi S, Madaah Hosseini H, Malek Khachatourian A, Toprak MS, Seifalian AM. Magnetically-assisted viral transduction (magnetofection) medical applications: An update. BIOMATERIALS ADVANCES 2023; 154:213657. [PMID: 37844415 DOI: 10.1016/j.bioadv.2023.213657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Gene therapy involves replacing a faulty gene or adding a new gene inside the body's cells to cure disease or improve the body's ability to fight disease. Its popularity is evident from emerging concepts such as CRISPR-based genome editing and epigenetic studies and has been moved to a clinical setting. The strategy for therapeutic gene design includes; suppressing the expression of pathogenic genes, enhancing necessary protein production, and stimulating the immune system, which can be incorporated into both viral and non-viral gene vectors. Although non-viral gene delivery provides a safer platform, it suffers from an inefficient rate of gene transfection, which means a few genes could be successfully transfected and expressed within the cells. Incorporating nucleic acids into the viruses and using these viral vectors to infect cells increases gene transfection efficiency. Consequently, more cells will respond, more genes will be expressed, and sustained and successful gene therapy can be achieved. Combining nanoparticles (NPs) and nucleic acids protects genetic materials from enzymatic degradation. Furthermore, the vectors can be transferred faster, facilitating cell attachment and cellular uptake. Magnetically assisted viral transduction (magnetofection) enhances gene therapy efficiency by mixing magnetic nanoparticles (MNPs) with gene vectors and exerting a magnetic field to guide a significant number of vectors directly onto the cells. This research critically reviews the MNPs and the physiochemical properties needed to assemble an appropriate magnetic viral vector, discussing cellular hurdles and attitudes toward overcoming these barriers to reach clinical gene therapy perspectives. We focus on the studies conducted on the various applications of magnetic viral vectors in cancer therapies, regenerative medicine, tissue engineering, cell sorting, and virus isolation.
Collapse
Affiliation(s)
- Behnam Azadpour
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nazli Aharipour
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhosein Paryab
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamed Omid
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sorosh Abdollahi
- Department of Biomedical Engineering, University of Calgary, Alberta, Canada
| | | | | | - Muhammet S Toprak
- Department of Applied Physics, KTH-Royal Institute of Technology, SE10691 Stockholm, Sweden
| | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK.
| |
Collapse
|
4
|
Abstract
Viral gene transfer, known as transduction, is a powerful research tool for studying the biology of chondrocytes in novel ways and also a technology enabling the use of gene therapy for regenerating cartilage and treating diseases that affect cartilage, such as osteoarthritis. Adenovirus, retrovirus, lentivirus, and adeno-associated virus (AAV) are most commonly used to transduce chondrocytes. Although AAV is able to transduce chondrocytes in situ by intra-articular injection, chondrocytes are most commonly transduced in monolayer culture using the four vectors mentioned above. Protocols for achieving this are described, along with a discussion of the variables that can influence transduction efficiency.
Collapse
Affiliation(s)
| | - Christopher H Evans
- Musculoskeletal Gene Therapy Laboratory, Mayo Clinic, Rochester, MN, USA.
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA.
| | | |
Collapse
|
5
|
Kalaiselvan CR, Laha SS, Somvanshi SB, Tabish TA, Thorat ND, Sahu NK. Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Kasala D, Hong J, Yun CO. Overcoming the barriers to optimization of adenovirus delivery using biomaterials: Current status and future perspective. J Control Release 2021; 332:285-300. [PMID: 33626335 DOI: 10.1016/j.jconrel.2021.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/31/2022]
Abstract
Adenovirus (Ad) is emerging as a promising modality for cancer gene therapy due to its ability to induce high level of therapeutic transgene expression with no risk of insertional mutagenesis, ability to be facilely produced at a high titer, and capacity to induce robust antitumor immune response. Despite these excellent attributes of human serotype 5 Ad, poor systemic administration capability, coxsackie and adenovirus receptor (CAR)-dependent endocytic mechanism limiting potentially targetable cell types, nonspecific shedding to normal organs, and poor viral persistence in tumor tissues are major hindrances toward maximizing the therapeutic benefit of Ad in clinical setting. To address the abovementioned shortcomings, various non-immunogenic nanomaterials have been explored to modify Ad surface via physical or chemical interactions. In this review, we summarize the recent developments of different types of nanomaterials that had been utilized for modification of Ad and how tumor-targeted local and system delivery can be achieved with these nanocomplexes. Finally, we conclude by highlighting the key features of various nanomaterials-coated Ads and their prospects to optimize the delivery of virus.
