1
|
Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success. DISCOVER NANO 2023; 18:156. [PMID: 38112935 PMCID: PMC10730792 DOI: 10.1186/s11671-023-03913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.
Collapse
Affiliation(s)
- Pragati Ramesh Kumbhar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Aarti Lasure
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | | | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India.
| |
Collapse
|
2
|
Pardhi E, Yadav R, Chaurasiya A, Madan J, Guru SK, Singh SB, Mehra NK. Multifunctional targetable liposomal drug delivery system in the management of leukemia: Potential, opportunities, and emerging strategies. Life Sci 2023; 325:121771. [PMID: 37182551 DOI: 10.1016/j.lfs.2023.121771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
The concern impeding the success of chemotherapy in leukemia treatment is descending efficacy of drugs because of multiple drug resistance (MDR). The previous failure of traditional treatment methods is primarily responsible for the present era of innovative agents to treat leukemia effectively. The treatment option is a chemotherapeutic agent in most available treatment strategies, which unfortunately leads to high unavoidable toxicities. As a result of the recent surge in marketed products, theranostic nanoparticles, i.e., multifunctional targetable liposomes (MFTL), have been approved for improved and more successful leukemia treatment that blends therapeutic and diagnostic characteristics. Since they broadly offer the required characteristics to get past the traditional/previous limitations, such as the absence of site-specific anti-cancer therapeutic delivery and ongoing real-time surveillance of the leukemia target sites while administering therapeutic activities. To prepare MFTL, suitable targeting ligands or tumor-specific antibodies are required to attach to the surface of the liposomes. This review exhaustively covered and summarized the liposomal-based formulation in leukemia treatment, emphasizing leukemia types; regulatory considerations, patents, and clinical portfolios to overcome clinical translation hurdles have all been explored.
Collapse
Affiliation(s)
- Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Akash Chaurasiya
- Department of Pharmaceutics, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, District. RR, Hyderabad, India
| | - Jitender Madan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| |
Collapse
|
3
|
Kim D, Byun J, Kim SI, Chung HH, Kim YW, Shim G, Oh YK. DNA-cloaked nanoparticles for tumor microenvironment-responsive activation. J Control Release 2022; 350:448-459. [PMID: 36037974 DOI: 10.1016/j.jconrel.2022.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
Although progress has been made in developing tumor microenvironment-responsive delivery systems, the list of cargo-releasing stimuli remains limited. In this study, we report DNA nanothread-cloaked nanoparticles for reactive oxygen species (ROS)-rich tumor microenvironment-responsive delivery systems. ROS is well known to strongly induce DNA fragmentation via oxidative stress. As a model anticancer drug, hydrophobic omacetaxine was entrapped in branched cyclam ligand-modified nanoparticles (BNP). DNA nanothreads were prepared by rolling-circle amplification and complexed to BNP, yielding DNA nanothread-cloaked BNP (DBNP). DBNP was unmasked by DNA nanothread-degrading ROS and culture supernatants of LNCaP cells. The size and zeta potential of DBNP were changed by ROS. In ROShigh LNCaP cells, but not in ROSlow fibroblast cells, the uptake of DBNP was higher than that of other nanoparticles. Molecular imaging revealed that DBNP exhibited greater distribution to tumor tissues, compared to other nanoparticles. Ex vivo mass spectrometry-based imaging showed that omacetaxine metabolites were distributed in tumor tissues of mice treated with DBNP. Intravenous administration of DBNP reduced the tumor volume by 80% compared to untreated tumors. Profiling showed that omacetaxine treatment altered the transcriptional profile. These results collectively support the feasibility of using polymerized DNA-masked nanoparticles for selective activation in the ROS-rich tumor microenvironment.
