1
|
Zheng J, Wang N, Zhang W, Liao Y, Tao T, Chang J, Ye J, Xu F, Wang Q, Jiang L, Liu L. Characterization and functional analysis of novel α-bisabolol synthase (MrBAS) promoter from Matricaria recutita. Int J Biol Macromol 2024; 281:136445. [PMID: 39389512 DOI: 10.1016/j.ijbiomac.2024.136445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Matricaria recutita is widely used in industry and as a medicinal plant because it contains α-bisabolol. Alpha-bisabolol has broad application prospects due to its healthy function and medical value. The activity of the α-bisabolol synthase (MrBAS) promoter determines the expression of the MrBAS gene, which in turn influences the synthesis and accumulation of α-bisabolol. However, the activity and tissue specificity of the MrBAS promoter have not yet been characterized. In this study, a 1327-base pair (bp) region upstream of the MrBAS of the translation start site was cloned from the genome of M. recutita. MrBAS promoter sequence analysis revealed multiple light-responsive elements, and further dark treatment reduced α-bisabolol content in flowers. The α-bisabolol content and MrBAS expression levels in various flower tissues showed a strong correlation. The 5' deletion analysis revealed that the MrBAS promoter sequence could drive β-glucuronidase (GUS) gene expression in Nicotiana benthamiana leaves, with activity decreasing as the fragment shortened. Transgenic experiments demonstrated that the MrBAS promoter could specifically drive GUS gene expression in Arabidopsis anthers, pollen tubes, and petals. Thus, the MrBAS promoter has the potential to be a tool for directing transgene expression specifically in flower organs, offering new research avenues for cultivar development.
Collapse
Affiliation(s)
- Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Nuo Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Tingting Tao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jie Chang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Leiyu Jiang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Li Liu
- Shannan Anrao Township Agricultural and Animal Husbandry Comprehensive Service Center, Shannan 856000, Xizang, China
| |
Collapse
|
2
|
Singhal C, Singh A, Sharma AK, Khurana P. Identification of CKX gene family in Morus indica cv K2 and functional characterization of MiCKX4 during abiotic stress. STRESS BIOLOGY 2024; 4:35. [PMID: 39136853 PMCID: PMC11322459 DOI: 10.1007/s44154-024-00173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 08/16/2024]
Abstract
Cytokinin oxidase/dehydrogenase (CKX) is the key enzyme that has been observed to catalyze irreversible inactivation of cytokinins and thus modulate cytokinin levels in plants. CKX gene family is known to have few members which are, expanded in the genome mainly due to duplication events. A total of nine MiCKXs were identified in Morus indica cv K2 with almost similar gene structures and conserved motifs and domains. The cis-elements along with expression analysis of these MiCKXs revealed their contrasting and specific role in plant development across different developmental stages. The localization of these enzymes in ER and Golgi bodies signifies their functional specification and property of getting modified post-translationally to carry out their activities. The overexpression of MiCKX4, an ortholog of AtCKX4, displayed longer primary root and higher number of lateral roots. Under ABA stress also the transgenic lines showed higher number of lateral roots and tolerance against drought stress as compared to wild-type plants. In this study, the CKX gene family members were analyzed bioinformatically for their roles under abiotic stresses.
Collapse
Affiliation(s)
- Chanchal Singhal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Arunima Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
3
|
Ge B, Dong K, Li R, Bi X, Liu Q, Zhang W, Chen Y, Lu C. Isolation and functional characterization of cold-induced gene (AmCIP) promoter from Ammopiptanthus mongolicus. Gene 2024; 909:148311. [PMID: 38401831 DOI: 10.1016/j.gene.2024.148311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
AmCIP is a dehydrin-like protein which involved in abiotic stress tolerance in xerophytes evergreen woody plant A. mongolicus. AmCIP could be induced in the cotyledon and radicle during cold acclimation. To further elucidate the regulation of the upstream region of the gene, we isolated and characterized the promoter of AmCIP. Herein, a 1115 bp 5'-flanking region of AmCIP genomic DNA was isolated and cloned by genome walking from A. mongolicus and the segment sequence was identified as "PrAmCIP" promoter. Analysis of the promoter sequence revealed the presences of some basic cis-acting elements, which were related to various environmental stresses and plant hormones. GUS histochemical staining of transgene tobacco showed that PrAmCIP was induced by 4℃, 55℃, NaCl, mannitol and ABA, whereas it could hardly drive GUS gene expression under normal conditions. Furthermore, we constructed three deletion fragments and genetically transformed them into Arabidopsis thaliana. GUS histochemical staining showed that the MYCATERD1 element of the CP7 fragment (-189 ∼ -1) may be a key element in response to drought. In conclusion, we provide an inducible promoter, PrAmCIP, which can be applied to the development of transgenic plants for abiotic stresse tolerance.
Collapse
Affiliation(s)
- Bohao Ge
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Kuo Dong
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Rongchen Li
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaorui Bi
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qianru Liu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuzhen Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Cunfu Lu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Hake AA, Ballichatla S, Barbadikar KM, Magar N, Dutta S, Gokulan CG, Awalellu K, Patel HK, Sonti RV, Phule AS, Varma EP, Ayeella PG, Vamshi P, Sundaram RM, Maganti SM. Combined strategy employing MutMap and RNA-seq reveals genomic regions and genes associated with complete panicle exsertion in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:69. [PMID: 37622088 PMCID: PMC10444938 DOI: 10.1007/s11032-023-01412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Complete panicle exsertion (CPE) in rice is an important determinant of yield and a desirable trait in breeding. However, the genetic basis of CPE in rice still remains to be completely characterized. An ethyl methane sulfonate (EMS) mutant line of an elite cultivar Samba Mahsuri (BPT 5204), displaying stable and consistent CPE, was identified and named as CPE-110. MutMap and RNA-seq were deployed for unraveling the genomic regions, genes, and markers associated with CPE. Two major genomic intervals, on chromosome 8 (25668481-25750456) and on chromosome 11 (20147154-20190400), were identified to be linked to CPE through MutMap. A non-synonymous SNP (G/A; Chr8:25683828) in the gene LOC_Os08g40570 encoding pyridoxamine 5'-phosphate oxidase with the SNP index 1 was converted to Kompetitive allele-specific PCR (KASP) marker. This SNP (KASP 8-1) exhibited significant association with CPE and further validated through assay in the F2 mapping population, released varieties and CPE exhibiting BPT 5204 mutant lines. RNA-seq of the flag leaves at the booting stage, 1100 genes were upregulated and 1305 downregulated differentially in CPE-110 and BPT 5204. Metabolic pathway analysis indicated an enrichment of genes involved in photosynthesis, glyoxylate, dicarboxylate, porphyrin, pyruvate, chlorophyll, carotenoid, and carbon metabolism. Further molecular and functional studies of the candidate genes could reveal the mechanistic aspects of CPE. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01412-1.