Collapse
Affiliation(s)
- Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd, Seoul 04763, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea; GeneMedicine Co., Ltd, Seoul 04763, Republic of Korea.
| |
Collapse
|
7
|
Cheng H, Tsao H, Chiang C, Chen S. Advances in Magnetic Nanoparticle-Mediated Cancer Immune-Theranostics. Adv Healthc Mater 2021; 10:e2001451. [PMID: 33135398 DOI: 10.1002/adhm.202001451] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy is a cutting-edge strategy that eliminates cancer cells by amplifying the host's immune system. However, the low response rate and risks of inducing systemic toxicity have raised uncertainty in the treatment. Magnetic nanoparticles (MNPs) as a versatile theranostic tool can be used to target delivery of multiple immunotherapeutics and monitor cell/tissue responses. These capabilities enable the real-time characterization of the factors that contribute to immunoactivity so that future treatments can be optimized. The magnetic properties of MNPs further allow the implementation of magnetic navigation and magnetic hyperthermia for boosting the efficacy of immunotherapy. The multimodal approach opens an avenue to induce robust immune responses, minimize safety issues, and monitor immune activities simultaneously. Thus, the object of this review is to provide an overview of the burgeoning fields and to highlight novel technologies for next-generation immunotherapy. The review further correlates the properties of MNPs with the latest treatment strategies to explore the crosstalk between magnetic nanomaterials and the immune system. This comprehensive review of MNP-derived immunotherapy covers the obstacles and opportunities for future development and clinical translation.
Collapse
Affiliation(s)
- Hung‐Wei Cheng
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
| | - Hsin‐Yi Tsao
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
| | - Chih‐Sheng Chiang
- Cell Therapy Center China Medical University Hospital Taichung 40421 Taiwan
| | - San‐Yuan Chen
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
- Frontier Research Centre on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
- School of Dentistry College of Dental Medicine Kaohsiung Medical University Kaohsiung 807378 Taiwan
- Graduate Institute of Biomedical Science China Medical University Taichung 40421 Taiwan
| |
Collapse
|
8
|
Mashel TV, Tarakanchikova YV, Muslimov AR, Zyuzin MV, Timin AS, Lepik KV, Fehse B. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials 2020; 258:120282. [PMID: 32798742 DOI: 10.1016/j.biomaterials.2020.120282] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
9
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
10
|
Pacifici N, Bolandparvaz A, Lewis JS. Stimuli-Responsive Biomaterials for Vaccines and Immunotherapeutic Applications. ADVANCED THERAPEUTICS 2020; 3:2000129. [PMID: 32838028 PMCID: PMC7435355 DOI: 10.1002/adtp.202000129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/16/2020] [Indexed: 12/26/2022]
Abstract
The immune system is the key target for vaccines and immunotherapeutic approaches aimed at blunting infectious diseases, cancer, autoimmunity, and implant rejection. However, systemwide immunomodulation is undesirable due to the severe side effects that typically accompany such strategies. In order to circumvent these undesired, harmful effects, scientists have turned to tailorable biomaterials that can achieve localized, potent release of immune-modulating agents. Specifically, "stimuli-responsive" biomaterials hold a strong promise for delivery of immunotherapeutic agents to the disease site or disease-relevant tissues with high spatial and temporal accuracy. This review provides an overview of stimuli-responsive biomaterials used for targeted immunomodulation. Stimuli-responsive or "environmentally responsive" materials are customized to specifically react to changes in pH, temperature, enzymes, redox environment, photo-stimulation, molecule-binding, magnetic fields, ultrasound-stimulation, and electric fields. Moreover, the latest generation of this class of materials incorporates elements that allow for response to multiple stimuli. These developments, and other stimuli-responsive materials that are on the horizon, are discussed in the context of controlling immune responses.
