1
|
Wood CC, Patel KG, Weber VL, Osakwe AR, Manovacia Moreno NP, Broich ML, Bledsoe JC, Bramhall JA, Klepov VV, Bell S, Locklin JJ. Development of impact resistant immediate release amorphous solid dispersion via hot-melt extrusion and injection molding. Int J Pharm 2025; 680:125746. [PMID: 40449639 DOI: 10.1016/j.ijpharm.2025.125746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/22/2025] [Accepted: 05/19/2025] [Indexed: 06/03/2025]
Abstract
Immediate release (IR) amorphous solid dispersion (ASD) tablets are currently manufactured via a multi-step process which includes hot melt extrusion (HME), grinding of the extrudate, sieving to achieve narrow particle size, blending with other excipients, and finally, direct compression. Due to the multi-step nature of the process, the production time and costs are much higher for ASD tablets than conventional tablets. Thus, a new and more efficient method of IR-ASD tablet production using HME coupled with injection molding (IM) was explored as a viable alternative. Moxidectin, a low-dosage, high-potency BCS class II drug was used as a model API for formulation development. Interestingly, these tablets were also found to be porous (5.01 % φ) due to thermal decomposition of NaHCO3. The IM tablets were measured against United States Pharmacopeia (USP) quality standards for content uniformity, tablet friability, and dissolution. The content uniformity of these tablets was ± 2 % of the label claim, and over 90 % API release was observed within 1 h in 0.74 % Tween 20 media. PXRD diffractograms revealed that the stability of the ASD at room temperature conditions was excellent. Placebo and API-loaded formulations were extruded and injection molded into circular and unique geometries using molds produced by stereolithography. Lastly, the HME-IM tablet formulations were observed to be extremely tough and would be an excellent candidate in the production of abuse-deterrent formulations for controlled substances.
Collapse
Affiliation(s)
- Caitlin C Wood
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar St., Athens, GA 30602, USA; New Materials Institute, University of Georgia, 220 Riverbend Rd., Athens, GA 30602, USA
| | - Kush G Patel
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar St., Athens, GA 30602, USA; New Materials Institute, University of Georgia, 220 Riverbend Rd., Athens, GA 30602, USA
| | - Virginia L Weber
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar St., Athens, GA 30602, USA; New Materials Institute, University of Georgia, 220 Riverbend Rd., Athens, GA 30602, USA
| | - Adaeze R Osakwe
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar St., Athens, GA 30602, USA; New Materials Institute, University of Georgia, 220 Riverbend Rd., Athens, GA 30602, USA
| | - Nohora P Manovacia Moreno
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar St., Athens, GA 30602, USA; New Materials Institute, University of Georgia, 220 Riverbend Rd., Athens, GA 30602, USA
| | - Michael L Broich
- New Materials Institute, University of Georgia, 220 Riverbend Rd., Athens, GA 30602, USA
| | - Joshua C Bledsoe
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar St., Athens, GA 30602, USA; New Materials Institute, University of Georgia, 220 Riverbend Rd., Athens, GA 30602, USA
| | - Jessica A Bramhall
- New Materials Institute, University of Georgia, 220 Riverbend Rd., Athens, GA 30602, USA
| | - Vladislav V Klepov
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar St., Athens, GA 30602, USA
| | - Sammy Bell
- New Materials Institute, University of Georgia, 220 Riverbend Rd., Athens, GA 30602, USA
| | - Jason J Locklin
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar St., Athens, GA 30602, USA; School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, 597 D.W. Brooks Dr., Athens, GA 30602, USA; New Materials Institute, University of Georgia, 220 Riverbend Rd., Athens, GA 30602, USA
| |
Collapse
|
2
|
Rathi R, Singh I, Sangnim T, Huanbutta K. Development and Evaluation of Fluconazole Co-Crystal for Improved Solubility and Mechanical Properties. Pharmaceutics 2025; 17:371. [PMID: 40143034 PMCID: PMC11945885 DOI: 10.3390/pharmaceutics17030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Fluconazole (FLZ) is a broad-spectrum anti-fungal drug presenting poor flowability, mechanical properties, and limited aqueous solubility. These issues pose challenges for the handling and manufacturing of dosage forms of FLZ. The current research aimed to develop fluconazole co-crystal (CC) for improving its aqueous solubility, flowability, and mechanical properties. (2) Methods: The fluconazole benzoic acid (FLZ-BA) co-crystal was prepared using the solvent evaporation technique. The prepared co-crystal was characterized for drug content, solubility, anti-fungal activity, dissolution, and stability. DSC (Differential Scanning Calorimetry), PXRD (Powder X-Ray Diffraction), SEM (Scanning Electron Microscopy), and FTIR (Fourier Transmission Infrared) spectroscopy were carried out to confirm the co-crystal formation. The co-crystal was further evaluated for their flow characteristics and mechanical properties via CTC (compressibility, tabletability, and compactibility), Heckel, and Kawakita analysis. (3) Results: The CC showed 69.51% drug content and 13-fold greater aqueous solubility than pure FLZ. The DSC thermogram showed a sharp endothermic peak between the parent components, a distinct PXRD pattern was observed, and the SEM analysis revealed a different morphology, confirming the formation of co-crystal (new crystalline form). The CC showed immediate drug release and was found to more stable, and less hygroscopic than FLZ alone. The CC revealed better flowability, tabletability (tensile strength), compressibility, and compactibility. Moreover, Heckel and Kawakita analysis indicated the co-crystal to deform plastically, favoring improved compression. (4) Conclusions: The immediate drug release capabilities, improved hygroscopic stability, solubility, better antifungal activity, and flowability make FLZ-BA co-crystal a suitable candidate for the preparation of an immediate drug release dosage form. The study also revealed the application of co-crystal for improving the flowability and mechanical properties.
