1
|
Sharma S, Zhang Y, Patel D, Akter KA, Bagchi S, Sifat AE, Nozohouri E, Ahn Y, Karamyan VT, Bickel U, Abbruscato TJ. Evaluation of systemic and brain pharmacokinetic parameters for repurposing metformin using intravenous bolus administration. J Pharmacol Exp Ther 2025; 392:100013. [PMID: 39893000 DOI: 10.1124/jpet.124.002152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Metformin's potential in treating ischemic stroke and neurodegenerative conditions is of growing interest. Yet, the absence of established systemic and brain pharmacokinetic (PK) parameters at relevant preclinical doses presents a significant knowledge gap. This study highlights these PK parameters and the importance of using pharmacologically relevant preclinical doses to study pharmacodynamics in stroke and related neurodegenerative diseases. A liquid chromatography with tandem mass spectrometry method to measure metformin levels in plasma, brain, and cerebrospinal fluid was developed and validated. In vitro assays examined brain tissue binding and metabolic stability. Intravenous bolus administration of metformin to C57BL6 mice covered a low- to high-dose range maintaining pharmacological relevance. Quantification of metformin in the brain was used to assess brain PK parameters, such as unidirectional blood-to-brain constant (Kin) and unbound brain-to-plasma ratio (Kp, uu, brain). Metformin exhibited no binding in the mouse plasma and brain and remained metabolically stable. It rapidly entered the brain, reaching detectable levels in as little as 5 minutes. A Kin value of 1.87 ± 0.27 μL/g/min was obtained. As the dose increased, Kp, uu, brain showed decreased value, implying saturation, but this did not affect an increase in absolute brain concentrations. Metformin was quantifiable in the cerebrospinal fluid at 30 minutes but decreased over time, with concentrations lower than those in the brain across all doses. Our findings emphasize the importance of metformin dose selection based on PK parameters for preclinical pharmacological studies. We anticipate further investigations focusing on PKs and pharmacodynamics in disease conditions, such as stroke. SIGNIFICANCE STATEMENT: The study establishes crucial pharmacokinetic parameters of metformin for treating ischemic stroke and neurodegenerative diseases, addressing a significant knowledge gap. It further emphasizes the importance of selecting pharmacologically relevant preclinical doses. The findings highlight metformin's rapid brain entry, minimal binding, and metabolic stability. The necessity of considering pharmacokinetic parameters in preclinical studies provides a foundation for future investigations into metformin's efficacy for neurodegenerative disease(s).
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Yong Zhang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas; Office of Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Sounak Bagchi
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Vardan T Karamyan
- Department of Foundational Medical Studies and Laboratory for Neurodegenerative Disease & Drug Discovery, William Beaumont School of Medicine, Oakland University, Rochester, Michigan
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas; Office of Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas.
| |
Collapse
|
2
|
Gadhave DG, Quadros M, Ugale AR, Goyal M, Ayehunie S, Gupta V. Mucoadhesive chitosan-poly (lactic-co-glycolic acid) nanoparticles for intranasal delivery of quetiapine - Development & characterization in physiologically relevant 3D tissue models. Int J Biol Macromol 2024; 267:131491. [PMID: 38599435 DOI: 10.1016/j.ijbiomac.2024.131491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Quetiapine hemifumarate (QF) delivery to the CNS via conventional formulations is challenging due to poor solubility and lower oral bioavailability (9 %). Similarly, many other second-generation antipsychotics, such as olanzapine, clozapine, and paliperidone, have also shown low oral bioavailability of <50 %. Hence, the present work was intended to formulate QF-loaded biodegradable PLGA-NPs with appropriate surface charge modification through poloxamer-chitosan and investigate its targeting potential on RPMI-2650 cell lines to overcome the limitations of conventional therapies. QF-loaded poloxamer-chitosan-PLGA in-situ gel (QF-PLGA-ISG) was designed using emulsification and solvent evaporation techniques. Developed QF-PLGA-ISG were subjected to evaluation for particle size, PDI, zeta potential, ex-vivo mucoadhesion, entrapment efficiency (%EE), and drug loading, which revealed 162.2 nm, 0.124, +20.5 mV, 52.4 g, 77.5 %, and 9.7 %, respectively. Additionally, QF-PLGA formulation showed >90 % release within 12 h compared to 80 % of QF-suspension, demonstrating that the surfactant with chitosan-poloxamer polymers could sustainably release medicine across the membrane. Ex-vivo hemolysis study proved that developed PLGA nanoparticles did not cause any hemolysis compared to negative control. Further, in-vitro cellular uptake and transepithelial permeation were assessed using the RPMI-2650 nasal epithelial cell line. QF-PLGA-ISG not only improved intracellular uptake but also demonstrated a 1.5-2-fold increase in QF transport across RPMI-2650 epithelial monolayer. Further studies in the EpiNasal™ 3D nasal tissue model confirmed the safety and efficacy of the developed QF-PLGA-ISG formulation with up to a 4-fold increase in transport compared to plain QF after 4 h. Additionally, histological reports demonstrated the safety of optimized formulation. Finally, favorable outcomes of IN QF-PLGA-ISG formulation could provide a novel platform for safe and effective delivery of QF in schizophrenic patients.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Mural Quadros