Collapse
Affiliation(s)
- Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Wan Kim
- Daegu Cancer Center, DongSung Bio-Pharmaceuticals, Daegu 41061, Republic of Korea
| | - Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Wang J, Gong J, Wei Z. Strategies for Liposome Drug Delivery Systems to Improve Tumor Treatment Efficacy. AAPS PharmSciTech 2021; 23:27. [PMID: 34907483 DOI: 10.1208/s12249-021-02179-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
In the advancement of tumor therapy, in addition to the search for new antitumor compounds, the development of nano-drug delivery systems has opened up new pathways for tumor treatment by addressing some of the limitations of traditional drugs. Liposomes have received much attention for their high biocompatibility, low toxicity, high inclusivity, and improved drug bioavailability. They are one of the most studied nanocarriers, changing the size and surface characteristics of liposomes to better fit the tumor environment by taking advantage of the unique pathophysiology of tumors. They can also be designed as tumor targeting drug delivery vehicles for the precise delivery of active drugs into tumor cells. This paper reviews the current development of liposome formulations, summarizes the characterization methods of liposomes, and proposes strategies to improve the effectiveness of tumor treatment. Finally, it provides an outlook on the challenges and future directions of the field. Graphical abstract.
Collapse
|
5
|
Zeinali M, Abbaspour-Ravasjani S, Ghorbani M, Babazadeh A, Soltanfam T, Santos AC, Hamishehkar H, Hamblin MR. Nanovehicles for co-delivery of anticancer agents. Drug Discov Today 2020; 25:1416-1430. [DOI: 10.1016/j.drudis.2020.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/26/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022]
|
6
|
Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 2019; 301:76-109. [PMID: 30890445 DOI: 10.1016/j.jconrel.2019.03.015] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Employing combination therapy has become obligatory in cancer cases exhibiting high tumor load, chemoresistant tumor population, and advanced disease stages. Realization of this fact has now led many of the combination oncotherapies to become an integral part of anticancer regimens. Combination oncotherapy may encompass a combination of anticancer agents belonging to a similar therapeutic category or that of different therapeutic categories (e.g. chemotherapy + gene therapy). Differences in the physicochemical properties, pharmacokinetics and biodistribution pattern of different payloads are the major constraints that are faced by combination chemotherapy. Concordant efforts in the field of nanotechnology and oncology have emerged with several approaches to solve the major issues encountered by combination therapy. Unique colloidal behaviors of various types of nanoparticles and differential targeting strategies have accorded an unprecedented ability to optimize combination oncotherapeutic delivery. Nanocarrier based delivery of the various types of payloads such as chemotherapeutic agents and other anticancer therapeutics such as small interfering ribonucleic acid (siRNA), chemosensitizers, radiosensitizers, and antiangiogenic agents have been addressed in the present review. Various nano-delivery systems like liposomes, polymeric nanoparticles, polymerosomes, dendrimers, micelles, lipid based nanoparticles, prodrug based nanocarriers, polymer-drug conjugates, polymer-lipid hybrid nanoparticles, carbon nanotubes, nanosponges, supramolecular nanocarriers and inorganic nanoparticles (gold nanoparticles, silver nanoparticles, magnetic nanoparticles and mesoporous silica based nanoparticles) that have been extensively explored for the formulation of multidrug delivery is an imperative part of discussion in the review. The present review features the outweighing benefits of combination therapy over mono-oncotherapy and discusses several existent nanoformulation strategies that facilitate a successful combination oncotherapy. Several obstacles that may impede in transforming nanotechnology-based combination oncotherapy from bench to bedside, and challenges associated therein have also been discussed in the present review.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
7
|
Shim G, Kim D, Lee S, Chang RS, Byun J, Oh YK. Staphylococcus aureus-mimetic control of antibody orientation on nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:267-277. [PMID: 30368001 DOI: 10.1016/j.nano.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
We designed a bacterio-mimetic nanoparticle that can noncovalently control the orientation of attached antibodies. Liposomes with Fc-binding peptide (FcBP), formulated using FcBP-conjugated PEGylated lipid, were used as model nanoparticles. Compared with control nanoparticles surface-modified with antibody covalently attached via maleimide functional groups (Mal-NPs), FcBP-capped nanoparticles (FcBP-NPs) exhibited greater binding affinity to the target protein. Human epidermal growth factor receptor 2 (HER2)-specific antibody-modified FcBP-NPs (HER2/FcBP-NPs) showed 5.3-fold higher binding affinity to HER2 than isotype IgG antibody-modified NPs, and 2.6-fold higher affinity compared with anti-HER2 antibody-conjugated Mal-NPs. Cellular uptake of HER2/FcBP-NPs in HER2-positive cells was significantly higher than that of other formulations. The biodistribution of HER2/FcBP-NPs was higher than that of antibody-conjugated NPs in HER2-positive tumor tissues, but not in HER2-negative tumors. Our findings suggest the potential of bacteriomimetic nanoparticles for controlling the orientation of antibody attachment. These nanoparticles may have diverse applications in nanomedicine, including drug delivery, molecular imaging, and diagnosis.
