1
|
Dzialach L, Sobolewska J, Zak Z, Respondek W, Witek P. Prolactin-secreting pituitary adenomas: male-specific differences in pathogenesis, clinical presentation and treatment. Front Endocrinol (Lausanne) 2024; 15:1338345. [PMID: 38370355 PMCID: PMC10870150 DOI: 10.3389/fendo.2024.1338345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Prolactinomas (PRLomas) constitute approximately half of all pituitary adenomas and approximately one-fifth of them are diagnosed in males. The clinical presentation of PRLomas results from direct prolactin (PRL) action, duration and severity of hyperprolactinemia, and tumor mass effect. Male PRLomas, compared to females, tend to be larger and more invasive, are associated with higher PRL concentration at diagnosis, present higher proliferative potential, are more frequently resistant to standard pharmacotherapy, and thus may require multimodal approach, including surgical resection, radiotherapy, and alternative medical agents. Therefore, the management of PRLomas in men is challenging in many cases. Additionally, hyperprolactinemia is associated with a significant negative impact on men's health, including sexual function and fertility potential, bone health, cardiovascular and metabolic complications, leading to decreased quality of life. In this review, we highlight the differences in pathogenesis, clinical presentation and treatment of PRLomas concerning the male sex.
Collapse
Affiliation(s)
- Lukasz Dzialach
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Sobolewska
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Zak
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Wioleta Respondek
- Department of Internal Medicine, Endocrinology and Diabetes, Mazovian Brodnowski Hospital, Warsaw, Poland
| | - Przemysław Witek
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Araujo-Castro M, Marazuela M, Puig-Domingo M, Biagetti B. Prolactin and Growth Hormone Signaling and Interlink Focused on the Mammosomatotroph Paradigm: A Comprehensive Review of the Literature. Int J Mol Sci 2023; 24:14002. [PMID: 37762304 PMCID: PMC10531307 DOI: 10.3390/ijms241814002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Prolactin (PRL) and growth hormone (GH) are peptide hormones that bind to the class 1 cytokine receptor superfamily, a highly conserved cell surface class of receptors. Both hormones control their own secretion via a negative autocrine loop in their own mammosomatotroph, lactotroph or somatotroph. In this regard, GH and PRL are regulated by similar signaling pathways involving cell growth and hormone secretion. Thus, GH and PRL dysregulation and pituitary neuroendocrine tumor (PitNET) development may have common pathogenic pathways. Based on cell linage, lactotroph and somatotroph PitNETs come from pituitary-specific POU-class homeodomain transcription factor (Pit-1). Mammosomatotroph and plurihormonal PitNETs are a unique subtype of PitNETs that arise from a single-cell population of Pit-1 lineage. In contrast, mixed somatotroph-lactotroph PitNETs are composed of two distinct cell populations: somatotrophs and lactotrophs. Morphologic features that distinguish indolent PitNETs from locally aggressive ones are still unidentified, and no single prognostic parameter can predict tumor aggressiveness or treatment response. In this review, we aim to explore the latest research on lactotroph and somatotroph PitNETs, the molecular mechanisms involved in PRL and GH axis regulation and the signaling pathways involved in their aggressiveness, particularly focused on mammosomatotroph and mixed subtypes. Finally, we summarize epidemiological, clinical, and radiological features of these exceptional tumors. We aim to shed light, from basic to clinical settings, on new perspectives and scientific gaps in this field.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Colmenar Viejo Street km 9, 28034 Madrid, Spain
- Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), Colmenar Viejo Street km 9, 28034 Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology and Nutrition, Hospital Universitario La Princesa, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Monforte de Lemos Avenue, 28029 Madrid, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Department of Medicine, Germans Trias i Pujol Research Institute and Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER G747, Monforte de Lemos Avenue, 28029 Madrid, Spain
| | - Betina Biagetti
- Department of Endocrinology and Nutrition, Vall d’Hebron University Hospital, Reference Networks (ERN) and Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Avenue, 119, 08035 Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute and CIBERDEM (ISCIII), Universidad Autónoma de Barcelona, Avenida Can Domènech s/n, 08193 Bellaterra, Spain
| |
Collapse
|
3
|
de Castro Moreira AR, Trarbach E, Bueno CBF, Monteiro ALS, Grande IPP, Padula M, Maciel GAR, Glezer A. PRL-R Variants Are Not Only Associated With Prolactinomas But Also With Dopamine Agonist Resistance. J Clin Endocrinol Metab 2023; 108:e450-e457. [PMID: 36638053 DOI: 10.1210/clinem/dgad020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
