1
|
Geldenhuys WJ, Wilson GN, Hernandez K, Monaghan K, Smith K, Cicala DS, Poling TJ, Walton JC, Han PC, Huber JD. Loss of the mitochondrial protein mitoNEET in mice is associated with cognitive impairments and increased neuroinflammation. J Alzheimers Dis 2025; 103:429-440. [PMID: 39639511 DOI: 10.1177/13872877241302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Mitochondrial dysfunction is implicated in several neurodegenerative diseases associated with memory and cognitive deficits, including Alzheimer's disease. Changes in bioenergetic function results in reactive oxygen species, oxidative damage and consequently neuroinflammation, which contributes to neuronal cell loss. OBJECTIVE In this study, we evaluated the impact of the loss of the redox active [2Fe-2S] mitochondrial-associated protein mitoNEET (CISD1) on neuroinflammation and cognition using an age-appropriate preclinical model. While associations between neuroinflammation and poor cognitive impacts have been shown in recent work, little has been done to assess whether loss of mitoNEET is associated with changes in neuroinflammatory markers or negative cognitive-behavioral outcomes. METHODS Using 9-11-month-old mitoNEET knockout (CISD1-/-) and wild-type mice, we conducted a battery of cognitive tests to assess the impact of mitoNEET loss on performance. We then histologically evaluated the effect of absence of mitoNEET on markers of neuroinflammation in the aged brain. RESULTS We found loss of mitoNEET in mice was associated with a significant reduction in willingness to explore within an open field and impaired short-term spatial working memory in the Y-maze. We also found a significant reduction in novel object recognition memory that was gene-dependent and accompanied by reduced c-fos expression in hippocampus and cortical regions. CONCLUSIONS Our findings indicate that mitoNEET loss is significantly associated with impairments in cognitive-behavioral and neuroinflammatory outcomes; specifically, learning and memory, anxiety-like behaviors, neuroinflammation, and neural activation. This is the first study to demonstrate cognitive-associated behavioral deficits with neuroinflammation in the mitoNEET knockout mouse model.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Gina N Wilson
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
- Rockerfeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Katrina Hernandez
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Kailee Monaghan
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Kaitlynn Smith
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Dominick S Cicala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Terri J Poling
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - James C Walton
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
- Rockerfeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Peng Cheng Han
- Department of Pathology, Anatomy and Laboratory Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
2
|
McCall JL, Geldenhuys WJ, Robinson LJ, Witt MR, Gannett PM, Söderberg BCG, Blair HC, Soboloff J, Barnett JB. Preclinical evaluation of ELP-004 in mice. Pharmacol Res Perspect 2024; 12:e1230. [PMID: 38940379 PMCID: PMC11212004 DOI: 10.1002/prp2.1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 06/29/2024] Open
Abstract
This study provides a detailed understanding of the preclinical pharmacokinetics and metabolism of ELP-004, an osteoclast inhibitor in development for the treatment of bone erosion. Current treatments for arthritis, including biological disease-modifying antirheumatic drugs, are not well-tolerated in a substantial subset of arthritis patients and are expensive; therefore, new treatments are needed. Pharmacokinetic parameters of ELP-004 were tested with intravenous, oral, and subcutaneous administration and found to be rapidly absorbed and distributed. We found that ELP-004 was non-mutagenic, did not induce chromosome aberrations, non-cardiotoxic, and had minimal off-target effects. Using in vitro hepatic systems, we found that ELP-004 is primarily metabolized by CYP1A2 and CYP2B6 and predicted metabolic pathways were identified. Finally, we show that ELP-004 inhibits osteoclast differentiation without suppressing overall T-cell function. These preclinical data will inform future development of an oral compound as well as in vivo efficacy studies in mice.