Collapse
Affiliation(s)
- Noah Pacifici
- Department of Biomedical Engineering University of California Davis Davis CA 95616 USA
| | - Amir Bolandparvaz
- Department of Biomedical Engineering University of California Davis Davis CA 95616 USA
| | - Jamal S Lewis
- Department of Biomedical Engineering University of California Davis Davis CA 95616 USA
| |
Collapse
|
11
|
Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater 2020; 102:13-34. [PMID: 31759124 DOI: 10.1016/j.actbio.2019.11.027] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Among various nanoparticles, superparamagnetic iron oxide nanoparticles (SPIONs) have been increasingly studied for their excellent superparamagnetism, magnetic heating properties, and enhanced magnetic resonance imaging (MRI). The conjugation of SPIONs with drugs to obtain delivery nanosystems has several advantages including magnetic targeted functionalization, in vivo imaging, magnetic thermotherapy, and combined delivery of anticancer agents. To further increase the targeting efficiency of drugs through a delivery nanosystem based on SPIONs, additional targeting moieties including transferrin, antibodies, aptamers, hyaluronic acid, folate, and targeting peptides are coated onto the surface of SPIONs. Therefore, this review summarizes the latest progresses in the conjugation of targeting molecules and drug delivery nanosystems based on SPIONs, especially focusing on their performances to develop efficient targeted drug delivery systems for tumor therapy. STATEMENT OF SIGNIFICANCE: Some magnetic nanoparticle-based nanocarriers loaded with drugs were evaluated in patients and did not produce convincing results, leading to termination of clinical development in phase II/III. An alternative strategy for drug delivery systems based on SPIONs is the conjugation of these systems with targeting segments such as transferrin, antibodies, aptamers, hyaluronic acid, folate, and targeting peptides. These targeting moieties can be recognized by specific integrin/receptors that are overexpressed specifically on the tumor cell surface, resulting in minimizing dosage and reducing off-target effects. This review focuses on magnetic nanoparticle-based nonviral drug delivery systems with targeting moieties to deliver anticancer drugs, with an aim to provide suggestions on the development of SPIONs through discussion.
Collapse
|
12
|
Kim D, Thangavelu M, Baek JS, Kim HS, Choi MJ, Cho HH, Song JE, Khang G. Fabrication of POX/PLGA Scaffold for the Potential Application of Tissue Engineering and Cell Transplantation. Macromol Res 2019. [DOI: 10.1007/s13233-020-8030-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Smolková B, Uzhytchak M, Lynnyk A, Kubinová Š, Dejneka A, Lunov O. A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers. J Funct Biomater 2018; 10:jfb10010002. [PMID: 30586923 PMCID: PMC6463085 DOI: 10.3390/jfb10010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Physics-based biomedical approaches have proved their importance for the advancement of medical sciences and especially in medical diagnostics and treatments. Thus, the expectations regarding development of novel promising physics-based technologies and tools are very high. This review describes the latest research advances in biomedical applications of external physical cues. We overview three distinct topics: using high-gradient magnetic fields in nanoparticle-mediated cell responses; non-thermal plasma as a novel bactericidal agent; highlights in understanding of cellular mechanisms of laser irradiation. Furthermore, we summarize the progress, challenges and opportunities in those directions. We also discuss some of the fundamental physical principles involved in the application of each cue. Considerable technological success has been achieved in those fields. However, for the successful clinical translation we have to understand the limitations of technologies. Importantly, we identify the misconceptions pervasive in the discussed fields.
