1
|
Xu J, Yang B, Zhu J, Cui X, Yang Y, Zhang W, Wang C. Transdermal sequential delivery of functionalized Nano-Deep eutectic system for enhanced treatment of melanoma. Int J Pharm 2025; 674:125466. [PMID: 40090635 DOI: 10.1016/j.ijpharm.2025.125466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
In the present study, we introduce the concept of "transdermal sequential delivery" as a non-invasive and synergistic approach for the treatment of melanoma. We developed a functionalized Deep Eutectic System (DES) that incorporates both small molecule drugs and nanoparticles. The glycolysis inhibitor 2-deoxy-D-glucose (2-DG) served as the Hydrogen Bond Donor (HBD) to form the DES, while glutathione (GSH)-responsive Mesoporous Organosilicon Nanoparticles (MON) were prepared and encapsulated with chlorin e6 (Ce6). These nanoparticles were incorporated into the DES through surface-modified citric acid (CA) as a linker, resulting in the functionalized 2-DG DES-MON@Ce6 system. By leveraging the skin's barrier properties and the permeation-enhancing effects of the DES, both 2-DG and MON@Ce6 were delivered to the melanoma tissue in a sequential manner. Initially, 2-DG mitigated hypoxia and the immunosuppressive tumor microenvironment (TME) by disrupting glycolysis, thereby creating favorable conditions for the subsequent photodynamic therapy (PDT) effects of MON@Ce6 and enhancing immunogenic cell death (ICD). Consequently, the 2-DG DES-MON@Ce6 system demonstrated significant anti-tumor activity against melanoma within the context of the "transdermal sequential delivery" strategy. Overall, our functionalized DES-nano system facilitates the sequential transdermal delivery of drugs to melanoma, thereby maximizing the combination anti-tumor efficacy through a cascade reaction.
Collapse
Affiliation(s)
- Jiahao Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Boyuan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Junxiao Zhu
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, PR China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Wen Zhang
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
2
|
Zhao C, Wu S, Wang H. Medicinal Plant Extracts Targeting UV-Induced Skin Damage: Molecular Mechanisms and Therapeutic Potential. Int J Mol Sci 2025; 26:2278. [PMID: 40076896 PMCID: PMC11899789 DOI: 10.3390/ijms26052278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
The depletion of the ozone layer has intensified ultraviolet (UV) radiation exposure, leading to oxidative stress, DNA damage, inflammation, photoaging, and skin cancer. Medicinal plants, widely used in Traditional Herbal Medicine (THM), particularly in Traditional Chinese Medicine (TCM), have demonstrated significant therapeutic potential due to their well-characterized active compounds and established photoprotective effects. This review systematically evaluates 18 medicinal plants selected based on their traditional use in skin-related conditions and emerging evidence supporting their efficacy against UV-induced skin damage. Their bioactive components exert antioxidant, anti-inflammatory, DNA repair, and depigmentation effects by modulating key signaling pathways, including Nrf2/ARE-, MAPK/AP-1-, PI3K/Akt-, and MITF/TYR-related melanogenesis pathways. Moreover, novel drug delivery systems, such as exosomes, hydrogels, and nanoemulsions, have significantly enhanced the stability, bioavailability, and skin penetration of these compounds. However, challenges remain in standardizing plant-derived formulations, elucidating complex synergistic mechanisms, and translating preclinical findings into clinical applications. Future interdisciplinary research and technological advancements will be essential to harness the full therapeutic potential of medicinal plants for UV-induced skin damage prevention and treatment.
Collapse
Affiliation(s)
- Chunhui Zhao
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (C.Z.); (S.W.)
| | - Shiying Wu
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (C.Z.); (S.W.)