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Akanksha R Ugale
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
3
|
Rahman MS, Hadi Esfahani S, Zhang Y, Queen A, Aljarrah M, Kandil H, Baez A, Abbruscato TJ, Karamyan VT, Trippier PC. Imidazole Bioisostere Activators of Endopeptidase Neurolysin with Enhanced Potency and Metabolic Stability. ACS Med Chem Lett 2024; 15:510-517. [PMID: 38628788 PMCID: PMC11017387 DOI: 10.1021/acsmedchemlett.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
The peptidase neurolysin (Nln) has been validated as a potential target for developing therapeutics for ischemic stroke (IS). Overexpression of Nln in a mouse model of IS provides significant cerebroprotection, leading to reduced infarction size and edema volume. Pharmacological inhibition of Nln in the post-stroke brain worsens neurological outcomes. A virtual screen identified dipeptide small-molecule activators of Nln. Optimization studies resulted in a class of peptidomimetic compounds with promising activity. However, these compounds still possessed an amide bond that compromised their stability in plasma and the brain. Herein, we report the synthesis and characterization of a series of amide bioisosteres based on our peptidomimetic leads. Imidazole-based bioisosteres afford scaffolds with increased potency to activate Nln combined with enhanced mouse plasma stability and significantly better brain permeability over the original dipeptide hits.
Collapse
Affiliation(s)
- Md. Shafikur Rahman
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Shiva Hadi Esfahani
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Laboratory
for Neurodegenerative Disease & Drug Discovery, William Beaumont
School of Medicine, Oakland University, Rochester, Michigan 48309, United States
| | - Yong Zhang
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Aarfa Queen
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Manar Aljarrah
- Laboratory
for Neurodegenerative Disease & Drug Discovery, William Beaumont
School of Medicine, Oakland University, Rochester, Michigan 48309, United States
- Biological
and Biomedical Sciences Graduate Program, Oakland University, Rochester, Michigan 48309, United States
| | - Haya Kandil
- Laboratory
for Neurodegenerative Disease & Drug Discovery, William Beaumont
School of Medicine, Oakland University, Rochester, Michigan 48309, United States
- Biological
and Biomedical Sciences Graduate Program, Oakland University, Rochester, Michigan 48309, United States
| | - Andrew Baez
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Thomas J. Abbruscato
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Center
for Blood Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Vardan T. Karamyan
- Laboratory
for Neurodegenerative Disease & Drug Discovery, William Beaumont
School of Medicine, Oakland University, Rochester, Michigan 48309, United States
- Department
of Foundational Medical Studies, William Beaumont School of Medicine, Oakland University, Rochester, Michigan 48309, United States
| | - Paul C. Trippier
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- UNMC
Center for Drug Design and Innovation, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
4
|
Shahbazi Nia S, Ortiz YT, Zuarth Gonzalez JD, Shamir L, Frimpong-Manson K, Hossain MA, Shahi S, Bandy R, Bhat A, Patel D, Diab H, Thompson J, McMahon LR, Wilkerson JL, German NA. Characterization of a Nonselective Opioid Receptor Functional Antagonist: Implications for Development as a Novel Opioid Dependence Medication. ACS Pharmacol Transl Sci 2024; 7:654-666. [PMID: 38481688 PMCID: PMC10928894 DOI: 10.1021/acsptsci.3c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/14/2025]
Abstract
Opioids represent the most extensive category of abused substances in the United States, and the number of fatalities caused by these drugs exceeds those associated with all other drug overdoses combined. The administration of naltrexone, a potent pan-opioid receptor antagonist, to an individual dependent on opioids can trigger opioid withdrawal and induce severe side effects. There is a pressing demand for opioid antagonists free of opioid withdrawal effects. In our laboratory, we have identified a compound with affinity to mu, delta, and kappa opioid receptors in the range of 150-250 nM. This blood-brain barrier (BBB)-permeant compound was metabolically stable in vitro and in vivo. Our in vivo work demonstrated that 1-10 mg/kg intraperitoneal administration of our compound produces moderate efficacy in antagonizing morphine-induced antiallodynia effects in the chemotherapy-induced peripheral neuropathy (CIPN) model. The treatment was well-tolerated and did not cause behavioral changes. We have observed a fast elimination rate of this metabolically stable molecule. Furthermore, no organ toxicity was observed during the chronic administration of the compound over a 14-day period. Overall, we report a novel functional opioid antagonist holds promise for developing an opioid withdrawal therapeutic.