Collapse
Affiliation(s)
- Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
14
|
Du X, Wang J, Zhou Q, Zhang L, Wang S, Zhang Z, Yao C. Advanced physical techniques for gene delivery based on membrane perforation. Drug Deliv 2018; 25:1516-1525. [PMID: 29968512 PMCID: PMC6058615 DOI: 10.1080/10717544.2018.1480674] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gene delivery as a promising and valid tool has been used for treating many serious diseases that conventional drug therapies cannot cure. Due to the advancement of physical technology and nanotechnology, advanced physical gene delivery methods such as electroporation, magnetoporation, sonoporation and optoporation have been extensively developed and are receiving increasing attention, which have the advantages of briefness and nontoxicity. This review introduces the technique detail of membrane perforation, with a brief discussion for future development, with special emphasis on nanoparticles mediated optoporation that have developed as an new alternative transfection technique in the last two decades. In particular, the advanced physical approaches development and new technology are highlighted, which intends to stimulate rapid advancement of perforation techniques, develop new delivery strategies and accelerate application of these techniques in clinic.
Collapse
Affiliation(s)
- Xiaofan Du
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Jing Wang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Quan Zhou
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Luwei Zhang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Sijia Wang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Zhenxi Zhang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Cuiping Yao
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| |
Collapse
|
15
|
Cwetsch AW, Pinto B, Savardi A, Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol 2018; 168:69-85. [PMID: 29694844 PMCID: PMC6080705 DOI: 10.1016/j.pneurobio.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Annalisa Savardi
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; DulbeccoTelethon Institute, Italy.
| |
Collapse
|
16
|
Xia Y, Sun J, Zhao L, Zhang F, Liang XJ, Guo Y, Weir MD, Reynolds MA, Gu N, Xu HHK. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018; 183:151-170. [PMID: 30170257 DOI: 10.1016/j.biomaterials.2018.08.040] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Novel strategies utilizing magnetic nanoparticles (MNPs) and magnetic fields are being developed to enhance bone tissue engineering efficacy. This article first reviewed cutting-edge research on the osteogenic enhancements via magnetic fields and MNPs. Then the current developments in magnetic strategies to improve the cells, scaffolds and growth factor deliveries were described. The magnetic-cell strategies included cell labeling, targeting, patterning, and gene modifications. MNPs were incorporated to fabricate magnetic composite scaffolds, as well as to construct delivery systems for growth factors, drugs and gene transfections. The novel methods using magnetic nanoparticles and scaffolds with magnetic fields and stem cells increased the osteogenic differentiation, angiogenesis and bone regeneration by 2-3 folds over those of the controls. The mechanisms of magnetic nanoparticles and scaffolds with magnetic fields and stem cells to enhance bone regeneration were identified as involving the activation of signaling pathways including MAPK, integrin, BMP and NF-κB. Potential clinical applications of magnetic nanoparticles and scaffolds with magnetic fields and stem cells include dental, craniofacial and orthopedic treatments with substantially increased bone repair and regeneration efficacy.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liang Zhao
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
17
|
Baker AT, Aguirre-Hernández C, Halldén G, Parker AL. Designer Oncolytic Adenovirus: Coming of Age. Cancers (Basel) 2018; 10:E201. [PMID: 29904022 PMCID: PMC6025169 DOI: 10.3390/cancers10060201] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest continues for a virus capable of specific tumour cell killing via systemic administration. One candidate is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide range of strategies and technologies have been employed to empower the vector with improved pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by detailed virological studies and in vivo interactions. In this review we highlight the strides made in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid interactions enable rational modification to eliminate native tropisms, and simultaneously promote active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses natural mechanisms and regulated at every level of replication, represent the ideal platforms for local overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as though it will soon become a reality.
Collapse
Affiliation(s)
- Alexander T Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Carmen Aguirre-Hernández
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
18
|
Williams HM. The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases. ACTA ACUST UNITED AC 2017. [DOI: 10.1093/biohorizons/hzx009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Harry M. Williams
- School of Life Sciences, Keele University, Keele, Newcastle ST5 5BG, UK
| |
Collapse
|
19
|
Kurena B, Vežāne A, Skrastiņa D, Trofimova O, Zajakina A. Magnetic nanoparticles for efficient cell transduction with Semliki Forest virus. J Virol Methods 2017; 245:28-34. [DOI: 10.1016/j.jviromet.2017.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 12/26/2022]
|
20
|
Kasala D, Yoon AR, Hong J, Kim SW, Yun CO. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine (Lond) 2016; 11:1689-713. [PMID: 27348247 DOI: 10.2217/nnm-2016-0060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research.
