1
|
Zimmermann I, Eilts F, Galler AS, Bayer J, Hober S, Berensmeier S. Immobilizing calcium-dependent affinity ligand onto iron oxide nanoparticles for mild magnetic mAb separation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00864. [PMID: 39691100 PMCID: PMC11647653 DOI: 10.1016/j.btre.2024.e00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024]
Abstract
Current downstream processing of monoclonal antibodies (mAbs) is limited in throughput and requires harsh pH conditions for mAb elution from Protein A affinity ligands. The use of an engineered calcium-dependent ligand (ZCa) in magnetic separation applications promises improvements due to mild elution conditions, fast processability, and process integration prospects. In this work, we synthesized and evaluated three magnetic nanoparticle types immobilized with the cysteine-tagged ligand ZCa-cys. Ligand homodimers were physically immobilized onto bare iron oxide nanoparticles (MNP) and MNP coated with tetraethyl orthosilicate (MNP@TEOS). In contrast, ZCa-cys was covalently and more site-directedly immobilized onto MNP coated with (3-glycidyloxypropyl)trimethoxysilane (MNP@GPTMS) via a preferential cysteine-mediated epoxy ring opening reaction. Both coated MNP showed suitable characteristics, with MNP@TEOS@ZCa-cys demonstrating larger immunoglobulin G (IgG) capacity (196 mg g -1) and the GPTMS-coated particles showing faster magnetic attraction and higher IgG recovery (88 %). The particles pave the way for the development of calcium-dependent magnetic separation processes.
Collapse
Affiliation(s)
- Ines Zimmermann
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Friederike Eilts
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Anna-Sophia Galler
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Jonas Bayer
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, 85748 Garching, Germany
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, 85748 Garching, Germany
| |
Collapse
|
2
|
Andrade GCD, Mota MF, Moreira-Ferreira DN, Silva JL, de Oliveira GAP, Marques MA. Protein aggregation in health and disease: A looking glass of two faces. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 145:145-217. [PMID: 40324846 DOI: 10.1016/bs.apcsb.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Protein molecules organize into an intricate alphabet of twenty amino acids and five architecture levels. The jargon "one structure, one functionality" has been challenged, considering the amount of intrinsically disordered proteins in the human genome and the requirements of hierarchical hetero- and homo-protein complexes in cell signaling. The assembly of large protein structures in health and disease is now viewed through the lens of phase separation and transition phenomena. What drives protein misfolding and aggregation? Or, more fundamentally, what hinders proteins from maintaining their native conformations, pushing them toward aggregation? Here, we explore the principles of protein folding, phase separation, and aggregation, which hinge on crucial events such as the reorganization of solvents, the chemical properties of amino acids, and their interactions with the environment. We focus on the dynamic shifts between functional and dysfunctional states of proteins and the conditions that promote protein misfolding, often leading to disease. By exploring these processes, we highlight potential therapeutic avenues to manage protein aggregation and reduce its harmful impacts on health.
Collapse
Affiliation(s)
- Guilherme C de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Dinarte N Moreira-Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Prout-Holm RA, van Walstijn CC, Hitsman A, Rowley MJ, Olsen JE, Page BDG, Frankel A. Investigating Protein Binding with the Isothermal Ligand-induced Resolubilization Assay. Chembiochem 2024; 25:e202300773. [PMID: 38266114 DOI: 10.1002/cbic.202300773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Target engagement assays typically detect and quantify the direct physical interaction of a protein of interest and its ligand through stability changes upon ligand binding. Commonly used target engagement methods detect ligand-induced stability by subjecting samples to thermal or proteolytic stress. Here we describe a new variation to these approaches called Isothermal Ligand-induced Resolubilization Assay (ILIRA), which utilizes lyotropic solubility stress to measure ligand binding through changes in target protein solubility. We identified distinct buffer systems and salt concentrations that compromised protein solubility for four diverse proteins: dihydrofolate reductase (DHFR), nucleoside diphosphate-linked moiety X motif 5 (NUDT5), poly [ADP-ribose] polymerase 1 (PARP1), and protein arginine N-methyltransferase 1 (PRMT1). Ligand-induced solubility rescue was demonstrated for these proteins, suggesting that ILIRA can be used as an additional target engagement technique. Differences in ligand-induced protein solubility were assessed by Coomassie blue staining for SDS-PAGE and dot blot, as well as by NanoOrange, Thioflavin T, and Proteostat fluorescence, thus offering flexibility for readout and assay throughput.