Collapse
Affiliation(s)
- Anil A. Hake
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - Suneel Ballichatla
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | | | - Nakul Magar
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - Shubhankar Dutta
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007 India
- Research and Education in Cancer, Advanced Centre for Treatment, Navi Mumbai, Maharashtra 410210 India
| | - CG Gokulan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007 India
| | - Komal Awalellu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007 India
| | - Hitendra K Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007 India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Amol S. Phule
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | | | | | - Poloju Vamshi
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - R. M. Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - Sheshu Madhav Maganti
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
- ICAR-Central Tobacco Research Institute, Rajahmundry, Andhra Pradesh 533105 India
| |
Collapse
|
5
|
Sadaqat M, Umer B, Attia KA, Abdelkhalik AF, Azeem F, Javed MR, Fatima K, Zameer R, Nadeem M, Tanveer MH, Sun S, Ercisli S, Nawaz MA. Genome-wide identification and expression profiling of two-component system (TCS) genes in Brassica oleracea in response to shade stress. Front Genet 2023; 14:1142544. [PMID: 37323660 PMCID: PMC10267837 DOI: 10.3389/fgene.2023.1142544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
The Two-component system (TCS) consists of Histidine kinases (HKs), Phosphotransfers (HPs), and response regulator (RR) proteins. It has an important role in signal transduction to respond to a wide variety of abiotic stresses and hence in plant development. Brassica oleracea (cabbage) is a leafy vegetable, which is used for food and medicinal purposes. Although this system was identified in several plants, it had not been identified in Brassica oleracea yet. This genome-wide study identified 80 BoTCS genes consisting of 21 HKs, 8 HPs, 39 RRs, and 12 PRRs. This classification was done based on conserved domains and motif structure. Phylogenetic relationships of BoTCS genes with Arabidopsis thaliana, Oryza sativa, Glycine max, and Cicer arietinum showed conservation in TCS genes. Gene structure analysis revealed that each subfamily had conserved introns and exons. Both tandem and segmental duplication led to the expansion of this gene family. Almost all of the HPs and RRs were expanded through segmental duplication. Chromosomal analysis showed that BoTCS genes were dispersed across all nine chromosomes. The promoter regions of these genes were found to contain a variety of cis-regulatory elements. The 3D structure prediction of proteins also confirmed the conservation of structure within subfamilies. MicroRNAs (miRNAs) involved in the regulation of BoTCSs were also predicted and their regulatory roles were also evaluated. Moreover, BoTCSs were docked with abscisic acid to evaluate their binding. RNA-seq-based expression analysis and validation by qRT-PCR showed significant variation of expression for BoPHYs, BoERS1.1, BoERS2.1, BoERS2.2, BoRR10.2, and BoRR7.1 suggesting their importance in stress response. These genes showing unique expression can be further used in manipulating the plant's genome to make the plant more resistant the environmental stresses which will ultimately help in the increase of plant's yield. More specifically, these genes have altered expression in shade stress which clearly indicates their importance in biological functions. These findings are important for future functional characterization of TCS genes in generating stress-responsive cultivars.
Collapse
Affiliation(s)
- Muhammad Sadaqat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Basit Umer
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amr F. Abdelkhalik
- Biotechnology School, Nile University, Giza, Egypt
- Rice Biotechnology Lab, Rice Research and Training Center, Field Crops Research Institute, ARC, Kafrelshikh, Egypt
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Kinza Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Roshan Zameer
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Majid Nadeem
- Wheat Research Institute, Ayub Agriculture Research Institute, Faisalabad, Pakistan
| | | | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, Yesosu Campus, Yesosu Si, Republic of Korea
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), Tomsk State University, Tomsk, Russia
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Tomsk, Russia
| |
Collapse
|
6
|
Chen W, Huang B. Cytokinin or ethylene regulation of heat-induced leaf senescence involving transcriptional modulation of WRKY in perennial ryegrass. PHYSIOLOGIA PLANTARUM 2022; 174:e13766. [PMID: 36053893 DOI: 10.1111/ppl.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Heat stress is a major abiotic stress for temperate plant species with characteristic symptoms of premature leaf senescence. The objectives of this study were to evaluate the physiological effects of cytokinins (CK) and an ethylene inhibitor, aminoethoxyvinylglycine (AVG) on heat-induced leaf senescence in the temperate perennial grass species, perennial ryegrass (Lolium perenne), and to investigate whether WRKY transcription factors (TFs) could be associated with CK- or ethylene-mediated regulation of heat-induced leaf senescence by exogenously applying CK or AVG to perennial ryegrass. Perennial ryegrass plants foliar-sprayed with 6-benzylaminopurine (6-BA), and AVG exhibited prolonged stay-green phenotypes and a lesser degree of leaf senescence under heat stress (35/30°C), as shown by a decline in electrolyte leakage, malondialdehyde content, hydrogen peroxide, and superoxide content, and increased chlorophyll (Chl) content along with reduced activities of Chl-degrading enzymes (pheophytinase and chlorophyllase) and increased activity of Chl-synthesizing enzyme (porphobilinogen deaminase) due to 6-BA or AVG application. The suppression of heat-induced leaf senescence by 6-BA or AVG treatment corresponded with the upregulation of LpWRKY69 and LpWRKY70. The LpWRKY69 and LpWRKY70 promoters were predicted to share conserved cis-elements potentially recognized by TFs in the CK or ethylene pathways. These results indicate that LpWRKY69 and LpWRKY70 may negatively regulate heat-induced leaf senescence through CK or ethylene pathways, conferring heat tolerance in perennial ryegrass.