Collapse
Affiliation(s)
- Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Jinwoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Sung Wan Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.,Department of Pharmaceutics & Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
21
|
Pereyra AS, Mykhaylyk O, Lockhart EF, Taylor JR, Delbono O, Goya RG, Plank C, Hereñu CB. Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells. ACTA ACUST UNITED AC 2016; 7. [PMID: 27274908 PMCID: PMC4888903 DOI: 10.4172/2157-7439.1000364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models.
Collapse
Affiliation(s)
- Andrea Soledad Pereyra
- Biochemistry Research Institute of La Plata (INIBIOLP)/National Scientific and Technical Research Council (CONICET), School of Medicine, National University of La Plata, La Plata, BA, Argentina (ZC 1900)
| | - Olga Mykhaylyk
- Ismaninger Street 22, Institute of Immunology and Experimental Klinikum rechts der Isar, Technical University of Munich, Munich, Germany (ZC 81675)
| | - Eugenia Falomir Lockhart
- Biochemistry Research Institute of La Plata (INIBIOLP)/National Scientific and Technical Research Council (CONICET), School of Medicine, National University of La Plata, La Plata, BA, Argentina (ZC 1900)
| | - Jackson Richard Taylor
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA (ZC 27157)
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA (ZC 27157)
| | - Rodolfo Gustavo Goya
- Biochemistry Research Institute of La Plata (INIBIOLP)/National Scientific and Technical Research Council (CONICET), School of Medicine, National University of La Plata, La Plata, BA, Argentina (ZC 1900)
| | - Christian Plank
- Ismaninger Street 22, Institute of Immunology and Experimental Klinikum rechts der Isar, Technical University of Munich, Munich, Germany (ZC 81675)
| | - Claudia Beatriz Hereñu
- Biochemistry Research Institute of La Plata (INIBIOLP)/National Scientific and Technical Research Council (CONICET), School of Medicine, National University of La Plata, La Plata, BA, Argentina (ZC 1900); IFEC-CONICET, Farmacology Department, School of Chemistry, National University of Cordoba, (ZC 5000) Córdoba, Argentina
| |
Collapse
|
22
|
Shalaby SM, Khater MK, Perucho AM, Mohamed SA, Helwa I, Laknaur A, Lebedyeva I, Liu Y, Diamond MP, Al-Hendy AA. Magnetic nanoparticles as a new approach to improve the efficacy of gene therapy against differentiated human uterine fibroid cells and tumor-initiating stem cells. Fertil Steril 2016; 105:1638-1648.e8. [PMID: 27020169 DOI: 10.1016/j.fertnstert.2016.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To study whether efficient transduction and subsequent elimination of fibroid tumor-initiating stem cells during debulking of tumor cells will aid in completely eradicating the tumor as well as decreasing the likelihood of recurrence. DESIGN Case control study. SETTING Research laboratory. PATIENT(S) None. INTERVENTION(S) Magnetic nanoparticles (MNPs) complexed to adenovirus (Ad-GFP) or (Ad-LacZ) used to transfect differentiated human fibroid cells in vitro. MAIN OUTCOME MEASURE(S) Rate of transduction and tumor growth inhibition. RESULT(S) We have developed a localized nonsurgical adenovirus-based alternative for the treatment of uterine fibroids that combines viral-based gene delivery with nanotechnology for more efficient targeting. Magnetic nanoparticles complexed to adenovirus, in the presence of an external magnetic field, accelerate adenovirus transduction. We observed a statistically significant increase in transduction efficiency among differentiated human fibroid cells at two different multiplicities of infection (MOI), 1 and 10, respectively, with MNPs as compared with adenovirus alone. Human fibroid stem cells transfected with Ad-LacZ expressed β-galactosidaze at a MOI of 1, 10, and 50 at 19%, 62%, and 90%, respectively, which were statistically significantly enhanced with MNPs. CONCLUSION(S) When applied with adenovirus herpes simplex thymidine kinase, magnetofection statistically significantly suppressed proliferation and induced apoptosis in both cell types. Through the use of magnetofection, we will prove that a lower viral dose will effectively increase the overall safety profile of suicide gene therapy against fibroid tumors.