CONTEXT Knockout prolactin receptor gene (PRL-R) mice are animal models for prolactinomas and PRL acts via autocrine/paracrine inhibiting lactotroph proliferation. Recently, variants of the PRL-R were identified in prolactinoma patients and their frequency was higher compared to individuals from the genomic database. OBJECTIVE We analyzed PRL-R variants frequency in an extensive cohort of prolactinoma patients and evaluated their association with clinical, laboratorial, and imaging characteristics and hormonal response to cabergoline. DESIGN Observational, retrospective, and cross-sectional study. SETTING This study took place at the Neuroendocrinology Unit of Clinics Hospital, Medical School of University of São Paulo, Brazil, a tertiary referral center. PATIENTS AND METHODS Study participants included adults with sporadic prolactinomas treated with cabergoline, where response to therapy was defined by prolactin normalization with up to 3 mg/week doses. DNA was extracted from blood samples and the PRL-R was analyzed by polymerase chain reaction techniques and automatic sequencing. The association of PRL-R variants with serum prolactin levels, maximal tumor diameter, tumor parasellar invasiveness, and response to cabergoline was analyzed. RESULTS We found 6 PRL-R variants: p.Ile100(76)Val, p.Ile170(146)Leu, p.Glu400(376)Gln/p.Asn516(492)Ile, p.Glu470Asp e p.Ala591Pro; the last 2 are newly described in prolactinomas' patients. The variants p.Glu400(376)Gln/p.Asn516(492)Ile and p.Ala591Pro were more frequent amongst patients compared to genomic databases, and the p.Asn516(492)Ile showed pathogenic potential using in silico analysis as previously described. PRL-R variants were associated with male sex (P = 0.015), higher serum PRL levels (P = 0.007), larger tumors (P = 0.001), and cabergoline resistance (P < 0.001). CONCLUSIONS The prolactin/prolactin receptor system seems to be related to prolactinoma tumorigenesis and cabergoline resistance. Additional studies are needed to better understand the PRL-R variants' role and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Andrea Ramos de Castro Moreira
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Ericka Trarbach
- Laboratório de Endocrinologia Celular e Molecular/LIM25, Disciplina de Endocrinologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | | | - Anna Louise Stellfeld Monteiro
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Isabella Pacetti Pajaro Grande
- Laboratório de Endocrinologia Celular e Molecular/LIM25, Disciplina de Endocrinologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Mario Padula
- Department of Radiology, Instituto de Radiologia-INRAD, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Arantes Rosa Maciel
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Andrea Glezer
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
- Laboratório de Endocrinologia Celular e Molecular/LIM25, Disciplina de Endocrinologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
4
|
Szmygin H, Szydełko J, Matyjaszek-Matuszek B. Dopamine Agonist-Resistant Microprolactinoma—Mechanisms, Predictors and Management: A Case Report and Literature Review. J Clin Med 2022; 11:jcm11113070. [PMID: 35683457 PMCID: PMC9181764 DOI: 10.3390/jcm11113070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 01/09/2023] Open
Abstract
Objective: Prolactinomas are the most common type of functional, hormone-secreting pituitary adenomas that account for about 40% of total pituitary adenomas. Typical clinical presentations include loss of menstrual periods (amenorrhea) and galactorrhoea in women and sexual dysfunction in men. Prolactinomas are preferentially treated with dopamine agonists and respond to such therapy with hormonal normalisation and tumour shrinkage. However, about 10–20% of prolactinomas are resistant to dopamine agonists. The management of dopamine agonist-resistant prolactinomas poses a therapeutic challenge and includes several possible approaches. Design and Methods: In this study, we present a case report of a woman diagnosed with microprolactinoma at the age of 27 who did not fully respond either to treatment with dopamine agonists nor to transsphenoidal surgery. This was followed by a review of literature on the current state of knowledge about the mechanisms, predictors, and management of dopamine agonist-resistant prolactinomas on the basis of recent scientific literature published up to November 2021 and searches of the PubMed, Google Scholar, and Web of Science databases. Results and Conclusions: The exact mechanisms underlying dopamine agonists’ resistance in lactotroph tumours are not fully understood, yet refractory prolactinomas pose a great challenge in everyday clinical practice. Several predictive factors that contribute to poor response to medical treatment have been identified, among them the elevated Ki-67 index. Recently, various alternative medical treatments have been considered, but their usefulness remains to be evaluated. A return of menses can serve as a first clinical indication of successful medical treatment.