| | - Hao Wang
- Lamprey Research Center, School of Life Sciences, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
3
|
Chen C, Chen Y, Ye Z, Ali A, Yao S. Bioactive Deep Eutectic Solvent-Involved Sprayable Versatile Hydrogel for Monkeypox Virus Lesions Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2148-2168. [PMID: 39727382 DOI: 10.1021/acsami.4c14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
To address the issues of infectious virus, bacterial secondary infections, skin pigmentation, and scarring caused by monkeypox virus (MPXV), a sprayable hydrogel with versatile functions was developed with comprehensive properties. Based on current research, the bioactive deep eutectic solvent (DES) of rosmarinic acid-proanthocyanidin-glycol (RPG) was designed and synthesized as active agent, and molecular docking was applied to discover its binding to MPXV proteins through H-bonds and van der Waals interactions, and the docking results show the binding energies between RA, PC, Gly and MPXV proteins are -58.7188, -50.2311, and -18.4755 kcal/mol, respectively. Additionally, poly(vinyl alcohol) (PVA), borate, and xylitol (Xyl) were integrated with RPG to prepare the PB-RPG-Xyl hydrogel, which was characterized by popular ways. The pH-responsive properties of the hydrogel accelerated the release of RPG under acidic conditions, resulting in an increased cumulative release percentage of 84.83% at pH 5.5 at 210 min. Besides that, it was proved to have the expected sprayability, self-healing, adhesion, and shape-adaptability. The results of molecular dynamic simulation were meaningful to understanding its formation and self-healing mechanisms. Furthermore, the hydrogel shows ideal degradability, removability, and biocompatibility. Lastly, its multiple functions were systematically explored, including UV-blocking, blood clotting, cooling, antioxidant, antibacterial, and virus inhibition properties. The developed sprayable PB-RPG-Xyl hydrogel represents the first promising dressing based on natural bioactive DES for MPXV lesions management, which not only expands the application of green solvents in health care but also provides a convenient and effective treatment process for MPXV infection in the face of difficult skin lesions and complex treatment needs.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, College of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhiyi Ye
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ahmad Ali
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
4
|
Wu S, Zhou G, Wang X, Zhang X, Guo S, Ma Y, Liu H, Li W. Development of Sinomenine Hydrochloride Sustained-release Pellet With Multiple Release Characteristics. AAPS PharmSciTech 2024; 25:224. [PMID: 39322795 DOI: 10.1208/s12249-024-02949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Due to the gastrointestinal side effects, the clinical application of sinomenine hydrochloride (SH) in rheumatoid arthritis is limited. The elderly population constitutes the primary group affected by this disease, and within this demographic, there are significant variations in gastric emptying time. To reduce the influence of individual differences on drug efficacy and concurrently alleviate gastrointestinal side effects, the SH sustained-release pellets with multiple release characteristics were developed, which comprised both regular sustained-release pellets and enteric-coated sustained-release pellets. The drug-loaded layer formulation was optimized by full factorial design. With the optimal formulation, the drug-loaded pellets achieved a yield of 96.05%, an encapsulation efficiency of 83.36% for SH, a relative standard deviation of 3.26% in SH content distribution, an average roundness of 0.971 for the pellets, and the particle size span of 0.808. The pellets with a 4 h SH release profile in an acidic environment and pellets displaying 4 h acid resistance followed by an 8 h SH release behavior in the intestinal environment were individually prepared through in vitro dissolution tests. The results demonstrated stable and compliant dissolution behavior of the formulation, along with excellent stability and physical appearance. This research offers novel insights and references for the innovative formulation of SH.