Collapse
Affiliation(s)
- Shahinaz Mahmood Shalaby
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, Georgia; Department of Pharmacology, Tanta Faculty of Medicine, Tanta, Egypt
| | - Mostafa K Khater
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, Georgia
| | - Aymara Mas Perucho
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, Georgia
| | - Sara A Mohamed
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, Georgia; Department of Obstetrics and Gynecology, Mansoura University Hospital, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Inas Helwa
- Department of Cell Biology and Anatomy, Georgia Regents University, Augusta, Georgia
| | - Archana Laknaur
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, Georgia
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Georgia Regents University, Augusta, Georgia
| | - Yutao Liu
- Department of Cell Biology and Anatomy, Georgia Regents University, Augusta, Georgia
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, Georgia
| | - Ayman A Al-Hendy
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, Georgia.
| |
Collapse
|
23
|
Yoon AR, Hong J, Kim SW, Yun CO. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy. Expert Opin Drug Deliv 2016; 13:843-58. [PMID: 26967319 DOI: 10.1517/17425247.2016.1158707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. AREA COVERED Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. EXPERT OPINION Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.
Collapse
Affiliation(s)
- A-Rum Yoon
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Jinwoo Hong
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Sung Wan Kim
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea.,b Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - Chae-Ok Yun
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| |
Collapse
|
24
|
Almstätter I, Mykhaylyk O, Settles M, Altomonte J, Aichler M, Walch A, Rummeny EJ, Ebert O, Plank C, Braren R. Characterization of magnetic viral complexes for targeted delivery in oncology. Theranostics 2015; 5:667-85. [PMID: 25897333 PMCID: PMC4402492 DOI: 10.7150/thno.10438] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/07/2015] [Indexed: 12/15/2022] Open
Abstract
Oncolytic viruses are promising new agents in cancer therapy. Success of tumor lysis is often hampered by low intra-tumoral titers due to a strong anti-viral host immune response and insufficient tumor targeting. Previous work on the co-assembly of oncolytic virus particles (VPs) with magnetic nanoparticles (MNPs) was shown to provide shielding from inactivating immune response and improve targeting by external field gradients. In addition, MNPs are detected by magnet resonance imaging (MRI) enabling non-invasive therapy monitoring. In this study two selected core-shell type iron oxide MNPs were assembled with adenovirus (Ad) or vesicular stomatitis virus (VSV). The selected MNPs were characterized by high r2 and r2* relaxivities and thus could be quantified non-invasively by 1.5 and 3.0 tesla MRI with a detection limit below 0.001 mM iron in tissue-mimicking phantoms. Assembly and cell internalization of MNP-VP complexes resulted in 81 - 97 % reduction of r2 and 35 - 82 % increase of r2* compared to free MNPs. The relaxivity changes could be attributed to the clusterization of particles and complexes shown by transmission electron microscopy (TEM). In a proof-of-principle study the non-invasive detection of MNP-VPs by MRI was shown in vivo in an orthotopic rat hepatocellular carcinoma model. In conclusion, MNP assembly and compartmentalization have a major impact on relaxivities, therefore calibration measurements are required for the correct quantification in biodistribution studies. Furthermore, our study provides first evidence of the in vivo applicability of selected MNP-VPs in cancer therapy.
Collapse
|
25
|
The evolution of adenoviral vectors through genetic and chemical surface modifications. Viruses 2014; 6:832-55. [PMID: 24549268 PMCID: PMC3939484 DOI: 10.3390/v6020832] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/31/2022] Open
Abstract
A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.