Collapse
Affiliation(s)
- Jamie L. McCall
- Department of Microbiology, Immunology, and Cell BiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- ExesaLibero Pharma, Inc.MorgantownWest VirginiaUSA
| | - Werner J. Geldenhuys
- Department of Pharmaceutical SciencesWest Virginia University School of PharmacyMorgantownWest VirginiaUSA
| | - Lisa J. Robinson
- Department of PathologyWest Virginia School of MedicineMorgantownWest VirginiaUSA
- Present address:
Department of Pathology, Microbiology, and ImmunologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Michelle R. Witt
- Department of Microbiology, Immunology, and Cell BiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Department of PathologyWest Virginia School of MedicineMorgantownWest VirginiaUSA
| | - Peter M. Gannett
- College of PharmacyNova Southeastern UniversityFt. LauderdaleFloridaUSA
| | - Björn C. G. Söderberg
- C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Harry C. Blair
- Departments of Pathology and Cell BiologyThe Pittsburgh VA Medical Center and the University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jonathan Soboloff
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular BiologyLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - John B. Barnett
- Department of Microbiology, Immunology, and Cell BiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- ExesaLibero Pharma, Inc.MorgantownWest VirginiaUSA
| |
Collapse
|
3
|
Tam E, Sweeney G. MitoNEET Provides Cardioprotection via Reducing Oxidative Damage and Conserving Mitochondrial Function. Int J Mol Sci 2023; 25:480. [PMID: 38203651 PMCID: PMC10779211 DOI: 10.3390/ijms25010480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Cardiometabolic diseases exert a significant health impact, leading to a considerable economic burden globally. The metabolic syndrome, characterized by a well-defined cluster of clinical parameters, is closely linked to an elevated risk of cardiovascular disease. Current treatment strategies often focus on addressing individual aspects of metabolic syndrome. We propose that exploring novel therapeutic approaches that simultaneously target multiple facets may prove more effective in alleviating the burden of cardiometabolic disease. There is a growing body of evidence suggesting that mitochondria can serve as a pivotal target for the development of therapeutics aimed at resolving both metabolic and vascular dysfunction. MitoNEET was identified as a binding target for the thiazolidinedione (TZD) class of antidiabetic drugs and is now recognized for its role in regulating various crucial cellular processes. Indeed, mitoNEET has demonstrated promising potential as a therapeutic target in various chronic diseases, encompassing cardiovascular and metabolic diseases. In this review, we present a thorough overview of the molecular mechanisms of mitoNEET, with an emphasis on their implications for cardiometabolic diseases in more recent years. Furthermore, we explore the potential impact of these findings on the development of novel therapeutic strategies and discuss potential directions for future research.
Collapse
Affiliation(s)
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
4
|
Newton E, Starcovic SA, Menze M, Konkle ME, Long TE, Hazlehurst LA, Huber JD, Robart AR, Geldenhuys WJ. Development of a fluorescence screening assay for binding partners of the iron-sulfur mitochondrial protein mitoNEET. Bioorg Med Chem Lett 2023; 89:129310. [PMID: 37137430 PMCID: PMC10308443 DOI: 10.1016/j.bmcl.2023.129310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
MitoNEET belongs to the CDGSH Iron-Sulfur Domain (CISD)-gene family of proteins and is a [2Fe-2S] cluster-containing protein found on the outer membrane of mitochondria. The specific functions of mitoNEET/CISD1 remain to be fully elucidated, but the protein is involved in regulating mitochondrial bioenergetics in several metabolic diseases. Unfortunately, drug discovery efforts targeting mitoNEET to improve metabolic disorders are hampered by the lack of ligand-binding assays for this mitochondrial protein. We have developed a protocol amenable for high-throughput screening (HTS) assay, by modifying an ATP fluorescence polarization method to facilitate drug discovery targeting mitoNEET. Based on our observation that adenosine triphosphate (ATP) interacts with mitoNEET, ATP-fluorescein was used during assay development. We established a novel binding assay suitable for both 96- or 384-well plate formats with tolerance for the presence of 2% v/v dimethyl sulfoxide (DMSO). We determined the IC50-values for a set of benzesulfonamide derivatives and found the novel assay reliably ranked the binding-affinities of compounds compared to radioactive binding assay with human recombinant mitoNEET. The developed assay platform is crucial in identifying novel chemical probes for metabolic diseases. It will accelerate drug discovery targeting mitoNEET and potentially other members of the CISD gene family.