Collapse
Affiliation(s)
- Sijun Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guoming Zhou
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xi Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoyang Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shubo Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yongqiang Ma
- Xinyite Science and Technology Co., Ltd, Guangdong, 518083, China
| | - Hai Liu
- Xinyite Science and Technology Co., Ltd, Guangdong, 518083, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Javed S, Mangla B, Sultan MH, Almoshari Y, Sivadasan D, Alqahtani SS, Madkhali OA, Ahsan W. Pharmaceutical applications of therapeutic deep eutectic systems (THEDES) in maximising drug delivery. Heliyon 2024; 10:e29783. [PMID: 38694051 PMCID: PMC11058303 DOI: 10.1016/j.heliyon.2024.e29783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/09/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
The issue of poor solubility of active pharmaceutical ingredients (APIs) has been a salient area of investigation and novel drug delivery systems are being developed to improve the solubility of drugs, enhance their permeability and thereby their efficacy. Several techniques for solubilization enhancement of poorly soluble drugs are often employed at various stages of pharmaceutical drug product development. One such delivery system is the therapeutic deep eutectic system (THEDES), which showed great potential in the enhancement of solubility and permeability of drugs and ultimately augmenting their bioavailability. THEDES are made by mixing drugs with deep eutectic solvents (DESs) in a definite molar ratio by the hit and trial method. The DESs are a new class of green solvents which are non-toxic, cheap, easy to prepare, biodegradable and have multiple applications in the pharmaceutical industry. The terminologies such as ionic liquids (ILs), DES, THEDES, and therapeutic liquid eutectic systems (THELES) have been very much in use recently, and it is important to highlight the pharmaceutical applications of these unexplored reservoirs in drug solubilization enhancement, drug delivery routes, and in the management of various diseases. This review is aimed at discussing the components, formulation strategies, and routes of administration of THEDES that are used in developing the formulation. Also, the major pharmaceutical applications of THEDES in the treatment of various metabolic and non-metabolic diseases are reviewed.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Bharti Mangla
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
6
|
Sarmento C, Duarte ARC, Rita Jesus A. Can (Natural) deep eutectic systems increase the efficacy of ocular therapeutics? Eur J Pharm Biopharm 2024; 198:114276. [PMID: 38582179 DOI: 10.1016/j.ejpb.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The eye is one of the most complex organs in the human body, with a unique anatomy and physiology, being divided into anterior and posterior segments. Ocular diseases can occur in both segments, but different diseases affect different segments. Glaucoma and cataracts affect the anterior segment, while macular degeneration and diabetic retinopathy occur in the posterior segment. The easiest approach to treat ocular diseases, especially in the anterior segment, is through the administration of topical eye drops, but this route presents many constraints, namely precorneal dynamic and static ocular barriers. On the other hand, the delivery of drugs to the posterior segment of the eye is far more challenging and is mainly performed by the intravitreal route. However, it can lead to severe complications such as retinal detachment, endophthalmitis, increased intraocular pressure and haemorrhage. The design of new drug delivery systems for the anterior segment is very challenging, but targeting the posterior one is even more difficult and little progress has been made. In this review we will discuss various strategies including the incorporation of additives in the formulations, such as viscosity, permeability, and solubility enhancers, namely based on Deep eutectic systems (DES). Natural deep eutectic systems (NADES) have emerged to solve several problems encountered in pharmaceutical industry, regarding the pharmacokinetic and pharmacodynamic properties of drugs. NADES can contribute to the design of advanced technologies for ocular therapeutics, including hydrogels and nanomaterials. Here in, we revise some applications of (NA)DES in the development of new drug delivery systems that can be translated into the ophthalmology field.
Collapse
Affiliation(s)
- Célia Sarmento
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita C Duarte
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita Jesus
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal.
| |
Collapse
|
7
|
Baig MMFA, Wong LK, Zia AW, Wu H. Development of biomedical hydrogels for rheumatoid arthritis treatment. Asian J Pharm Sci 2024; 19:100887. [PMID: 38419762 PMCID: PMC10900807 DOI: 10.1016/j.ajps.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 03/02/2024] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disorder that hinders the normal functioning of bones and joints and reduces the quality of human life. Every year, millions of people are diagnosed with RA worldwide, particularly among elderly individuals and women. Therefore, there is a global need to develop new biomaterials, medicines and therapeutic methods for treating RA. This will improve the Healthcare Access and Quality Index and also relieve administrative and financial burdens on healthcare service providers at a global scale. Hydrogels are soft and cross-linked polymeric materials that can store a chunk of fluids, drugs and biomolecules for hydration and therapeutic applications. Hydrogels are biocompatible and exhibit excellent mechanical properties, such as providing elastic cushions to articulating joints by mimicking the natural synovial fluid. Hence, hydrogels create a natural biological environment within the synovial cavity to reduce autoimmune reactions and friction. Hydrogels also lubricate the articulating joint surfaces to prevent degradation of synovial surfaces of bones and cartilage, thus exhibiting high potential for treating RA. This work reviews the progress in injectable and implantable hydrogels, synthesis methods, types of drugs, advantages and challenges. Additionally, it discusses the role of hydrogels in targeted drug delivery, mechanistic behaviour and tribological performance for RA treatment.