Collapse
Affiliation(s)
- Wei Chen
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Arce RC, Carrillo N, Pierella Karlusich JJ. The chloroplast redox-responsive transcriptome of solanaceous plants reveals significant nuclear gene regulatory motifs associated to stress acclimation. PLANT MOLECULAR BIOLOGY 2022; 108:513-530. [PMID: 35044587 DOI: 10.1007/s11103-022-01240-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Transcriptomes of solanaceous plants expressing a plastid-targeted antioxidant protein were analysed to identify chloroplast redox networks modulating the expression of nuclear genes associated with stress acclimation. Plastid functions depend on the coordinated expression of nuclear genes, many of them associated to developmental and stress response pathways. Plastid-generated signals mediate this coordination via retrograde signaling, which includes sensing of chloroplast redox state and levels of reactive oxygen species (ROS), although it remains a poorly understood process. Chloroplast redox poise and ROS build-up can be modified by recombinant expression of a plastid-targeted antioxidant protein, i.e., cyanobacterial flavodoxin, with the resulting plants displaying increased tolerance to multiple environmental challenges. Here we analysed the transcriptomes of these flavodoxin-expressing plants to study the coordinated transcriptional responses of the nucleus to the chloroplast redox status and ROS levels during normal growth and stress responses (drought or biotic stress) in tobacco and potato, members of the economically important Solanaceae family. We compared their transcriptomes against those from stressed and mutant plants accumulating ROS in different subcellular compartments and found distinct ROS-related imprints modulated by flavodoxin expression and/or stress. By introducing our datasets in a large-scale interaction network, we identified transcriptional factors related to ROS and stress responses potentially involved in flavodoxin-associated signaling. Finally, we discovered identical cis elements in the promoters of many genes that respond to flavodoxin in the same direction as in wild-type plants under stress, suggesting a priming effect of flavodoxin before stress manifestation. The results provide a genome-wide picture illustrating the relevance of chloroplast redox status on biotic and abiotic stress responses and suggest new cis and trans targets to generate stress-tolerant solanaceous crops.
Collapse
Affiliation(s)
- Rocío C Arce
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Juan J Pierella Karlusich
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
8
|
Tang G, Xu P, Li P, Zhu J, Chen G, Shan L, Wan S. Cloning and functional characterization of seed-specific LEC1A promoter from peanut (Arachis hypogaea L.). PLoS One 2021; 16:e0242949. [PMID: 33750972 PMCID: PMC7984638 DOI: 10.1371/journal.pone.0242949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/04/2021] [Indexed: 11/18/2022] Open
Abstract
LEAFY COTYLEDON1 (LEC1) is a HAP3 subunit of CCAAT-binding transcription factor, which controls several aspects of embryo and postembryo development, including embryo morphogenesis, storage reserve accumulation and skotomorphogenesis. Herein, using the method of chromosomal walking, a 2707bp upstream sequence from the ATG initiation codon site of AhLEC1A which is a homolog of Arabidopsis LEC1 was isolated in peanut. Its transcriptional start site confirmed by 5’ RACE was located at 82 nt from 5’ upstream of ATG. The bioinformatics analysis revealed that there existed many tissue-specific elements and light responsive motifs in its promoter. To identify the functional region of the AhLEC1A promoter, seven plant expression vectors expressing the GUS (β-glucuronidase) gene, driven by 5’ terminal series deleted fragments of AhLEC1A promoter, were constructed and transformed into Arabidopsis. Results of GUS histochemical staining showed that the regulatory region containing 82bp of 5’ UTR and 2228bp promoter could facilitate GUS to express preferentially in the embryos at different development periods of Arabidopsis. Taken together, it was inferred that the expression of AhLEC1A during seed development of peanut might be controlled positively by several seed-specific regulatory elements, as well as negatively by some other regulatory elements inhibiting its expression in other organs. Moreover, the GUS expression pattern of transgenic seedlings in darkness and in light was relevant to the light-responsive elements scattered in AhLEC1A promoter segment, implying that these light-responsive elements harbored in the AhLEC1A promoter regulate skotomorphogenesis of peanut seeds, and AhLEC1A expression was inhibited after the germinated seedlings were transferred from darkness to light.
Collapse
Affiliation(s)
- Guiying Tang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
| | - Pingli Xu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
| | - Pengxiang Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Jieqiong Zhu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | | | - Lei Shan
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
- * E-mail: (LS); (SW)
| | - Shubo Wan
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
- * E-mail: (LS); (SW)
| |
Collapse
|
9
|
Liu P, Wang S, Wang X, Yang X, Li Q, Wang C, Chen C, Shi Q, Ren Z, Wang L. Genome-wide characterization of two-component system (TCS) genes in melon (Cucumis melo L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:197-213. [PMID: 32229405 DOI: 10.1016/j.plaphy.2020.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
To better understand cytokinin signaling in melon (Cucumis melo L.), one of the most important fruit crops in the Cucurbitaceae family, we identified and characterized melon two-component system (TCS) genes in this study. The results showed that there were 51 genes encoding putative TCS proteins in melon, and these TCS genes were classified into 3 subgroups, with 17 HK(L)s (histidine kinase/histidine-kinase like; 9 HKs and 8 HKLs), 9 HPs (histidine phosphotransfer proteins; 6 authentic and 3 pseudo), and 25 RRs (response regulators; 8 Type-A, 11 Type-B and 6 pseudo). The identity values of these cytokinin signaling proteins were revealed by analyzing their conserved motifs, domains and amino acid sequences. By analyzing TCS genes in different plant species, we found that melon HK(L)s, HPs and RRs had closer phylogenetic relationships with cucumber genes than with the genes of other plants, and the expansion of melon cytokinin signaling genes might be attributed to segmental duplication events. Analysis of the putative promoter regions (2-kb upstream regions of the start codon) revealed the enrichment of stress- and hormone-response cis-elements. The involvement of these putative TCS genes in melon cytokinin signaling was further supported by qRT-PCR data.