Collapse
Affiliation(s)
- Ebenezer Newton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501, USA
| | - Sarah A Starcovic
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown WV 26506, USA
| | - Michael Menze
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Mary E Konkle
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Timothy E Long
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV 25755, USA
| | - Lori A Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV 26506, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV 26506, USA
| | - Aaron R Robart
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown WV 26506, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV 26506, USA; Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
5
|
Skolik R, Geldenhuys W, Konkle M, Menze M. Biochemical Control of the Mitochondrial Protein MitoNEET by Biological Thiols and Lipid-derived Electrophiles. ADVANCES IN REDOX RESEARCH 2023; 7:100059. [PMID: 39364216 PMCID: PMC11448853 DOI: 10.1016/j.arres.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
MitoNEET is a mitochondrial [2Fe-2S] protein known for its involvement in cellular metabolism, iron regulation, and oxidative stress. The protein has been associated with diseases ranging from diabetes to Parkinson's disease which has prompted development of compounds designed to selectively target mitoNEET. Unfortunately, drug development is limited due to a lack of understanding on the mechanistic level how mitoNEET integrates into pathophysiological processes. In particular, biological compounds that govern mitoNEET function are still ill defined. We demonstrate an oxygen-dependent reaction with biological thiols catalyzed by mitoNEET. Furthermore, we observed that formation of a covalently linked mitoNEET homodimer is controlled by both thiols and lipid-derived electrophiles. Finally, we demonstrate that reduced glutathione (L-GSH) regulates the reactivity of two lipid-derived biomarkers of oxidative stress, 4-HNE and 4-ONE, towards mitoNEET. We find that exposure to L-GSH prior to treatment with either of the electrophilic aldehydes prevents the formation of the covalently linked mitoNEET dimer. Meanwhile, addition of L-GSH after electrophile treatment recovers mitoNEET from the 4-HNE induced modification but not from the modification induced by 4-ONE. Our results collectively suggest that the thiol-electrophile redox balance governing ferroptotic cell death also controls mitoNEET's state at multiple biochemical levels. These results indicate a possible role for mitoNEET in thiol-mediated oxidative stress and may inform about development of probes designed to modulate mitoNEET activity to improve pathophysiological states.
Collapse
Affiliation(s)
- R.A Skolik
- Department of Biology, University of Louisville, Louisville, KY
| | - W.J. Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV
| | - M.E Konkle
- Department of Chemistry, Ball State University, Muncie, IN
| | - M.A. Menze
- Department of Biology, University of Louisville, Louisville, KY
| |
Collapse
|
6
|
Pharmacokinetics of hydrogen administered intraperitoneally as hydrogen-rich saline and its effect on ischemic neuronal cell death in the brain in gerbils. PLoS One 2022; 17:e0279410. [PMID: 36574398 PMCID: PMC9794077 DOI: 10.1371/journal.pone.0279410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
Intraperitoneal administration of hydrogen (H2)-containing saline inhibited neuronal cell death in ischemic stroke in a number of animal models, but it is unknown whether H2 is absorbed from the abdominal cavity into the blood and reaches the brain. In this study, we investigated whether intraperitoneal administration of saline containing H2 inhibits neuronal cell death caused by cerebral ischemia and measured the concentration of H2 in the carotid artery and inferior vena cava (IVC). Gerbils were subjected to transient unilateral cerebral ischemia twice, and saline or H2-rich saline was administered intraperitoneally three or seven times every 12 hours. We evaluated the number of apoptotic cells in the hippocampus and cerebral cortex on day 3 and the number of viable neurons in the hippocampus and cerebral cortex on day 7. In addition, a single dose of saline or H2-rich saline was administered intraperitoneally, and blood H2 levels in the carotid artery and IVC were measured. On day 3 of ischemia/reperfusion, the number of neurons undergoing apoptosis in the cortex was significantly lower in the H2-rich saline group than in the saline group, and on day 7, the number of viable neurons in the hippocampus and cerebral cortex was significantly higher in the H2-rich saline group. Intraperitoneal administration of H2-rich saline resulted in large increases in H2 concentration in the IVC ranging from 0.00183 mg/L (0.114%) to 0.00725 mg/L (0.453%). In contrast, carotid H2 concentrations remained in the range of 0.00008 mg/L (0.0049%) to 0.00023 (0.0146%). On average, H2 concentrations in carotid artery were 0.04 times lower than in IVC. These results indicate that intraperitoneal administration of H2-rich saline significantly suppresses neuronal cell death after cerebral ischemia, even though H2 hardly reaches the brain.