Collapse
|
26
|
Capasso C, Hirvinen M, Cerullo V. Beyond Gene Delivery: Strategies to Engineer the Surfaces of Viral Vectors. Biomedicines 2013; 1:3-16. [PMID: 28548054 PMCID: PMC5423465 DOI: 10.3390/biomedicines1010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/28/2022] Open
Abstract
Viral vectors have been extensively studied due to their great transduction efficiency compared to non-viral vectors. These vectors have been used extensively in gene therapy, enabling the comprehension of, not only the advantages of these vectors, but also the limitations, such as the activation of the immune system after vector administration. Moreover, the need to control the target of the vector has led to the development of chemical and non-chemical modifications of the vector surface, allowing researchers to modify the tropism and biodistribution profile of the vector, leading to the production of viral vectors able to target different tissues and organs. This review describes recent non-genetic modifications of the surfaces of viral vectors to decrease immune system activation and to control tissue targeting. The developments described herein provide opportunities for applications of gene therapy to treat acquired disorders and genetic diseases and to become useful tools in regenerative medicine.
Collapse
Affiliation(s)
- Cristian Capasso
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki 00760, Finland.
| | - Mari Hirvinen
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki 00760, Finland.
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki 00760, Finland.
| |
Collapse
|
27
|
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. NATURE MATERIALS 2013; 12:991-1003. [PMID: 24150417 DOI: 10.1038/nmat3776] [Citation(s) in RCA: 4205] [Impact Index Per Article: 350.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 09/10/2013] [Indexed: 05/17/2023]
Abstract
Spurred by recent progress in materials chemistry and drug delivery, stimuli-responsive devices that deliver a drug in spatial-, temporal- and dosage-controlled fashions have become possible. Implementation of such devices requires the use of biocompatible materials that are susceptible to a specific physical incitement or that, in response to a specific stimulus, undergo a protonation, a hydrolytic cleavage or a (supra)molecular conformational change. In this Review, we discuss recent advances in the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stimuli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous (changes in pH, enzyme concentration or redox gradients).
Collapse
Affiliation(s)
- Simona Mura
- Institut Galien Paris-Sud, Université Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | | | | |
Collapse
|
28
|
Development of Magnetic Nanoparticles for Cancer Gene Therapy: A Comprehensive Review. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/646284] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Since they were first proposed as nonviral transfection agents for their gene-carrying capacity, magnetic nanoparticles have been studied thoroughly, both in vitro and in vivo. Great effort has been made to manufacture biocompatible magnetic nanoparticles for use in the theragnosis of cancer and other diseases. Here we survey recent advances in the study of magnetic nanoparticles, as well as the polymers and other coating layers currently available for gene therapy, their synthesis, and bioconjugation processes. In addition, we review several gene therapy models based on magnetic nanoparticles.
Collapse
|
29
|
Increase in muscarinic stimulation-induced Ca2+ response by adenovirus-mediated Stim1-mKO1 gene transfer to rat submandibular acinar cells in vivo. Biochem Biophys Res Commun 2013; 439:433-7. [DOI: 10.1016/j.bbrc.2013.08.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/24/2013] [Indexed: 02/03/2023]
|
30
|
Zhao B, Wang Q, Tao T, Li J, Lin Q. The in vitro and in vivo treatment effects of overexpressed lentiviral vector-mediated human BMP2 gene in the femoral bone marrow stromal cells of osteoporotic rats. Int J Mol Med 2013; 32:1355-65. [PMID: 24068163 DOI: 10.3892/ijmm.2013.1507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/02/2013] [Indexed: 11/06/2022] Open
Abstract