Collapse
|
5
|
Wan X, Yan Z, Tan Z, Cai Z, Qi Y, Lu L, Xu Y, Chen J, Lei T. MicroRNAs in Dopamine Agonist-Resistant Prolactinoma. Neuroendocrinology 2022; 112:417-426. [PMID: 34034260 DOI: 10.1159/000517356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022]
Abstract
Dopamine agonists (DAs) are preferred for the treatment of prolactinomas and are usually very effective. Nonetheless, 20-30% of bromocriptine- and approximately 10% of cabergoline-treated individuals exhibit resistance to DAs. In addition, the mechanism underlying this phenomenon remains elusive. In this study, we summarize the major findings regarding the role of microRNAs (miRNAs) in the pathogenesis of DA-resistant prolactinoma (DARP). Currently available evidence suggests that miRNAs are usually dysregulated in DARP and that, although controversial, the dysregulated miRNAs target the transforming growth factor (TGF)-β, dopamine 2 receptor (D2R), or estradiol (E2)/estrogen receptor (ER) signaling pathways to mediate the therapeutic effect of DAs. These findings provide new incentives for research on innovative strategies for predicting patients' responsiveness to dopamine therapies and for developing treatment approaches. Unfortunately, recent studies tended to focus exclusively on the differential miRNA expression profiles between DARP and dopamine-sensitive prolactinoma, and no definitive consensus has been reached regarding the role of these miRNAs in the modulation mechanism. Therefore, current and future efforts should be directed toward the exploration of the mechanism underlying the dysregulation of miRNAs as well as of the target proteins that are affected by the dysregulated miRNAs. Furthermore, the modulation of the expression of dysregulated miRNAs, which target the D2R, TGF-β, or E2/ER signaling pathways, might be a promising alternative to treat patients with DARP and improve their prognosis.
Collapse
Affiliation(s)
- Xueyan Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zisheng Yan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhoubin Tan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Cai
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwei Qi
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Lu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Biagetti B, Simò R. Molecular Pathways in Prolactinomas: Translational and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms222011247. [PMID: 34681905 PMCID: PMC8538771 DOI: 10.3390/ijms222011247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Prolactinoma has the highest incidence rate among patients with functional pituitary tumours. Although mostly benign, there is a subgroup that can be aggressive. Some clinical, radiological and pathology features have been associated with a poor prognostic. Therefore, it can be considered as a group of heterogeneous tumours. The aim of this paper is to give an overview of the molecular pathways involved in the behaviour of prolactinoma in order to improve our approach and gain deeper insight into the better understanding of tumour development and its management. This is essential for identifying patients harbouring aggressive prolactinoma and to establish personalised therapeutics options.