Collapse
Affiliation(s)
- Siavash Shahbazi Nia
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Yuma T. Ortiz
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32611, United States
| | - Julio D. Zuarth Gonzalez
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Leila Shamir
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Kofi Frimpong-Manson
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Mohammad Anwar Hossain
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Sadisna Shahi
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Rayna Bandy
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Anoushka Bhat
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Dhavalkumar Patel
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Office
of Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Hanin Diab
- Veterinary
School of Medicine, Texas Tech University, Amarillo, Texas 79106, United States
| | - Jonathan Thompson
- Veterinary
School of Medicine, Texas Tech University, Amarillo, Texas 79106, United States
| | - Lance R. McMahon
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Center
of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Jenny L. Wilkerson
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Center
of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Nadezhda A. German
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Center
of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| |
Collapse
|
5
|
Bagchi S, Nozohouri E, Ahn Y, Patel D, Bickel U, Karamyan VT. Systemic and Brain Pharmacokinetics of Milnacipran in Mice: Comparison of Intraperitoneal and Intravenous Administration. Pharmaceutics 2023; 16:53. [PMID: 38258064 PMCID: PMC10819729 DOI: 10.3390/pharmaceutics16010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Milnacipran is a dual serotonin and norepinephrine reuptake inhibitor, clinically used for the treatment of major depression or fibromyalgia. Currently, there are no studies reporting the pharmacokinetics (PK) of milnacipran after intraperitoneal (IP) injection, despite this being the primary administration route in numerous experimental studies using the drug. Therefore, the present study was designed to investigate the PK profile of IP-administered milnacipran in mice and compare it to the intravenous (IV) route. First a liquid chromatography-mass spectrometry (LC-MS/MS) method was developed and validated to accurately quantify milnacipran in biological samples. The method was used to quantify milnacipran in blood and brain samples collected at various time-points post-administration. Non-compartmental and PK analyses were employed to determine key PK parameters. The maximum concentration (Cmax) of the drug in plasma was at 5 min after IP administration, whereas in the brain, it was at 60 min for both routes of administration. Curiously, the majority of PK parameters were similar irrespective of the administration route, and the bioavailability was 92.5% after the IP injection. These findings provide insight into milnacipran's absorption, distribution, and elimination characteristics in mice after IP administration for the first time and should be valuable for future pharmacological studies.