Collapse
|
7
|
Boos JR, Jandrain HN, Hagiuda E, Taguchi AT, Hasegawa K, Fedun BL, Taylor SJ, Elad SM, Faber SE, Kumasaka T, Iwasaki T, Geldenhuys WJ. Structure and biological evaluation of Caenorhabditis elegans CISD-1/mitoNEET, a KLP-17 tail domain homologue, supports attenuation of paraquat-induced oxidative stress through a p38 MAPK-mediated antioxidant defense response. ADVANCES IN REDOX RESEARCH : AN OFFICIAL JOURNAL OF THE SOCIETY FOR REDOX BIOLOGY AND MEDICINE AND THE SOCIETY FOR FREE RADICAL RESEARCH-EUROPE 2022; 6:100048. [PMID: 36533211 PMCID: PMC9757825 DOI: 10.1016/j.arres.2022.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
CISD-1/mitoNEET is an evolutionarily conserved outer mitochondrial membrane [2Fe-2S] protein that regulates mitochondrial function and morphology. The [2Fe-2S] clusters are redox reactive and shown to mediate oxidative stress in vitro and in vivo. However, there is limited research studying CISD-1/mitoNEET mediation of oxidative stress in response to environmental stressors. In this study, we have determined the X-ray crystal structure of Caenorhabditis elegans CISD-1/mitoNEET homologue and evaluated the mechanisms of oxidative stress resistance to the pro-oxidant paraquat in age-synchronized populations by generating C. elegans gain and loss of function CISD-1 models. The structure of the C. elegans CISD-1/mitoNEET soluble domain refined at 1.70-Å resolution uniquely shows a reversible disulfide linkage at the homo-dimeric interface and also represents the N-terminal tail domain for dimerization of the cognate kinesin motor protein KLP-17 involved in chromosome segregation dynamics and germline development of the nematode. Moreover, overexpression of CISD-1/mitoNEET in C. elegans has revealed beneficial effects on oxidative stress resistance against paraquat-induced reactive oxygen species generation, corroborated by increased activation of the p38 mitogen-activated protein kinase (MAPK) signaling cascade.
Collapse
Affiliation(s)
- Jacob R. Boos
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Hanna N. Jandrain
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Emi Hagiuda
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Alexander T. Taguchi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Kazuya Hasegawa
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Bailey L. Fedun
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sarah J. Taylor
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sofhia M. Elad
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sarah E. Faber
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Toshio Iwasaki
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Werner J. Geldenhuys
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
8
|
Fontenot CR, Cheng Z, Ding H. Nitric oxide reversibly binds the reduced [2Fe-2S] cluster in mitochondrial outer membrane protein mitoNEET and inhibits its electron transfer activity. Front Mol Biosci 2022; 9:995421. [PMID: 36158570 PMCID: PMC9490426 DOI: 10.3389/fmolb.2022.995421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
MitoNEET is a mitochondrial outer membrane protein that regulates energy metabolism, iron homeostasis, and production of reactive oxygen species in cells. Aberrant expression of mitoNEET in tissues has been linked to type II diabetes, neurodegenerative diseases, and several types of cancer. Structurally, the N-terminal domain of mitoNEET has a single transmembrane alpha helix that anchors the protein to mitochondrial outer membrane. The C-terminal cytosolic domain of mitoNEET hosts a redox active [2Fe-2S] cluster via an unusual ligand arrangement of three cysteine and one histidine residues. Here we report that the reduced [2Fe-2S] cluster in the C-terminal cytosolic domain of mitoNEET (mitoNEET45-108) is able to bind nitric oxide (NO) without disruption of the cluster. Importantly, binding of NO at the reduced [2Fe-2S] cluster effectively inhibits the redox transition of the cluster in mitoNEET45-108. While the NO-bound [2Fe-2S] cluster in mitoNEET45-108 is stable, light excitation releases NO from the NO-bound [2Fe-2S] cluster and restores the redox transition activity of the cluster in mitoNEET45-108. The results suggest that NO may regulate the electron transfer activity of mitoNEET in mitochondrial outer membrane via reversible binding to its reduced [2Fe-2S] cluster.