Collapse
Affiliation(s)
- Panjing Liu
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Shuoshuo Wang
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiangfei Wang
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaoyu Yang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiang Li
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chao Wang
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Lina Wang
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
10
|
Sugiyama A, Ikoma Y, Fujii H, Endo T, Nesumi H, Shimada T, Omura M. Allelic diversity of phytoene synthase gene influences the transcription level in citrus fruit among a citrus F 1 hybrid population. BREEDING SCIENCE 2017; 67:382-392. [PMID: 29085248 PMCID: PMC5654466 DOI: 10.1270/jsbbs.17033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/04/2017] [Indexed: 06/07/2023]
Abstract
Phytoene synthase (PSY) is one of the key regulatory enzyme on the biosynthesis and accumulation of carotenoid in citrus fruits. The transcriptional diversity of PSY is mainly attributed to the structural variation in promoter region among PSY alleles. In aim to clarify how this transcriptional diversity is regulated among them, PSY alleles responsible for carotenoid biosynthesis in the fruits are characterized and their promoter sequences were compared. Based on gene structure and expression pattern of PSY homologues on the clementine mandarin genome sequence, PSY alleles responsible for carotenoid biosynthesis are derived from a single locus in the scaffold 6. AG mapping population possessed four PSY alleles derived from parent lines of A255 and G434, and their F1 individuals with PSY-g2 allele tended to have low transcription level. From sequence comparison of their promoter regions, the cis-motif alternation from MYBPZM to RAV1AAT might be a candidate to influence the transcription level. Among the ancestral pedigree varieties of AG mapping population, the transcription level of PSY correlated with genotypes of MYBPZM and RAV1AAT motifs in the promoter region of PSY alleles, so that homozygous genotype of MYBPZM showed higher transcription level while heterozygous genotype of MYBPZM and RAV1AAT showed lower transcription level.
Collapse
Affiliation(s)
- Aiko Sugiyama
- The United Graduate School of Agriculture Science, Gifu University,
Gifu 501-1193,
Japan
| | - Yoshinori Ikoma
- National Agriculture and Food Research Organization Institute of Fruit Tree and Tea Science,
Shimizu, Shizuoka 424-0292,
Japan
| | - Hiroshi Fujii
- National Agriculture and Food Research Organization Institute of Fruit Tree and Tea Science,
Shimizu, Shizuoka 424-0292,
Japan
| | - Tomoko Endo
- National Agriculture and Food Research Organization Institute of Fruit Tree and Tea Science,
Shimizu, Shizuoka 424-0292,
Japan
| | - Hirohisa Nesumi
- National Agriculture and Food Research Organization Institute of Fruit Tree and Tea Science,
Shimizu, Shizuoka 424-0292,
Japan
| | - Takehiko Shimada
- National Agriculture and Food Research Organization Institute of Fruit Tree and Tea Science,
Shimizu, Shizuoka 424-0292,
Japan
| | - Mitsuo Omura
- Faculty of Agriculture, Shizuoka University,
Suruga, Shizuoka 422-8529,
Japan
| |
Collapse
|
11
|
Maniga A, Ghisaura S, Perrotta L, Marche MG, Cella R, Albani D. Distinctive features and differential regulation of the DRTS genes of Arabidopsis thaliana. PLoS One 2017; 12:e0179338. [PMID: 28594957 PMCID: PMC5464667 DOI: 10.1371/journal.pone.0179338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/26/2017] [Indexed: 01/16/2023] Open
Abstract
In plants and protists, dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are part of a bifunctional enzyme (DRTS) that allows efficient recycling of the dihydrofolate resulting from TS activity. Arabidopsis thaliana possesses three DRTS genes, called AtDRTS1, AtDRTS2 and AtDRTS3, that are located downstream of three members of the sec14-like SFH gene family. In this study, a characterization of the AtDRTS genes identified alternatively spliced transcripts coding for AtDRTS isoforms which may account for monofunctional DHFR enzymes supporting pathways unrelated to DNA synthesis. Moreover, we discovered a complex differential regulation of the AtDRTS genes that confirms the expected involvement of the AtDRTS genes in cell proliferation and endoreduplication, but indicates also functions related to other cellular activities. AtDRTS1 is widely expressed in both meristematic and differentiated tissues, whereas AtDRTS2 expression is almost exclusively limited to the apical meristems and AtDRTS3 is preferentially expressed in the shoot apex, in stipules and in root cap cells. The differential regulation of the AtDRTS genes is associated to distinctive promoter architectures and the expression of AtDRTS1 in the apical meristems is strictly dependent on the presence of an intragenic region that includes the second intron of the gene. Upon activation of cell proliferation in germinating seeds, the activity of the AtDRTS1 and AtDRTS2 promoters in meristematic cells appears to be maximal at the G1/S phase of the cell cycle. In addition, the promoters of AtDRTS2 and AtDRTS3 are negatively regulated through E2F cis-acting elements and both genes, but not AtDRTS1, are downregulated in plants overexpressing the AtE2Fa factor. Our study provides new information concerning the function and the regulation of plant DRTS genes and opens the way to further investigations addressing the importance of folate synthesis with respect to specific cellular activities.
Collapse
Affiliation(s)
- Antonio Maniga
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Stefania Ghisaura
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | - Lara Perrotta
- Department of Agriculture, University of Sassari, Sassari, Italy
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | | | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Diego Albani
- Department of Agriculture, University of Sassari, Sassari, Italy
- Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
12
|
Roman H, Girault T, Le Gourrierec J, Leduc N. In silico analysis of 3 expansin gene promoters reveals 2 hubs controlling light and cytokinins response during bud outgrowth. PLANT SIGNALING & BEHAVIOR 2017; 12:e1284725. [PMID: 28263675 PMCID: PMC5351728 DOI: 10.1080/15592324.2017.1284725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bud outgrowth is under the intricate control of environmental and endogenous factors. In a recent paper, 1 we demonstrated that light perceived by Rosa buds triggers cytokinins (CK) synthesis within 3 hours in the adjacent node followed by their transport to the bud. There, CK control expression of a set of major genes (strigolactones-, auxin-, sugar sink strength-, cells division and elongation-related genes) leading to bud outgrowth in light. Conversely, under dark condition, CK accumulation and transport to the bud are repressed and no bud outgrowth occurs. In this paper, we show that the 3 expansin genes RhEXPA1,2,3 are under the control of both light and CK during bud outgrowth. In silico analysis of promoter sequences highlights 2 regions enriched in light and CK cis-regulatory elements as well as a specific cis-element in pRhEXPA3, potentially responsible for the expression patterns observed in response to CK and light.