Collapse
Affiliation(s)
- Gayong Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangbin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Rae Sung Chang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Karpuz M, Silindir-Gunay M, Ozer AY. Current and Future Approaches for Effective Cancer Imaging and Treatment. Cancer Biother Radiopharm 2018; 33:39-51. [PMID: 29634415 DOI: 10.1089/cbr.2017.2378] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer poses a major health problem, not only due to cancer-related deaths but also because of treatment toxicities. This review discusses early diagnosis and strategies to overcome treatment difficulties, to facilitate recovery, and prevent deaths. Generally, noninvasive techniques such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission computed tomography (PET), and their hybrid systems, including SPECT/CT, PET/CT, and PET/MRI, are used in diagnosis of cancer. Cancer treatment in clinics still comprises conventional methods such as chemotherapy, radiotherapy, and surgery. However, these techniques and methods are often inadequate. Therefore, new approaches, including the formulation of actively and/or passively targeted nanosized drug delivery systems and combined treatment protocols, are being investigated. In this article, conventional cancer imaging and treatment are reviewed. In addition, the formulation of nanosized systems and their use in cancer treatment are discussed and combined diagnostic and therapeutic (theranostic) approach are proposed as additional cancer therapies.
Collapse
Affiliation(s)
- Merve Karpuz
- 1 Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University , Sihhiye, Ankara, Turkey .,2 Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University , Cigli, Izmir, Turkey
| | - Mine Silindir-Gunay
- 1 Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University , Sihhiye, Ankara, Turkey
| | - Asuman Yekta Ozer
- 1 Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University , Sihhiye, Ankara, Turkey
| |
Collapse
|
9
|
Pérard-Viret J, Quteishat L, Alsalim R, Royer J, Dumas F. Cephalotaxus Alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2017; 78:205-352. [PMID: 28838429 PMCID: PMC7110560 DOI: 10.1016/bs.alkal.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cephalotaxus alkaloids represent a family of plant secondary metabolites known for 60 years. Significant activity against leukemia in mice was demonstrated for extracts of Cephalotaxus. Cephalotaxine (CET) (1), the major alkaloid of this series was isolated from Cephalotaxus drupacea species by Paudler in 1963. The subsequent discovery of promising antitumor activity among new Cephalotaxus derivatives reported by Chinese, Japanese, and American teams triggered extensive structure elucidation and biological studies in this family. The structural feature of this cephalotaxane family relies mainly on its tetracyclic alkaloid backbone, which comprises an azaspiranic 1-azaspiro[4.4]nonane unit (rings C and D) and a benzazepine ring system (rings A and B), which is linked by its C3 alcohol function to a chiral oxygenated side chain by a carboxylic function alpha to a tetrasubstituted carbon center. The botanical distribution of these alkaloids is limited to the Cephalotaxus genus (Cephalotaxaceae). The scope of biological activities of the Cephalotaxus alkaloids is mainly centered on the antileukemic activity of homoharringtonine (HHT) (2), which in particular demonstrated marked benefits in the treatment of orphan myeloid leukemia and was approved as soon as 2009 by European Medicine Agency and by US Food and Drug Administration in 2012. Its exact mechanism of action was partly elucidated and it was early recognized that HHT (2) inhibited protein synthesis at the level of the ribosome machinery. Interestingly, after a latency period of two decades, the topic of Cephalotaxus alkaloids reemerged as a prolific source of new natural structures. To date, more than 70 compounds have been identified and characterized. Synthetic studies also regained attention during the past two decades, and numerous methodologies were developed to access the first semisynthetic HHT (2) of high purity suitable for clinical studies, and then high grade enantiomerically pure CET (1), HHT (2), and analogs.