Collapse
Affiliation(s)
| | | | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
9
|
Tasnim H, Ding H. Electron transfer activity of the nanodisc-bound mitochondrial outer membrane protein mitoNEET. Free Radic Biol Med 2022; 187:50-58. [PMID: 35609862 PMCID: PMC10693299 DOI: 10.1016/j.freeradbiomed.2022.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/13/2022]
Abstract
MitoNEET is the first iron-sulfur protein found in mitochondrial outer membrane. Abnormal expression of mitoNEET in cells has been linked to several types of cancer, type II diabetes, and neurodegenerative diseases. Structurally, mitoNEET is anchored to mitochondrial outer membrane via its N-terminal single transmembrane alpha helix. The C-terminal cytosolic domain of mitoNEET binds a [2Fe-2S] cluster via three cysteine and one histidine residues. It has been shown that mitoNEET has a crucial role in energy metabolism, iron homeostasis, and free radical production in cells. However, the exact function of mitoNEET remains elusive. Previously, we reported that the C-terminal soluble domain of mitoNEET has a specific binding site for flavin mononucleotide (FMN) and can transfer electrons from FMNH2 to oxygen or ubiquinone-2 via its [2Fe-2S] cluster. Here we have constructed a hybrid protein using the N-terminal transmembrane domain of Escherichia coli YneM and the C-terminal soluble domain of human mitoNEET and assembled the hybrid protein YneM-mitoNEET into phospholipid nanodiscs. The results show that the [2Fe-S] clusters in the nanodisc-bound YneM-mitoNEET can be rapidly reduced by FMNH2 which is reduced by flavin reductase using NADH as the electron donor. Addition of lumichrome, a FMN analog, effectively inhibits the FMNH2-mediated reduction of the [2Fe-2S] clusters in the nanodisc-bound YneM-mitoNEET. The reduced [2Fe-2S] clusters in the nanodisc-bound YneM-mitoNEET are quickly oxidized by oxygen under aerobic conditions or by ubiquinone-10 in the nanodiscs under anaerobic conditions. Because NADH oxidation is required for cellular glycolytic activity, we propose that the mitochondrial outer membrane protein mitoNEET may promote glycolysis by transferring electrons from FMNH2 to oxygen or ubiquinone-10 in mitochondria.
Collapse
Affiliation(s)
- Homyra Tasnim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
10
|
Vijikumar A, Saralkar P, Saylor SD, Sullivan PG, Huber JD, Geldenhuys WJ. Novel mitoNEET ligand NL-1 improves therapeutic outcomes in an aged rat model of cerebral ischemia/reperfusion injury. Exp Neurol 2022; 355:114128. [PMID: 35662609 DOI: 10.1016/j.expneurol.2022.114128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Cerebral ischemic stroke is a leading cause of mortality and disability worldwide. Currently, there are a lack of drugs capable of reducing neuronal cell loss due to ischemia/reperfusion-injury after stroke. Previously, we identified mitoNEET, a [2Fe-2S] redox mitochondrial protein, as a putative drug target for ischemic stroke. In this study, we tested NL-1, a novel mitoNEET ligand, in a preclinical model of ischemic stroke with reperfusion using aged female rats. Using a transient middle cerebral artery occlusion (tMCAO), we induced a 2 h ischemic injury and then evaluated the effects of NL-1 treatment on ischemic/reperfusion brain injury at 24 and 72 h. Test compounds were administered at time of reperfusion via intravenous dosing. Results of the study demonstrated that NL-1 (10 mg/kg) treatment markedly improved survival and reduced infarct volume and hemispheric swelling in the brain as compared aged rats treated with vehicle or a lower dose of NL-1 (0.25 mg/kg). Interestingly, the protective effect of NL-1 was significantly improved when encapsulated in PLGA nanoparticles, where a 40-fold lesser dose (0.25 mg/kg) of NL-1 produced an equivalent effect as the 10 mg/kg dose. Evaluation of changes in blood-brain barrier permeability and lipid peroxidation corroborated the protective actions of NL-1 (10 mg/kg) or NL-1 NP treatment demonstrated a reduced accumulation of parenchymal IgG, decreased levels of 4-hydroxynonenal (4-HNE) and a decreased TUNEL positive cells in the brains of aged female rats at 72 h after tMCAO with reperfusion. Our studies indicate that targeting mitoNEET following ischemia/reperfusion-injury is a novel drug target pathway that warrants further investigation.
Collapse
Affiliation(s)
- Aruvi Vijikumar
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, United States of America
| | - Pushkar Saralkar
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, United States of America
| | - Scott D Saylor
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26505, United States of America
| | - Patrick G Sullivan
- Department of Neuroscience, Spinal and Brain Injury Research Center, School of Medicine, University of Kentucky, Lexington, KY 40536, United States of America
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, United States of America; Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26505, United States of America.
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, United States of America; Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26505, United States of America; Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26505, United States of America
| |
Collapse
|