Collapse
Affiliation(s)
- Hanaé Roman
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, Beaucouzé cedex, France
| | - Tiffanie Girault
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, Beaucouzé cedex, France
| | - José Le Gourrierec
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, Beaucouzé cedex, France
| | - Nathalie Leduc
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, Beaucouzé cedex, France
- CONTACT Nathalie Leduc IRHS, Campus du Végétal, 42 rue Georges Morel, 49071 Beaucouzé, France
| |
Collapse
|
13
|
Computational analysis of atpB gene promoter from different Pakistani apple varieties. Comput Biol Chem 2016; 64:1-8. [PMID: 27213556 DOI: 10.1016/j.compbiolchem.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 04/27/2016] [Accepted: 05/05/2016] [Indexed: 11/20/2022]
Abstract
Apple is the fourth most important fruit crop grown in temperate areas of the world belongs to the family Rosaceae. In the present study, the promoter (∼1000bp) region of atpB gene was used to evaluate the genetic diversity and phylogeny of six local apple varieties. atpB gene is one of the large chloroplastic region which encodes β-subunit of ATP synthase and previously it had been used largely in phylogenetic studies. During the present study, atpB promoter was amplified, sequenced and analyzed using various bioinformatics tools including Place Signal Scan, MEGA6 and BLASTn. During the phylogenetic analysis, obtained phylogram divided the studied varieties into two clusters revealing the monophyletic origin of studied apple varieties. Pairwise distance revealed moderate genetic diversity that ranges from 0.047-0.170 with an average of 0.101. While identifying different cis-acting elements present in the atpB promoter region, results exhibited the occurrence of 56 common and 20 unique cis-regulatory elements among studied varieties. The identified cis-acting regulatory elements were mapped as well. It was observed that Kala Kulu has the highest unique features with reference to the availability of cis-acting elements. Moreover, the possible functions of all regulatory elements present on the promoter sequence of atpB gene were predicted based on already reported information regarding their in vivo role.
Collapse
|
14
|
Tang G, Xu P, Liu W, Liu Z, Shan L. Cloning and Characterization of 5' Flanking Regulatory Sequences of AhLEC1B Gene from Arachis Hypogaea L. PLoS One 2015; 10:e0139213. [PMID: 26426444 PMCID: PMC4591277 DOI: 10.1371/journal.pone.0139213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
LEAFY COTYLEDON1 (LEC1) is a B subunit of Nuclear Factor Y (NF-YB) transcription factor that mainly accumulates during embryo development. We cloned the 5' flanking regulatory sequence of AhLEC1B gene, a homolog of Arabidopsis LEC1, and analyzed its regulatory elements using online software. To identify the crucial regulatory region, we generated a series of GUS expression frameworks driven by different length promoters with 5' terminal and/or 3' terminal deletion. We further characterized the GUS expression patterns in the transgenic Arabidopsis lines. Our results show that both the 65 bp proximal promoter region and the 52 bp 5' UTR of AhLEC1B contain the key motifs required for the essential promoting activity. Moreover, AhLEC1B is preferentially expressed in the embryo and is co-regulated by binding of its upstream genes with both positive and negative corresponding cis-regulatory elements.
Collapse
Affiliation(s)
- Guiying Tang
- Bio-Tech Research Centre, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Pingli Xu
- Bio-Tech Research Centre, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Wei Liu
- College of Agriculture, Shandong University, Jinan, 250100, China
| | - Zhanji Liu
- Bio-Tech Research Centre, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Lei Shan
- Bio-Tech Research Centre, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Agriculture, Shandong University, Jinan, 250100, China
- * E-mail:
| |
Collapse
|
15
|
Lionetti V, Raiola A, Mattei B, Bellincampi D. The Grapevine VvPMEI1 Gene Encodes a Novel Functional Pectin Methylesterase Inhibitor Associated to Grape Berry Development. PLoS One 2015. [PMID: 26204516 PMCID: PMC4512722 DOI: 10.1371/journal.pone.0133810] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pectin is secreted in a highly methylesterified form and partially de-methylesterified in the cell wall by pectin methylesterases (PMEs). PME activity is expressed during plant growth, development and stress responses. PME activity is controlled at the post-transcriptional level by proteins named PME inhibitors (PMEIs). We have identified, expressed and characterized VvPMEI1, a functional PME inhibitor of Vitis vinifera. VvPMEI1 typically affects the activity of plant PMEs and is inactive against microbial PMEs. The kinetics of PMEI-PME interaction, studied by surface plasmon resonance, indicates that the inhibitor strongly interacts with PME at apoplastic pH while the stability of the complex is reduced by increasing the pH. The analysis of VvPMEI1 expression in different grapevine tissues and during grape fruit development suggests that this inhibitor controls PME activity mainly during the earlier phase of berry development. A proteomic analysis performed at this stage indicates a PME isoform as possible target of VvPMEI1.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Alessandro Raiola
- Dipartimento Territorio e Sistemi Agroforestali, Università di Padova, Legnaro (PD), Italy
| | - Benedetta Mattei
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Daniela Bellincampi
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- * E-mail:
| |
Collapse
|
16
|
Liu Z, Zhang M, Kong L, Lv Y, Zou M, Lu G, Cao J, Yu X. Genome-wide identification, phylogeny, duplication, and expression analyses of two-component system genes in Chinese cabbage (Brassica rapa ssp. pekinensis). DNA Res 2014; 21:379-96. [PMID: 24585003 PMCID: PMC4131832 DOI: 10.1093/dnares/dsu004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/20/2014] [Indexed: 12/27/2022] Open
Abstract
In plants, a two component system (TCS) composed of sensor histidine kinases (HKs), histidine phosphotransfer proteins (HPs), and response regulators (RRs) has been employed in cytokinin signal transduction. A TCS exhibits important functions in diverse biological processes, including plant growth, development, and response to environmental stimuli. Conducting an exhaustive search of the Chinese cabbage genome, a total of 20 HK(L) (11 HKs and 9 HKLs), 8 HP (7 authentic and 1 pseudo), and 57 RR (21 Type-A, 17 Type-B, 4 Type-C, and 15 pseudo) proteins were identified. The structures, conserved domains, and phylogenetic relationships of these protein-coding genes were analysed in detail. The duplications, evolutionary patterns, and divergence of the TCS genes were investigated. The transcription levels of TCS genes in various tissues, organs, and developmental stages were further analysed to obtain information of the functions of these genes. Cytokinin-related binding elements were found in the putative promoter regions of Type-A BrRR genes. Furthermore, gene expression patterns to adverse environmental stresses (drought and high salinity) and exogenous phytohormones (tZ and ABA) were investigated. Numerous stress-responsive candidate genes were obtained. Our systematic analyses provided insights into the characterization of the TCS genes in Chinese cabbage and basis for further functional studies of such genes.