Collapse
Affiliation(s)
- Riley A Prout-Holm
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Cerissa C van Walstijn
- Faculty of Science, Utrecht University, Heidelberglaan 8, 3584 CS, Utrecht, The Netherlands
| | - Alana Hitsman
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Michael J Rowley
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jonas E Olsen
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Zhang T, Li B, Dong W, Wan Y, Li Y. Acidic pH or salt treatment can convert soluble antibody aggregates in culture harvest into monomers and improve Protein A chromatography step yield. Protein Expr Purif 2024; 215:106391. [PMID: 37939750 DOI: 10.1016/j.pep.2023.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
While purifying a regular monospecific antibody, we found that the Protein A step yield was much lower than expected. Further studies revealed that the antibody formed large-size aggregates that did not bind to the Protein A resin, hence leading to dropped recovery. In an attempt to solve this low yield issue, we found that mildly acidic pH or ammonium sulfate treatment can partially convert the aggregates into monomers. In addition, when acidic pH treated culture harvest was processed by Protein A chromatography, the yield was restored to the normal range, suggesting that the monomers recovered from aggregates regained Protein A binding capability. Thus, low pH treatment of culture harvest can be potentially used as a general approach for improving Protein A step yield in cases where non-binding antibody aggregates are formed through noncovalent interactions.
Collapse
Affiliation(s)
- Ting Zhang
- Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Bin Li
- Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Wanyuan Dong
- Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Yan Wan
- Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| | - Yifeng Li
- Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| |
Collapse
|
5
|
Imamura H, Ooishi A, Honda S. Getting Smaller by Denaturation: Acid-Induced Compaction of Antibodies. J Phys Chem Lett 2023; 14:3898-3906. [PMID: 37093025 PMCID: PMC10150727 DOI: 10.1021/acs.jpclett.3c00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Protein denaturation is a ubiquitous process that occurs both in vitro and in vivo. While our molecular understanding of the denatured structures of proteins is limited, it is commonly accepted that the loss of unique intramolecular contacts makes proteins larger. Herein, we report compaction of the immunoglobulin G1 (IgG1) protein upon acid denaturation. Small-angle X-ray scattering coupled with size exclusion chromatography revealed that IgG1 radii of gyration at pH 2 were ∼75% of those at a neutral pH. Scattering profiles showed a compact globular shape, supported by analytical ultracentrifugation. The acid denaturation of proteins with a decrease in size is energetically costly, and acid-induced compaction requires an attractive force for domain reorientation. Such intramolecular aggregation may be widespread in immunoglobulin proteins as noncanonical structures. Herein, we discuss the potential biological significance of these noncanonical structures of antibodies.
Collapse
Affiliation(s)
- Hiroshi Imamura
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Department
of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
- Department
of Bio-Science, Nagahama Institute of Bio-Science
and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Ayako Ooishi
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
6
|
Ahmad A, Mishra R. Polyol and sugar osmolytes stabilize the molten globule state of α-lactalbumin and inhibit amyloid fibril formation. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140853. [PMID: 36096464 DOI: 10.1016/j.bbapap.2022.140853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Protein misfolding and aggregation are associated with several human diseases such as Alzheimer's, Parkinson's, prion related disorders, type-II diabetes, etc. Different strategies using molecular chaperones, synthetic and naturally occurring small molecules, osmolytes, etc. have been used to prevent protein aggregation and amyloid fibril formation. In this study, we have used bovine α-lactalbumin at pH 1.6, 37 °C, and shaking conditions to promote amyloid fibril formation. Polyol and sugar osmolytes like glycerol, sorbitol, and trehalose have been used to inhibit the fibrillation of a number of proteins. In the present work, amyloid fibril formation of α-lactalbumin has been shown by ThT assay and AFM, while changes in the secondary structure during fibrillation has been followed by circular dichroism spectroscopy. Our results show that glycerol, sorbitol, and trehalose affect amyloid fibril formation of α-lactalbumin in a concentration-dependent manner. There is a delay in the lag phase of amyloid fibril formation in sorbitol and trehalose and complete inhibition in 6 M glycerol. Our results indicate that delay in the lag phase and inhibition of amyloid fibril formation are due to the stabilization of molten globule state by these osmolytes. At pH 1.6, the molten globule as well as the amyloid fibrils bind to ANS. However, when pH was shifted from 1.6 to 7, only the oligomeric and the fibrillar species bind to ANS due to refolding of molten globule state. The outcome of this study might be useful in designing small molecules which may stabilize the intermediate states, thus preventing amyloid fibril formation.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
7
|
Abstract
The distortions in the high-order structure of therapeutic monoclonal antibodies (mAbs) under different environmental conditions acutely affect mAb stability, resulting in altered safety, efficacy, and shelf-life profiles. The overall stability of mAbs depends on many factors, and it requires complementary techniques for an in-depth analysis. The stability of mAbs can be characterized by differential centrifugal sedimentation (DCS), differential scanning calorimetry (DSC), differential scanning fluorimetry (DSF), and size exclusion chromatography (SEC) techniques. In this report, temperature-ramped dynamic light scattering (DLS), and circular dichroism (CD) spectroscopy were employed as complementary tools to show how temperature and pH affect the aggregation of a model mAb, trastuzumab, in solution. The results showed that the aggregation onset temperature of trastuzumab defined by DLS was 75 °C, which decreases the amount of β-sheets and causes a slight increase in helix structures. Moreover, the melting temperature of trastuzumab was determined to be between 80–83 °C by temperature-ramped CD spectrophotometry, which is in line with the Tm of trastuzumab’s Fab region tested with DSC. Thus, unfolding and aggregation of trastuzumab start simultaneously at 75 °C, and unfolding triggers the aggregation. The temperature-ramped CD and DLS methods are robust tools to determine the thermal behavior of biosimilars in various solution conditions. Their complementary usage provides solid scientific background for regulatory applications and a better understanding of mAb instability and its relationship with structural changes.