Collapse
Affiliation(s)
- Ritu Rathi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.R.); (I.S.)
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.R.); (I.S.)
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Mueang Chonburi 20131, Thailand;
| | - Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Mueang Pathum Thani 12000, Thailand
| |
Collapse
|
3
|
Setoguchi S, Goto S, Matsunaga K. Potential of Powder Rheology for Detecting Unforeseen Cross-Contamination of Foreign Active Pharmaceutical Ingredients. AAPS PharmSciTech 2024; 25:138. [PMID: 38890193 DOI: 10.1208/s12249-024-02856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Unexpected cross-contamination by foreign components during the manufacturing and quality control of pharmaceutical products poses a serious threat to the stable supply of drugs and the safety of customers. In Japan, in 2020, a mix-up containing a sleeping drug went undetected by liquid chromatography during the final quality test because the test focused only on the main active pharmaceutical ingredient (API) and known impurities. In this study, we assessed the ability of a powder rheometer to analyze powder characteristics in detail to determine whether it can detect the influence of foreign APIs on powder flow. Aspirin, which was used as the host API, was combined with the guest APIs (acetaminophen from two manufacturers and albumin tannate) and subsequently subjected to shear and stability tests. The influence of known lubricants (magnesium stearate and leucine) on powder flow was also evaluated for standardized comparison. Using microscopic morphological analysis, the surface of the powder was observed to confirm physical interactions between the host and guest APIs. In most cases, the guest APIs were statistically detected due to characteristics such as their powder diameter, pre-milling, and cohesion properties. Furthermore, we evaluated the flowability of a formulation incorporating guest APIs for direct compression method along with additives such as microcrystalline cellulose, potato starch, and lactose. Even in the presence of several additives, the influence of the added guest APIs was successfully detected. In conclusion, powder rheometry is a promising method for ensuring stable product quality and reducing the risk of unforeseen cross-contamination by foreign APIs.
Collapse
Affiliation(s)
- Shuichi Setoguchi
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka- shi, Fukuoka, 814-0180, Japan.
| | - Shotaro Goto
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka- shi, Fukuoka, 814-0180, Japan
| | - Kazuhisa Matsunaga
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka- shi, Fukuoka, 814-0180, Japan
| |
Collapse
|
4
|
Su M, Zhang J, Li Z, Wei Y, Zhang J, Pang Z, Gao Y, Qian S, Heng W. Recent advances on small molecular gels: formation mechanism and their application in pharmaceutical fields. Expert Opin Drug Deliv 2022; 19:1597-1617. [PMID: 36259939 DOI: 10.1080/17425247.2022.2138329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION As an essential complement to chemically cross-linked macromolecular gels, drug delivery systems based on small molecular gels formed under the driving forces of non-covalent interactions are attracting considerable research interest due to their potential advantages of high structural functionality, lower biological toxicity, reversible stimulus-response, and so on. AREA COVERED The present review summarizes recent advances in small molecular gels and provides their updates as a comprehensive overview in terms of gelation mechanism, gel properties, and physicochemical characterizations. In particular, this manuscript reviews the effects of drug-based small molecular gels on the drug development and their potential applications in the pharmaceutical fields. EXPERT OPINION Small molecular-based gel systems, constructed by inactive compounds or active pharmaceutical ingredients, have been extensively studied as carriers for drug delivery in pharmaceutical field, such as oral formulations, injectable formulations, and transdermal formulations. However, the construction of such gel systems yet faces several challenges such as rational and efficient design of functional gelators and the great occasionality of drug-based gel formation. Thus, a deeper understanding of the gelation mechanism and its relationship with gel properties will be conducive to the construction of small molecular gels systems and their future application.