Collapse
Affiliation(s)
- Zhenning Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Mei Zhang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Lijun Kong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Yanxia Lv
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Minghua Zou
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Gang Lu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Xiaolin Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| |
Collapse
|
17
|
Zhang T, Zhao X, Wang W, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B, Li Z. Deep transcriptome sequencing of rhizome and aerial-shoot in Sorghum propinquum. PLANT MOLECULAR BIOLOGY 2014; 84:315-27. [PMID: 24104862 DOI: 10.1007/s11103-013-0135-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/23/2013] [Indexed: 05/25/2023]
Abstract
Transcriptomic data for Sorghum propinquum, the wild-type sorghum, are limited in public databases. S. propinquum has a subterranean rhizome and transcriptome data will help in understanding the molecular mechanisms underlying rhizome formation. We sequenced the transcriptome of S. propinquum aerial-shoot and rhizome using an Illumina platform. More than 70 % of the genes in the S. propinquum genome were expressed in aerial-shoot and rhizome. The expression patterns of 1963 and 599 genes, including transcription factors, were specific or enriched in aerial-shoot and rhizome respectively, indicating their possible roles in physiological processes in these tissues. Comparative analysis revealed several cis-elements, ACGT box, GCCAC, GATC and TGACG box, which showed significantly higher abundance in aerial-shoot-specific genes. In rhizome-specific genes MYB and ROOTMOTIFTAPOX1 motifs, and 10 promoter and cytokinin-responsive elements were highly enriched. Of the S. propinquum genes, 27.9 % were identified as alternatively spliced and about 60 % of the alternative splicing (AS) events were tissue-specific, suggesting that AS played a crucial role in determining tissue-specific cellular function. The transcriptome data, especially the co-localized rhizome-enriched expressed transcripts that mapped to the publicly available rhizome-related quantitative trait loci, will contribute to gene discovery in S. propinquum and to functional studies of the sorghum genome. Deep transcriptome sequencing revealed a clear difference in the expression patterns of genes between aerial-shoot and rhizome in S. propinquum. This data set provides essential information for future studies into the molecular genetic mechanisms involved in rhizome formation.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang YH, Schaller GE, Loraine A, Kieber JJ. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:272-94. [PMID: 23524861 PMCID: PMC3641208 DOI: 10.1104/pp.113.217026] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/21/2013] [Indexed: 05/17/2023]
Abstract
Cytokinins are N(6)-substituted adenine derivatives that play diverse roles in plant growth and development. We sought to define a robust set of genes regulated by cytokinin as well as to query the response of genes not represented on microarrays. To this end, we performed a meta-analysis of microarray data from a variety of cytokinin-treated samples and used RNA-seq to examine cytokinin-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Microarray meta-analysis using 13 microarray experiments combined with empirically defined filtering criteria identified a set of 226 genes differentially regulated by cytokinin, a subset of which has previously been validated by other methods. RNA-seq validated about 73% of the up-regulated genes identified by this meta-analysis. In silico promoter analysis indicated an overrepresentation of type-B Arabidopsis response regulator binding elements, consistent with the role of type-B Arabidopsis response regulators as primary mediators of cytokinin-responsive gene expression. RNA-seq analysis identified 73 cytokinin-regulated genes that were not represented on the ATH1 microarray. Representative genes were verified using quantitative reverse transcription-polymerase chain reaction and NanoString analysis. Analysis of the genes identified reveals a substantial effect of cytokinin on genes encoding proteins involved in secondary metabolism, particularly those acting in flavonoid and phenylpropanoid biosynthesis, as well as in the regulation of redox state of the cell, particularly a set of glutaredoxin genes. Novel splicing events were found in members of some gene families that are known to play a role in cytokinin signaling or metabolism. The genes identified in this analysis represent a robust set of cytokinin-responsive genes that are useful in the analysis of cytokinin function in plants.