Collapse
|
8
|
Bansal R, Jha SK, Jha NK. Size-based Degradation of Therapeutic Proteins - Mechanisms, Modelling and Control. Biomol Concepts 2021; 12:68-84. [PMID: 34146465 DOI: 10.1515/bmc-2021-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 02/02/2023] Open
Abstract
Protein therapeutics are in great demand due to their effectiveness towards hard-to-treat diseases. Despite their high demand, these bio-therapeutics are very susceptible to degradation via aggregation, fragmentation, oxidation, and reduction, all of which are very likely to affect the quality and efficacy of the product. Mechanisms and modelling of these degradation (aggregation and fragmentation) pathways is critical for gaining a deeper understanding of stability of these products. This review aims to provide a summary of major developments that have occurred towards unravelling the mechanisms of size-based protein degradation (particularly aggregation and fragmentation), modelling of these size-based degradation pathways, and their control. Major caveats that remain in our understanding and control of size-based protein degradation have also been presented and discussed.
Collapse
Affiliation(s)
- Rohit Bansal
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
9
|
Das TK, Narhi LO, Sreedhara A, Menzen T, Grapentin C, Chou DK, Antochshuk V, Filipe V. Stress Factors in mAb Drug Substance Production Processes: Critical Assessment of Impact on Product Quality and Control Strategy. J Pharm Sci 2020; 109:116-133. [DOI: 10.1016/j.xphs.2019.09.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
|
10
|
Wälchli R, Ressurreição M, Vogg S, Feidl F, Angelo J, Xu X, Ghose S, Jian Li Z, Le Saoût X, Souquet J, Broly H, Morbidelli M. Understanding mAb aggregation during low pH viral inactivation and subsequent neutralization. Biotechnol Bioeng 2019; 117:687-700. [PMID: 31784982 DOI: 10.1002/bit.27237] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
Monoclonal antibodies (mAbs) and related recombinant proteins continue to gain importance in the treatment of a great variety of diseases. Despite significant advances, their manufacturing can still present challenges owing to their molecular complexity and stringent regulations with respect to product purity, stability, safety, and so forth. In this context, protein aggregates are of particular concern due to their immunogenic potential. During manufacturing, mAbs routinely undergo acidic treatment to inactivate viral contamination, which can lead to their aggregation and thereby to product loss. To better understand the underlying mechanism so as to propose strategies to mitigate the issue, we systematically investigated the denaturation and aggregation of two mAbs at low pH as well as after neutralization. We observed that at low pH and low ionic strength, mAb surface hydrophobicity increased whereas molecular size remained constant. After neutralization of acidic mAb solutions, the fraction of monomeric mAb started to decrease accompanied by an increase on average mAb size. This indicates that electrostatic repulsion prevents denatured mAb molecules from aggregation under acidic pH and low ionic strength, whereas neutralization reduces this repulsion and coagulation initiates. Limiting denaturation at low pH by d-sorbitol addition or temperature reduction effectively improved monomer recovery after neutralization. Our findings might be used to develop innovative viral inactivation procedures during mAb manufacturing that result in higher product yields.
Collapse
Affiliation(s)
- Ruben Wälchli
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | - Mariana Ressurreição
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | - Sebastian Vogg
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | - Fabian Feidl
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | - James Angelo
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts
| | - Xavier Le Saoût
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Vaud, Switzerland
| | - Jonathan Souquet
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Vaud, Switzerland
| | - Hervé Broly
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Vaud, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| |
Collapse
|
11
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
12
|
|
13
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
14
|
Oyetayo OO, Méndez-Lucio O, Bender A, Kiefer H. Towards understanding polyol additive effects on the pH shift-induced aggregation of a monoclonal antibody using high throughput screening and quantitative structure-activity modeling. Int J Pharm 2017; 530:165-172. [DOI: 10.1016/j.ijpharm.2017.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/16/2022]
|
15
|
Fate of a Stressed Therapeutic Antibody Tracked by Fluorescence Correlation Spectroscopy: Folded Monomers Survive Aggregation. J Phys Chem B 2017; 121:8085-8093. [DOI: 10.1021/acs.jpcb.7b05603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation. Eur J Pharm Biopharm 2016; 107:310-20. [DOI: 10.1016/j.ejpb.2016.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
|