Collapse
|
7
|
Peverelli E, Treppiedi D, Mangili F, Catalano R, Spada A, Mantovani G. Drug resistance in pituitary tumours: from cell membrane to intracellular signalling. Nat Rev Endocrinol 2021; 17:560-571. [PMID: 34194011 DOI: 10.1038/s41574-021-00514-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
The pharmacological treatment of pituitary tumours is based on the use of stable analogues of somatostatin and dopamine. The analogues bind to somatostatin receptor types 2 and 5 (SST2 and SST5) and dopamine receptor type 2 (DRD2), respectively, and generate signal transduction cascades in cancerous pituitary cells that culminate in the inhibition of hormone secretion, cell growth and invasion. Drug resistance occurs in a subset of patients and can involve different steps at different stages, such as following receptor activation by the agonist or during the final biological responses. Although the expression of somatostatin and dopamine receptors in cancer cells is a prerequisite for these drugs to reach a biological effect, their presence does not guarantee the success of the therapy. Successful therapy also requires the proper functioning of the machinery of signal transduction and the finely tuned regulation of receptor desensitization, internalization and intracellular trafficking. The present Review provides an updated overview of the molecular factors underlying the pharmacological resistance of pituitary tumours. The Review discusses the experimental evidence that supports a role for receptors and intracellular proteins in the function of SSTs and DRD2 and their clinical importance.
Collapse
Affiliation(s)
- Erika Peverelli
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy.
| | - Donatella Treppiedi
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Federica Mangili
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Rosa Catalano
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Spada
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Giovanna Mantovani
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| |
Collapse
|
8
|
Mangili F, Treppiedi D, Catalano R, Marra G, Di Muro G, Spada A, Arosio M, Peverelli E, Mantovani G. A Novel Mechanism Regulating Dopamine Receptor Type 2 Signal Transduction in Pituitary Tumoral Cells: The Role of cAMP/PKA-Induced Filamin A Phosphorylation. Front Endocrinol (Lausanne) 2020; 11:611752. [PMID: 33664708 PMCID: PMC7921166 DOI: 10.3389/fendo.2020.611752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
The actin binding protein filamin A (FLNA) is required for somatostatin receptor 2 (SSTR2) and dopamine receptor 2 (DRD2) expression and signaling in GH- and PRL-secreting PitNETs, respectively, playing a role in tumor responsiveness to somatostatin receptors ligands and dopaminergic drugs. FLNA functions are regulated by several mechanisms, including phosphorylation. It has been shown that in GH-secreting PitNETs FLNA phosphorylation on Ser2152 (P-FLNA) switches FLNA function from a scaffold that allows SSTR2 signal transduction, to a signal termination protein that hampers SSTR2 antitumoral effects. Aims of the present study were to evaluate in PRL- and ACTH-secreting PitNETs cell lines MMQ and AtT-20 the effects of cAMP pathway activation and DRD2 agonist on P-FLNA and the impact of P-FLNA on DRD2 signal transduction. We found that forskolin increased (+2.2 ± 0.8-fold, p < 0.01 in MMQ; +1.9 ± 0.58-fold, p < 0.05 in AtT-20), and DRD2 agonist BIM53097 reduced (-49.4 ± 25%, p < 0.001 in MMQ; -45.8 ± 28%, p < 0.05 in AtT-20), P-FLNA on Ser2152. The overexpression of a phosphomimetic (S2152D) FLNA mutant in both cell lines prevented DRD2 antiproliferative effects, that were comparable in cells transfected with empty vector, wild-type FLNA as well as phosphodeficient FLNA mutant (S2152A) (-20.6 ± 5% cell proliferation, p < 0.001 in MMQ; -36.6 ± 12%, p < 0.01 in AtT-20). Accordingly, S2152D FLNA expression abolished the expected ability of BIM53097 to increase or decrease, in MMQ and in AtT20 respectively, ERK phosphorylation, an effect that was maintained in S2152A FLNA expressing cells (+1.8 ± 0.65-fold, p < 0.05 in MMQ; -55 ± 13%, p < 0.01 in AtT-20). In addition, the inhibitory effects of DRD2 on hormone secretion (-34.3 ± 6% PRL, p < 0.05 in MMQ; -42.8 ± 22% ACTH, p < 0.05 in AtT-20, in cells expressing S2152A FLNA) were completely lost in S2152D FLNA transfected cells. In conclusion, our data demonstrated that cAMP pathway and DRD2 agonist regulated FLNA activity by increasing or decreasing, respectively, its phosphorylation. Moreover, we found that P-FLNA prevented DRD2 signaling in PRL- and ACTH-secreting tumoral pituitary cell lines, suggesting that this FLNA modification might represent a new regulatory mechanism shared by different GPCRs. In PitNETs expressing DRD2, modulation of P-FLNA might suggest new pharmacological strategies to overcome drug resistance, and P-FLNA might represent a new biomarker for tumor responsiveness to dopaminergic agents.