Collapse
|
19
|
Zhang T, Zhao X, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B. Tissue-specific transcriptomic profiling of Sorghum propinquum using a rice genome array. PLoS One 2013; 8:e60202. [PMID: 23536906 PMCID: PMC3607598 DOI: 10.1371/journal.pone.0060202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/22/2013] [Indexed: 11/18/2022] Open
Abstract
Sorghum (Sorghum bicolor) is one of the world's most important cereal crops. S. propinquum is a perennial wild relative of S. bicolor with well-developed rhizomes. Functional genomics analysis of S. propinquum, especially with respect to molecular mechanisms related to rhizome growth and development, can contribute to the development of more sustainable grain, forage, and bioenergy cropping systems. In this study, we used a whole rice genome oligonucleotide microarray to obtain tissue-specific gene expression profiles of S. propinquum with special emphasis on rhizome development. A total of 548 tissue-enriched genes were detected, including 31 and 114 unique genes that were expressed predominantly in the rhizome tips (RT) and internodes (RI), respectively. Further GO analysis indicated that the functions of these tissue-enriched genes corresponded to their characteristic biological processes. A few distinct cis-elements, including ABA-responsive RY repeat CATGCA, sugar-repressive TTATCC, and GA-responsive TAACAA, were found to be prevalent in RT-enriched genes, implying an important role in rhizome growth and development. Comprehensive comparative analysis of these rhizome-enriched genes and rhizome-specific genes previously identified in Oryza longistaminata and S. propinquum indicated that phytohormones, including ABA, GA, and SA, are key regulators of gene expression during rhizome development. Co-localization of rhizome-enriched genes with rhizome-related QTLs in rice and sorghum generated functional candidates for future cloning of genes associated with rhizome growth and development.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyue Liu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Zong
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linghua Zhu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (BF); (DY)
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (BF); (DY)
| |
Collapse
|
20
|
A root-specific wall-associated kinase gene, HvWAK1, regulates root growth and is highly divergent in barley and other cereals. Funct Integr Genomics 2013; 13:167-77. [PMID: 23443578 DOI: 10.1007/s10142-013-0310-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 01/07/2023]
Abstract
Wall-associated receptor-like kinases (WAKs) are important candidates for directly linking the extracellular matrix with intracellular compartments and are involved in developmental processes and stress response. WAK gene family has been identified in plants such as Arabidopsis and rice. Here, we present a detailed analysis of the WAK1 gene from barley cv. Golden Promise, mapped to chromosome 5H. Three BAC clones corresponding to the WAK fragment were sequenced and the full-length WAK1 gene was characterized. The gene has three exons and two short introns with a coding region of 2,178 bp encoding a protein of 725 amino acids. A regulatory region was analyzed in -1,000 bp sequence upstream to start codon. Using conserved domains database and SMART, various conserved domains such as GUB WAK Bind, epidermal growth factor CA, and protein kinase C as well as other regions like signal peptides, active sites, and transmembrane domains were identified. The gene organization of HvWAK1 was compared with wheat (TaWAK1) and Arabidopsis (AtWAK1), suggesting that the WAK1 gene organization has remained highly conserved. Nonetheless, WAK1 was found to be highly divergent when compared with sequences available from barley cv. Haruna Nijo (50 %), rice (46 %), wheat (21 %), Arabidopsis (25 %), and maize (19 %). This divergence may have facilitated a better adaptation to surrounding environments due to its role in communication between the extracellular matrix, cell, and outer environment. Semiquantitative RT-PCR-based expression analysis indicates HvWAK1 expression is specific to roots. Significant differences in root growth between GP wild type and GP-Ds mutant seedlings were observed under control and salt stress conditions.
Collapse
|
21
|
Delatorre CA, Cohen Y, Liu L, Peleg Z, Blumwald E. The regulation of the SARK promoter activity by hormones and environmental signals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:39-47. [PMID: 22794917 DOI: 10.1016/j.plantsci.2012.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 06/01/2023]
Abstract
The Senescence Associated Receptor Protein Kinase (P(SARK)) promoter, fused to isopentenyltransferase (IPT) gene has been shown to promote drought tolerance in crops. We dissected P(SARK) in order to understand the various elements associated with its activation and suppression. The activity of P(SARK) was higher in mature and early senescing leaves, and abiotic stress induced its activity in mature leaves. Bioinformatics analysis suggests the interactions of multiple cis-acting elements in the control of P(SARK) activity. In vitro gel shift assays and yeast one hybrid system revealed interactions of P(SARK) with transcription factors related to abscisic acid and cytokinin response. Deletion analysis of P(SARK), fused to GUS-reporter gene was used to identify specific regions regulating transcription under senescence or during drought stress. Effects of exogenous hormonal treatments were characterized in entire plants and in leaf disk assays, and regions responsive to various hormones were defined. Our results indicate a complex interaction of plant hormones and additional factors modulating P(SARK) activity under stress resulting in a transient induction of expression.
Collapse
Affiliation(s)
- Carla A Delatorre
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 91501970, Brazil.
| | - Yuval Cohen
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; Department of Fruit Tree Sciences, Institute of Plant Sciences, Volcani Research Center (ARO), Bet Dagan, 50250, Israel.
| | - Li Liu
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Zvi Peleg
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Ginis O, Courdavault V, Melin C, Lanoue A, Giglioli-Guivarc'h N, St-Pierre B, Courtois M, Oudin A. Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway. Mol Biol Rep 2012; 39:5433-47. [PMID: 22160472 DOI: 10.1007/s11033-011-1343-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
Abstract
The Madagascar periwinkle produces monoterpenoid indole alkaloids (MIA) of high interest due to their therapeutical values. The terpenoid moiety of MIA is derived from the methyl erythritol phosphate (MEP) and seco-iridoid pathways. These pathways are regarded as the limiting branch for MIA biosynthesis in C. roseus cell and tissue cultures. In previous studies, we demonstrated a coordinated regulation at the transcriptional and spatial levels of genes from both pathways. We report here on the isolation of the 5'-flanking region (1,049 bp) of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene from the MEP pathway. To investigate promoter transcriptional activities, the HDS promoter was fused to GUS reporter gene. Agrobacterium-mediated transformation of young tobacco leaves revealed that the cloned HDS promoter displays a tissue-specific GUS staining restricted to the vascular region of the leaves and limited to a part of the vein that encompasses the phloem in agreement with the previous localization of HDS transcripts in C. roseus aerial organs. Further functional characterizations in stably or transiently transformed C. roseus cells allowed us to identify the region that can be consider as the minimal promoter and to demonstrate the induction of HDS promoter by several hormonal signals (auxin, cytokinin, methyljasmonate and ethylene) leading to MIA production. These results, and the bioinformatic analysis of the HDS 5'-region, suggest that the HDS promoter harbours a number of cis-elements binding specific transcription factors that would regulate the flux of terpenoid precursors involved in MIA biosynthesis.