Collapse
Affiliation(s)
- Sounak Bagchi
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Vardan T. Karamyan
- Department of Foundational Medical Studies, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
6
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
7
|
Zhang Y, Sharma S, Jonnalagadda S, Kumari S, Queen A, Esfahani SH, Archie SR, Nozohouri S, Patel D, Trippier PC, Karamyan VT, Abbruscato TJ. Discovery of the Next Generation of Non-peptidomimetic Neurolysin Activators with High Blood-Brain Barrier Permeability: a Pharmacokinetics Study in Healthy and Stroke Animals. Pharm Res 2023; 40:2747-2758. [PMID: 37833570 DOI: 10.1007/s11095-023-03619-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
PURPOSE There is growing interest in seeking pharmacological activation of neurolysin (Nln) for stroke treatment. Discovery of central nervous system drugs remains challenging due to the protection of the blood-brain barrier (BBB). The previously reported peptidomimetic Nln activators display unsatisfactory BBB penetration. Herein, we investigate the next generation of non-peptidomimetic Nln activators with high BBB permeability. METHODS A BBB-mimicking model was used to evaluate their in vitro BBB permeability. Protein binding, metabolic stability, and efflux assays were performed to determine their unbound fraction, half-lives in plasma and brains, and dependence of BBB transporter P-glycoprotein (P-gp). The in vivo pharmacokinetic profiles were elucidated in healthy and stroke mice. RESULTS Compounds KS52 and KS73 out of this generation exhibit improved peptidase activity and BBB permeability compared to the endogenous activator and previous peptidomimetic activators. They show reasonable plasma and brain protein binding, improved metabolic stability, and independence of P-gp-mediated efflux. In healthy animals, they rapidly distribute into brains and reach peak levels of 18.69% and 12.10% injected dose (ID)/ml at 10 min. After 4 h, their total brain concentrations remain 7.78 and 12.34 times higher than their A50(minimal concentration required for enhancing 50% peptidase activity). Moreover, the ipsilateral hemispheres of stroke animals show comparable uptake to the corresponding contralateral hemispheres and healthy brains. CONCLUSIONS This study provides essential details about the pharmacokinetic properties of a new generation of potent non-peptidomimetic Nln activators with high BBB permeability and warrants the future development of these agents as potential neuroprotective pharmaceutics for stroke treatment.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Shirisha Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
| | - Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
| | - Aarfa Queen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
| | - Shiva Hadi Esfahani
- Department of Foundational Medical Studies, William Beaumont School of Medicine, Oakland University, Rochester, MI, 48309, USA
- Laboratory for Neurodegenerative Disease & Drug Discovery, William Beaumont School of Medicine, Oakland University, Rochester, MI, 48309, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Dhavalkumar Patel
- Office of Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
| | - Vardan T Karamyan
- Department of Foundational Medical Studies, William Beaumont School of Medicine, Oakland University, Rochester, MI, 48309, USA
- Laboratory for Neurodegenerative Disease & Drug Discovery, William Beaumont School of Medicine, Oakland University, Rochester, MI, 48309, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
8
|
Sharma S, Zhang Y, Akter KA, Nozohouri S, Archie SR, Patel D, Villalba H, Abbruscato T. Permeability of Metformin across an In Vitro Blood-Brain Barrier Model during Normoxia and Oxygen-Glucose Deprivation Conditions: Role of Organic Cation Transporters (Octs). Pharmaceutics 2023; 15:1357. [PMID: 37242599 PMCID: PMC10220878 DOI: 10.3390/pharmaceutics15051357] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Our lab previously established that metformin, a first-line type two diabetes treatment, activates the Nrf2 pathway and improves post-stroke recovery. Metformin's brain permeability value and potential interaction with blood-brain barrier (BBB) uptake and efflux transporters are currently unknown. Metformin has been shown to be a substrate of organic cationic transporters (Octs) in the liver and kidneys. Brain endothelial cells at the BBB have been shown to express Octs; thus, we hypothesize that metformin uses Octs for its transport across the BBB. We used a co-culture model of brain endothelial cells and primary astrocytes as an in vitro BBB model to conduct permeability studies during normoxia and hypoxia using oxygen-glucose deprivation (OGD) conditions. Metformin was quantified using a highly sensitive LC-MS/MS method. We further checked Octs protein expression using Western blot analysis. Lastly, we completed a plasma glycoprotein (P-GP) efflux assay. Our results showed that metformin is a highly permeable molecule, uses Oct1 for its transport, and does not interact with P-GP. During OGD, we found alterations in Oct1 expression and increased permeability for metformin. Additionally, we showed that selective transport is a key determinant of metformin's permeability during OGD, thus, providing a novel target for improving ischemic drug delivery.
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
9
|
Esfahani SH, Abbruscato TJ, Trippier PC, Karamyan VT. Small molecule neurolysin activators, potential multi-mechanism agents for ischemic stroke therapy. Expert Opin Ther Targets 2022; 26:401-404. [PMID: 35543670 DOI: 10.1080/14728222.2022.2077190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shiva Hadi Esfahani
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Paul C Trippier
- Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|