Collapse
Affiliation(s)
| | - Lee Ki Wong
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Abdul Wasy Zia
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Hongkai Wu
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, China
| |
Collapse
|
8
|
Li B, Xiao T, Guo S, Wu Y, Lai R, Liu Z, Luo W, Xu Y. Oxymatrine-fatty acid deep eutectic solvents as novel penetration enhancers for transdermal drug delivery: formation mechanism and enhancing effect. Int J Pharm 2023; 637:122880. [PMID: 36958612 DOI: 10.1016/j.ijpharm.2023.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Transdermal delivery of drugs is commonly limited by low skin permeability. The aim of the study was to synthesize deep eutectic solvents (DESs) based on oxymatrine (OMT) and fatty acids with various alkyl chain lengths (LCFAs) as novel vehicles, to solubilize the water-insoluble drug and enhance percutaneous penetration. Quercetin (QUE) was selected as a model drug. Combining differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and molecular simulations demonstrated that the formation of DESs was mediated by charge-assisted hydrogen bonding. Physicochemical properties including stability, viscosity, and solubilization capacity were also studied. Subsequently, the effect of three stable DESs on drug release and skin permeability was evaluated. The results showed that QUE was solubilized well and presented a different sustained release behavior in DESs. Meanwhile, DESs enhanced the skin permeation of OMT and QUE, which was influenced by alkyl chain lengths of LCFAs, whereas DES consisting of lauric acid (LA) exhibited the highest enhancing effect. FTIR, DSC, and molecular docking further demonstrated consistency between micro molecular mechanism and macro penetration behavior. Additionally, HaCaT cells treated with DESs showed high cell viability, suggesting their good skin safety. Taken together, OMT-LCFA DESs would be a promising penetration enhancer for transdermal drug delivery, which also provides guidance for the design of new DESs.
Collapse
Affiliation(s)
- Bin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ting Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shiqi Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongrong Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziyi Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weixuan Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Li M, Rao C, Ye X, Wang M, Yang B, Wang C, Guo L, Xiong Y, Cui X. Applications for natural deep eutectic solvents in Chinese herbal medicines. Front Pharmacol 2023; 13:1104096. [PMID: 36699048 PMCID: PMC9868165 DOI: 10.3389/fphar.2022.1104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Chinese herbal medicines (CHMs), with a wide range of bioactive components, are considered to be an important source for new drug discovery. However, the process to isolate and obtain those bioactive components to develop new drugs always consumes a large amount of organic solvents with high toxicity and non-biodegradability. Natural deep eutectic solvents (NADES), a new type of green and designable solvents composed of primary plant-based metabolites, have been used as eco-friendly substitutes for traditional organic solvents in various fields. Due to the advantages of easy preparation, low production cost, low toxicity, and eco-friendliness, NADES have been also applied as extraction solvents, media, and drug delivery agents in CHMs in recent years. Besides, the special properties of NADES have been contributed to elucidating the traditional processing (also named Paozhi in Chinese) theory of CHMs, especially processing with honey. In this paper, the development process, preparation, classification, and applications for NADES in CHMs have been reviewed. Prospects in the future applications and challenges have been discussed to better understand the possibilities of the new solvents in the drug development and other uses of CHMs.