Collapse
Affiliation(s)
- Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giusy Marra
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Erika Peverelli,
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
9
|
Jichao W, Jing G, Fei W, Lei C, Qian L, Jie F, Hongyun W, Hua G, Yazhuo Z. miRNA-199a-5p functions as a tumor suppressor in prolactinomas. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AbstractProlactinomas are the most frequently observed pituitary adenomas (PAs), and 5%–18% tumors were resistant to the dopamine agonists (DAs). MicroRNAs (miRNAs) dysfunction play a key role in tumorigenesis. Agilent miRNA and an expression chip were used for six prolactinomas and three normal pituitary specimens. Differentially expressed genes were confirmed by RT-qPCR. The level of DDR1 and SAT1 was determined with tissue micro-array (TMA) and western blot. A MMQ cell line was used for functional experiments. We have identified 5-miRNA and 12 target gene signatures of prolactinomas through gene ontology analysis. miRNA-199a-5p was selected for experiments that integrated the results from prolactinomas specimens and a rat prolactinoma model induced by 17-b-estradiol. Tumors with low miRNA-199a-5p had a significantly invasive behavior and a higher tumor volume (p<0.05). DDR1 and SAT1, target genes of miRNA-199a-5p, had higher H-scores in the invasive group than those of the non-invasive group through TMA. An overexpression of miRNA-119a-5p suppressed the PRL secretion and the cell viability through upregulated the apoptosis level in MMQ cells (p<0.01). Furthermore, we found the target genes expression of DDR1 and SAT1 were affected by miRNA-199a-5p regardless of mRNA levels or protein levels. This study provided evidence that downregulation of miRNA-199a-5p may contribute to prolactinoma tumorigenesis.
Collapse
Affiliation(s)
- Wang Jichao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xinjiang Uygur Autonomous Region People’s Hospital, Xinjiang, China
| | - Guo Jing
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wang Fei
- Department of Neurosurgery, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, China
| | - Cao Lei
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Liu Qian
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Feng Jie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wang Hongyun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Gao Hua
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Zhang Yazhuo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Key Laboratory of Central Nervous System Injury Research, Center of Brain Tumor of Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Sahakian N, Castinetti F, Dufour H, Graillon T, Romanet P, Barlier A, Brue T, Cuny T. Clinical management of difficult to treat macroprolactinomas. Expert Rev Endocrinol Metab 2019; 14:179-192. [PMID: 30913932 DOI: 10.1080/17446651.2019.1596024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/13/2019] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Prolactinomas represent the most common pituitary adenomas encountered in the clinic. While a majority of these tumors will be successfully treated by dopamine agonist (DA) such as cabergoline, their management becomes problematic since a resistance to DA can occur and/or if the tumor displays features of aggressiveness, two conditions that are closely related. AREAS COVERED Epidemiology and medical treatment of prolactinomas; resistance to DA and molecular basis of DA-resistance; therapeutical alternatives in case of DA-resistant Prolactinomas and therapies in development; summarizing conclusions. EXPERT OPINION The management of DA-resistant prolactinomas requires a multidisciplinary approach by an expert team. Along with discussions about surgery with or without gamma knife radiosurgery, genetic screening for multiple endocrine neoplasia type 1 (MEN1) syndrome is actively discussed in a case-by-case approach. In case of surgery, a careful analysis of the tumor sample can provide information about its aggressivity potential according to recent criteria. Ultimately, temozolomide can be indicated if the tumor is rapidly growing and/or threatening for the patient.