Collapse
Affiliation(s)
- Joëlle Pérard-Viret
- Université Paris Descartes, CNRS, Université Sorbonne Paris Cité, Paris, France
| | - Laith Quteishat
- Université Paris Sud, CNRS, Université Paris Saclay, Châtenay-Malabry, France
| | - Rana Alsalim
- Université Paris Sud, CNRS, Université Paris Saclay, Châtenay-Malabry, France
| | - Jacques Royer
- Université Paris Descartes, CNRS, Université Sorbonne Paris Cité, Paris, France
| | - Françoise Dumas
- Université Paris Sud, CNRS, Université Paris Saclay, Châtenay-Malabry, France
| |
Collapse
|
10
|
Chen D, Xie F, Sun D, Yin C, Gao J, Zhong Y. Nanomedicine-Mediated Combination Drug Therapy in Tumor. ACTA ACUST UNITED AC 2017. [DOI: 10.2174/1874844901704010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background:Combined chemotherapy has gradually become one of the conventional methods of cancer treatment due to the limitation of monotherapy. However, combined chemotherapy has several drawbacks that may lead to treatment failure because drug synergy cannot be guaranteed, achievement of the optimal synergistic drug ratio is difficult, and drug uptake into the tumor is inconsistent. Nanomedicine can be a safe and effective form of drug delivery, which may address the problems associated with combination chemotherapy.Objective:This review summarizes the recent research in this area, including the use of nanoparticles, liposomes, lipid-polymer hybrid nanoparticles, and polymeric micelles, and provides new approach for combined chemotherapy.Methods:By collecting and referring to the related literature in recent years.Results:Compared with conventional drugs, nanomedicine has the following advantages: it increases bioavailability of poorly soluble drugs, prolongs drug circulation timein vivo, and permits multiple drug loading, all of which could improve drug efficacy and reduce toxicity. Furthermore, nanomedicine can maintain the synergistic ratio of the drugs; deliver the drugs to the tumor at the same time, such that two or more drugs of tumor treatment achieve synchronization in time and space; and alter the pharmacokinetics and distribution profilein vivosuch that these are dependent on nanocarrier properties (rather than being dependent on the drugs themselves).Conclusion:Therefore, nanomedicine-mediated combination drug therapy is promising in the treatment of tumors.
Collapse
|
11
|
Shim G, Yu YH, Lee S, Kim J, Oh YK. Surface-modified liposomes for syndecan 2–targeted delivery of edelfosine. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
12
|
Nanoparticle-based combination drug delivery systems for synergistic cancer treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0252-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Jeong K, Kang CS, Kim Y, Lee YD, Kwon IC, Kim S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Lett 2016; 374:31-43. [DOI: 10.1016/j.canlet.2016.01.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
14
|
Linton SS, Sherwood SG, Drews KC, Kester M. Targeting cancer cells in the tumor microenvironment: opportunities and challenges in combinatorial nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:208-22. [PMID: 26153136 DOI: 10.1002/wnan.1358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/01/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
Cancer therapies of the future will rely on synergy between drugs delivered in combination to achieve both maximum efficacy and decreased toxicity. Nanoscale drug delivery vehicles composed of highly tunable nanomaterials ('nanocarriers') represent the most promising approach to achieve simultaneous, cell-selective delivery of synergistic ratios of combinations of drugs within solid tumors. Nanocarriers are currently being used to co-encapsulate and deliver synergistic ratios of multiple anticancer drugs to target cells within solid tumors. Investigators exploit the unique environment associated with solid tumors, termed the tumor microenvironment (TME), to make 'smart' nanocarriers. These sophisticated nanocarriers exploit the pathological conditions in the TME, thereby creating highly targeted nanocarriers that release their drug payload in a spatially and temporally controlled manner. The translational and commercial potential of nanocarrier-based combinatorial nanomedicines in cancer therapy is now a reality as several companies have initiated human clinical trials.
Collapse
Affiliation(s)
- Samuel S Linton
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - Samantha G Sherwood
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Kelly C Drews
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|