This study aimed to compare the treatment effects of lentiviral vector-mediated hBMP2 which was overexpressed in the femoral bone marrow stromal cells of osteoporotic rats through genetic infection in vitro and in vivo. Comparison of the two transgenic effects may be crucial to determining the lentivirus infection method to be used. Following a comparison of the rat bone marrow stromal cells (rBMSCs) in osteoporotic (MSCs OVX) and normal (MSCs CON) groups, the lentiviral vector-mediated human bone morphogenetic protein 2 (hBMP2), which overexpressed the BMSCs of osteoporotic rats in vitro (rBMSCs in OE group), was constructed. The osteogenic ability in the overexpressed (OE) group was then compared to that of the MSCs CON. The rBMSCs in the OE group (transplants of genetic infection in vitro) and the lentivirus-containing solution (injected material of genetic infection in vivo) were injected into the femurs. The treatment effect of each group was compared via bone mineral density (BMD) and bone histomorphometry. The hBMP2-modified osteoporosis rBMSCs formed by genetic infection in vitro (n=7) had an ameliorated treatment effect on the femur as compared to that of the in vivo (n=7) (BMD: 0.315 vs. 0.19 g/cm2, P<0.01; bone histomorphometry: For bone trabeculars (Tb.Ar/T.Ar): 0.301 vs. 0.114, P<0.01; for trabecular thickness (Tb.Th): 43.54 vs. 21.39 µm, P<0.01; for trabecular separation (Tb.Sp): 115.7 vs. 304.87 µm, P<0.01). The results showed that the treatment effects of osteoporotic rBMSCs on local osteoporosis performed by genetic infection were improved in vitro as compared to those in vivo.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Orthopedics, the Second Hospital Affiliated to Harbin Medical University, Harbin 150081, P.R. China
| | | | | | | | | |
Collapse
|
31
|
Lee JT, Jung JW, Choi JY, Kwon TG. Enhanced bone morphogenic protein adenoviral gene delivery to bone marrow stromal cells using magnetic nanoparticle. J Korean Assoc Oral Maxillofac Surg 2013; 39:112-9. [PMID: 24471028 PMCID: PMC3858166 DOI: 10.5125/jkaoms.2013.39.3.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 12/04/2022] Open
Abstract
Objectives This study investigated the question of whether adenoviral magnetofection can be a suitable method for increasing the efficacy of gene delivery into bone marrow stromal cell (BMSC) and for generation of a high level of bone morphogenic protein (BMP) secretion at a minimized viral titer. Materials and Methods Primary BMSCs were isolated from C57BL6 mice and transduced with adenoviral vectors encoding β galactosidase or BMP2 and BMP7. The level of BMP secretion, activity of osteoblast differentiation, and cell viability of magnetofection were measured and compared with those of the control group. Results The expression level of β galactosidase showed that the cell transduction efficiency of AdLacZ increased according to the increased amount of magnetic nanoparticles. No change in cell viability was observed after magnetofection with 2 µL of magnetic nanoparticle. Secretion of BMP2 or BMP7 was accelerated after transduction of AdBMP2 and 7 with magnetofection. AdBMP2 adenoviral magnetofection resulted in up to 7.2-fold higher secretion of BMP2, compared with conventional AdBMP2-transduced BMSCs. Magnetofection also induced a dramatic increase in secretion of BMP7 by up to 10-fold compared to the control. Use of only 1 multiplicity of infection (moi) of magnetofection with adenoviral transduction of AdBMP2 or AdBMP7 resulted in significantly higher transgene expression compared to 20 moi of conventional adenoviral transduction. Conclusion Magnetic particle-mediated gene transudation is a highly efficient method of gene delivery to BMSCs. Magnetofection can lower the amount of viral particles while improving the efficacy of gene delivery.
Collapse
Affiliation(s)
- Jung-Tae Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Jae-Whan Jung
- Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae-Yong Choi
- Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
32
|
Mok H, Zhang M. Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin Drug Deliv 2012. [PMID: 23199200 DOI: 10.1517/17425247.2013.747507] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. AREAS COVERED This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. The authors examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. EXPERT OPINION Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared with chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation.
Collapse
Affiliation(s)
- Hyejung Mok
- Konkuk University, Department of Bioscience and Biotechnology, Seoul 143-701, Republic of Korea
| | | |
Collapse
|
33
|
Abstract
Recent advances in cancer genomics have opened up unlimited potential for treating cancer by directly targeting culprit genes. However, novel delivery methods are needed in order for this potential to be translated into clinically viable treatments for patients. Magnetic nanoparticle technology offers the potential to achieve selective and efficient delivery of therapeutic genes by using external magnetic fields, and also allows simultaneous imaging to monitor the delivery in vivo. Compared to conventional gene delivery strategies, this technique has been shown to significantly increase gene delivery to human xenograft tumors models, as well as various internal organs (e.g. liver, kidney) and the central nervous system. Magnetic nanoparticle technology, therefore, has the potential to turn the challenge of gene therapy in vivo into a new frontier for cancer treatment.
Collapse
|