Collapse
Affiliation(s)
- Nicolas Sahakian
- a Marseille Medical Genetics, Inserm U1251, Hôpital de la Conception, Service d'Endocrinologie , Aix Marseille Univ, APHM , Marseille , France
| | - Frederic Castinetti
- a Marseille Medical Genetics, Inserm U1251, Hôpital de la Conception, Service d'Endocrinologie , Aix Marseille Univ, APHM , Marseille , France
| | - Henry Dufour
- b Marseille Medical Genetics, Inserm U1251, Hôpital de la Timone, Service de Neurochirurgie , Aix Marseille Univ, APHM , Marseille , France
| | - Thomas Graillon
- b Marseille Medical Genetics, Inserm U1251, Hôpital de la Timone, Service de Neurochirurgie , Aix Marseille Univ, APHM , Marseille , France
| | - Pauline Romanet
- c Marseille Medical Genetics, Inserm U1251, Hôpital de la Conception, Laboratoire de Biologie Moléculaire et Biochimie , Aix Marseille Univ, APHM , Marseille , France
| | - Anne Barlier
- c Marseille Medical Genetics, Inserm U1251, Hôpital de la Conception, Laboratoire de Biologie Moléculaire et Biochimie , Aix Marseille Univ, APHM , Marseille , France
| | - Thierry Brue
- a Marseille Medical Genetics, Inserm U1251, Hôpital de la Conception, Service d'Endocrinologie , Aix Marseille Univ, APHM , Marseille , France
| | - Thomas Cuny
- a Marseille Medical Genetics, Inserm U1251, Hôpital de la Conception, Service d'Endocrinologie , Aix Marseille Univ, APHM , Marseille , France
| |
Collapse
|
11
|
Olarescu NC, Perez-Rivas LG, Gatto F, Cuny T, Tichomirowa MA, Tamagno G, Gahete MD. Aggressive and Malignant Prolactinomas. Neuroendocrinology 2019; 109:57-69. [PMID: 30677777 DOI: 10.1159/000497205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/24/2019] [Indexed: 11/19/2022]
Abstract
Prolactin-secreting tumors (prolactinomas) represent the most common pituitary tumor type, accounting for 47-66% of functional pituitary tumors. Prolactinomas are usually benign and controllable tumors as they express abundant levels of dopamine type 2 receptor (D2), and can be treated with dopaminergic drugs, effectively reducing prolactin levels and tumor volume. However, a proportion of prolactinomas exhibit aggressive features (including invasiveness, relevant growth despite adequate dopamine agonist treatment, and recurrence potential) and few may exhibit metastasizing potential (carcinomas). In this context, the clinical, pathological, and molecular definitions of malignant and aggressive prolactinomas remain to be clearly defined, as primary prolactin-secreting carcinomas are similar to aggressive adenomas until the presence of metastases is detected. Indeed, standard molecular and histological analyses do not reflect differences between carcinomas and adenomas at a first glance and have limitations in prediction of the aggressive progression of prolactinomas, wherein the causes underlying the aggressive behavior remain unknown. Herein we present a comprehensive, multidisciplinary review of the most relevant epidemiological, clinical, pathological, genetic, biochemical, and molecular aspects of aggressive and malignant prolactinomas.
Collapse
Affiliation(s)
- Nicoleta Cristina Olarescu
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Luis G Perez-Rivas
- Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Federico Gatto
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Thomas Cuny
- Service d'Endocrinologie, Hôpital de la Conception, Inserm U1251, Marseille Medical Genetics, APHM, Aix-Marseille University, Marseille, France
| | - Maria A Tichomirowa
- Service d'Endocrinologie, Centre Hospitalier du Nord, Ettelbruck, Luxembourg
| | - Gianluca Tamagno
- Department of Endocrinology/Diabetes Mellitus, Mater Misericordiae University Hospital, Dublin, Ireland
- Department of Medicine, Wexford General Hospital, Wexford, Ireland
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain,
- Universidad de Córdoba, Cordoba, Spain,
- Reina Sofia University Hospital, Cordoba, Spain,
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain,
| |
Collapse
|