Collapse
Affiliation(s)
- Minghui Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Cheng Rao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Xiaoqian Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Mei Wang
- Leiden University–European Center for Chinese Medicine and Natural Compounds, Institute of Biology Leiden, Leiden University, Leiden, Netherlands,SU Biomedicine BV, Leiden, Netherlands
| | - Boyuan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Liqun Guo
- Center for Drug Discovery & Technology Development of Yunnan Traditional Medicine, Kunming, China
| | - Yin Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China,Leiden University–European Center for Chinese Medicine and Natural Compounds, Institute of Biology Leiden, Leiden University, Leiden, Netherlands,*Correspondence: Yin Xiong, ; Xiuming Cui,
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China,*Correspondence: Yin Xiong, ; Xiuming Cui,
| |
Collapse
|
10
|
Bianchi MB, Zhang C, Catlin E, Sandri G, Calderón M, Larrañeta E, Donnelly RF, Picchio ML, Paredes AJ. Bioadhesive eutectogels supporting drug nanocrystals for long-acting delivery to mucosal tissues. Mater Today Bio 2022; 17:100471. [PMID: 36345362 PMCID: PMC9636571 DOI: 10.1016/j.mtbio.2022.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Eutectogels (Egels) are an emerging class of soft ionic materials outperforming traditional temperature-intolerant hydrogels and costly ionogels. Due to their excellent elasticity, non-volatile nature, and adhesion properties, Egels are attracting a great deal of interest in the biomedical space. Herein, we report the first example of adhesive Egels loading drug nanocrystals (Egel-NCs) for controlled delivery to mucosal tissues. These soft materials were prepared using gelatin, glycerine, a deep eutectic solvent (DES) based on choline hydrochloride and glycerol, and nanocrystallised curcumin, a model drug with potent antimicrobial and anti-inflammatory activities. We first explored the impact of the biopolymer concentration on the viscoelastic and mechanical properties of the networks. Thanks to the dynamic interactions between gelatin and the DES, the Egel showed excellent stretchability and elasticity (up to ≈160%), reversible gel-sol phase transition at mild temperature (≈50 °C), 3D-printing ability, and good adhesion to mucin protein (stickiness ≈40 kPa). In vitro release profiles demonstrated the ability of the NCs-based Egel to deliver curcumin for up to four weeks and deposit significantly higher drug amounts in excised porcine mucosa compared to the control cohort. All in all, this study opens new prospects in designing soft adhesive materials for long-acting drug delivery and paves the way to explore novel eutectic systems with multiple therapeutic applications.
Collapse
|
11
|
Deep eutectic solvents-assisted stimuli-responsive smart hydrogels – a review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Wang J, Li M, Duan L, Lin Y, Cui X, Yang Y, Wang C. Deep Eutectic Systems as Novel Vehicles for Assisting Drug Transdermal Delivery. Pharmaceutics 2022; 14:2265. [PMID: 36365084 PMCID: PMC9692497 DOI: 10.3390/pharmaceutics14112265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, deep eutectic systems (DES) emerged as novel vehicles for facilitating the transdermal delivery of various drugs, including polysaccharides, proteins, insulin, vaccine, nanoparticles, and herb extracts. The objective of this study is to conduct a comprehensive review of the application of DES to transdermal drug delivery, based on previous work and the reported references. Following a brief overview, the roles of DES in TDDS, the modes of action, as well as the structure-activity relationship of DES are discussed. Particularly, the skin permeation of active macromolecules and rigid nanoparticles, which are the defining characteristics of DES, are extensively discussed. The objective is to provide a comprehensive understanding of the current investigation and development of DES-based transdermal delivery systems, as well as a framework for the construction of novel DES-TDDS in the future.
Collapse
Affiliation(s)
- Jinbao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Mingjian Li
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Langhuan Duan
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Yameng Lin
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
13
|
Yi J, Liu Y, Xie H, An H, Li C, Wang X, Chai W. Hydrogels for the treatment of rheumatoid arthritis. Front Bioeng Biotechnol 2022; 10:1014543. [PMID: 36312537 PMCID: PMC9597294 DOI: 10.3389/fbioe.2022.1014543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Rheumatoid Arthritis is a universal disease that severely affects the normal function of human joints and the quality of life. Millions of people around the world are diagnosed with rheumatoid arthritis every year, carrying a substantial burden for both the individual and society. Hydrogel is a polymer material with good mechanical properties and biocompatibility, which shows great potential in the treatment of rheumatoid arthritis. With the progress of tissue engineering and biomedical material technology in recent years, more and more studies focus on the application of hydrogels in rheumatoid arthritis. We reviewed the progress of hydrogels applied in rheumatoid arthritis in recent years. Also, the needed comprehensive performance and current applications of therapeutic hydrogels based on the complex pathophysiological characteristics of rheumatoid arthritis are also concluded. Additionally, we proposed the challenges and difficulties in the application of hydrogels in rheumatoid arthritis and put forward some prospects for the future research.
Collapse
Affiliation(s)
- Jiafeng Yi
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yubo Liu
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Hongbin Xie
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Haoming An
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Chao Li
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Chao Li, ; Xing Wang, ; Wei Chai,
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chao Li, ; Xing Wang, ; Wei Chai,
| | - Wei Chai
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Chao Li, ; Xing Wang, ; Wei Chai,
| |
Collapse
|