Collapse
Affiliation(s)
- Meiling Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingwen Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zudi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Zhang W, Sluga KK, Yost E, Phan J, Nagapudi K, Helen Hou H. Impact of Drug Loading on the Compaction Properties of Itraconazole-PVPVA Amorphous Solid Dispersions. Int J Pharm 2022; 629:122366. [DOI: 10.1016/j.ijpharm.2022.122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
6
|
Quality by Design (QbD) application for the pharmaceutical development process. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Efficient development of sorafenib tablets with improved oral bioavailability enabled by coprecipitated amorphous solid dispersion. Int J Pharm 2021; 610:121216. [PMID: 34688849 DOI: 10.1016/j.ijpharm.2021.121216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022]
Abstract
An amorphous solid dispersion (ASD) of sorafenib (SOR) in hydroxypropyl methylcellulose acetate succinate (HPMC-AS), prepared by coprecipitation, was used to develop an immediate release tablet with improved oral bioavailability. An ASD of 40% drug loading with HPMC-AS (M grade), which exhibited superior physical stability and enhanced dissolution, was selected for tablet development. Systematic characterization of powder properties of the ASD led to the choice of the dry granulation process to overcome poor flowability of the ASD. The designed tablet formulation was evaluated using a material-sparing and expedited approach to optimize compaction conditions for manufacturing ASD tablets with low friability and rapid disintegration. The resulting SOR ASD tablets exhibited approximately 50% higher relative bioavailability in dogs than the marketed SOR tablet product, Nexavar®.
Collapse
|
8
|
Direct compression tablet formulation of celecoxib enabled with a pharmaceutical solvate. Int J Pharm 2021; 596:120239. [PMID: 33484921 DOI: 10.1016/j.ijpharm.2021.120239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 01/01/2023]
Abstract
Celecoxib, an anti-inflammatory drug for pain and arthritis, is currently only available in capsule form. To reduce the onset time for a faster action and to lower the manufacturing cost, the tablet dosage form is more preferred. However, the commercial celecoxib (Form III) is not suitable for direct compression (DC) tablet manufacture due to poor flow, low bulk density, and tablet lamination. In this work, we overcome these challenges using a pharmaceutically acceptable dimethyl sulfoxide (DMSO) solvate of celecoxib. Aided with the DMSO solvate, an acceptable DC tablet formulation was successfully developed to manufacture tablets containing 200 mg celecoxib, with satisfactory manufacturability, disintegration, and in vitro dissolution performance.
Collapse
|
9
|
Li C, Wu D, Li J, Ji X, Qi L, Sun Q, Wang A, Xie C, Gong J, Chen W. Multicomponent crystals of clotrimazole: a combined theoretical and experimental study. CrystEngComm 2021. [DOI: 10.1039/d1ce00934f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Compared with clotrimazole, some multicomponent crystals showed an improvement in solubility and dissolution rate.
Collapse
Affiliation(s)
- Chang Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Di Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiulong Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xu Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Luguang Qi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qin Sun
- Shenyang Sinochem Agrochemicals R&D Co., Ltd, Shenyang, Liaoning, 110021 P. R. China
| | - Aiyu Wang
- Shandong Lukang Pharmaceutical Co., Ltd, Jining, Shandong, 272104, P. R. China
| | - Chuang Xie
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Junbo Gong
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Wei Chen
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
10
|
The efficient development of a sildenafil orally disintegrating tablet using a material sparing and expedited approach. Int J Pharm 2020; 589:119816. [PMID: 32877727 DOI: 10.1016/j.ijpharm.2020.119816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 12/17/2022]
Abstract
The purpose of this work is to develop an orally disintegrating tablet (ODT) of sildenafil (SIL) using a materials sparing and expedited development approach, enabled by the materials science tetrahedron principle and predictive technologies. To overcome the problem of bitter taste of SIL, an artificial sweetener, acesulfame (Acs), was used to form a sweet SIL salt (SIL-Acs) using an effective reaction crystallization process to prepare phase pure bulk SIL-Acs with a high yield. The SIL-Acs salt shows excellent thermal stability (Tm = 200.2 °C), low hygroscopicity, and acceptable dissolution rate. Formulation and process parameters were optimized based on powder flowability, tabletability, tablet disintegration time, and expedited friability. A particle engineering approach, i.e., nanocoating, was employed to attain adequate flowability of the SIL-Acs ODT formulation required for the direct compression process. The wide range of compression forces for making tablets exhibiting both fast disintegration time (≤30 s) and low friability (≤0.8%) suggested excellent flexibility in manufacturing SIL-Acs ODT. The development of a sildenafil ODT formulation, including solid form selection and characterization, crystallization method development, formulation development, and DC process optimization, only required 5 g of SIL citrate and 2 weeks of time.
Collapse
|