Collapse
Affiliation(s)
- Olivia Ginis
- Université François Rabelais de Tours, EA 2106, Biomolécules et Biotechnologies Végétales, 31 avenue Monge, 37200, Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lu Y, Ouyang B, Zhang J, Wang T, Lu C, Han Q, Zhao S, Ye Z, Li H. Genomic organization, phylogenetic comparison and expression profiles of annexin gene family in tomato (Solanum lycopersicum). Gene 2012; 499:14-24. [PMID: 22425974 DOI: 10.1016/j.gene.2012.03.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 01/02/2023]
Abstract
Annexins have been suggested to play pivotal roles in stress resistance and plant development. However, related studies on fruit-bearing plants, especially on fruit development, are very limited. In the present study, we provide a comprehensive overview of the annexin family in tomato, describing the gene structure, promoter cis-regulatory elements, organ expression profile, and gene expression patterns under hormone and stress treatments. Bioinformatic analysis revealed that the nine tomato annexins were structurally different from their animal counterparts, but highly conserved annexin domains were still found in most of them. Cis-regulatory element prediction showed that there were important elements in the 2kb upstream promoter regions, including stress- and hormone-responsive-related elements. The expression patterns of these genes were investigated, and the results revealed that they were regulated under developmental processes and environmental stimuli. Among them, AnnSl1.1 and AnnSl2 were highly expressed in most of the tested organs. Genes preferentially or specifically expressed in organs, such as stigma or ovary (AnnSl6), stamen (AnnSl8), and fruit pericarp (AnnSl1.2 and AnnSl9), were identified. Some annexin genes were induced by plant hormones including abscisic acid (AnnSl3, AnnSl6, AnnSl8, and AnnSl9) and gibberellic acid (AnnSl1.1, AnnSl1.2, AnnSl4, and AnnSl7). Most of these annexin genes were induced by salt, drought, wounding, and heat or cold stresses. The present study provides significant information for understanding the diverse roles of annexins in tomato growth and development.
Collapse
Affiliation(s)
- Yongen Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brenner WG, Ramireddy E, Heyl A, Schmülling T. Gene regulation by cytokinin in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2012; 3:8. [PMID: 22639635 PMCID: PMC3355611 DOI: 10.3389/fpls.2012.00008] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/06/2012] [Indexed: 05/18/2023]
Abstract
The plant hormone cytokinin realizes at least part of its signaling output through the regulation of gene expression. A great part of the early transcriptional regulation is mediated by type-B response regulators, which are transcription factors of the MYB family. Other transcription factors, such as the cytokinin response factors of the AP2/ERF family, have also been shown to be involved in this process. Additional transcription factors mediate distinct parts of the cytokinin response through tissue- and cell-specific downstream transcriptional cascades. In Arabidopsis, only a single cytokinin response element, to which type-B response regulators bind, has been clearly proven so far, which has 5'-GAT(T/C)-3' as a core sequence. This motif has served to construct a synthetic cytokinin-sensitive two-component system response element, which is useful for monitoring the cellular cytokinin status. Insight into the extent of transcriptional regulation has been gained by genome-wide gene expression analyses following cytokinin treatment and from plants having an altered cytokinin content or signaling. This review presents a meta analysis of such microarray data resulting in a core list of cytokinin response genes. Genes encoding type-A response regulators displayed the most stable response to cytokinin, but a number of cytokinin metabolism genes (CKX4, CKX5, CYP735A2, UGT76C2) also belong to them, indicating homeostatic mechanisms operating at the transcriptional level. The cytokinin core response genes are also the target of other hormones as well as biotic and abiotic stresses, documenting crosstalk of the cytokinin system with other hormonal and environmental signaling pathways. The multiple links of cytokinin to diverse functions, ranging from control of meristem activity, hormonal crosstalk, nutrient acquisition, and various stress responses, are also corroborated by a compilation of genes that have been repeatedly found by independent gene expression profiling studies. Such functions are, at least in part, supported by genetic studies.
Collapse
Affiliation(s)
- Wolfram G. Brenner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Eswar Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| |
Collapse
|
25
|
|
26
|
Akagi A, Dandekar AM, Stotz HU. Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis. PHYTOPATHOLOGY 2011; 101:1311-21. [PMID: 21809978 DOI: 10.1094/phyto-03-11-0087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The plant hormone ethylene regulates fruit ripening, other developmental processes, and a subset of defense responses. Here, we show that 1-aminocyclopropane-1-carboxylic acid synthase (ACS)-silenced apple (Malus domestica) fruit that express a sense construct of ACS were more susceptible to Botrytis cinerea than untransformed apple, demonstrating that ethylene strengthens fruit resistance to B. cinerea infection. Because ethylene response factors (ERFs) are known to contribute to resistance against B. cinerea via the ethylene-signaling pathway, we cloned four ERF cDNAs from fruit of M. domestica: MdERF3, -4, -5, and -6. Expression of all four MdERF mRNAs was ethylene dependent and induced by wounding or by B. cinerea infection. B. cinerea infection suppressed rapid induction of wound-related MdERF expression. MdERF3 was the only mRNA induced by wounding and B. cinerea infection in ACS-suppressed apple fruit, although its induction was reduced compared with wild-type apple. Promoter regions of all four MdERF genes were cloned and putative cis-elements were identified in each promoter. Transient expression of MdERF3 in tobacco increased expression of the GCC-box containing gene chitinase 48.
Collapse
MESH Headings
- Botrytis/physiology
- Chitinases/genetics
- DNA, Complementary/genetics
- Ethylenes/analysis
- Ethylenes/biosynthesis
- Fruit/enzymology
- Fruit/genetics
- Fruit/immunology
- Fruit/microbiology
- Gene Expression Regulation, Plant
- Lyases/genetics
- Malus/enzymology
- Malus/genetics
- Malus/immunology
- Malus/microbiology
- Mutation
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/immunology
- Plant Diseases/microbiology
- Plant Growth Regulators/metabolism
- Plant Immunity
- Plant Proteins/genetics
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/microbiology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Plant/genetics
- Signal Transduction
- Stress, Mechanical
- Time Factors
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Aya Akagi
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | | | | |
Collapse
|
27
|
Lim CW, Lee YW, Hwang CH. Soybean nodule-enhanced CLE peptides in roots act as signals in GmNARK-mediated nodulation suppression. PLANT & CELL PHYSIOLOGY 2011; 52:1613-27. [PMID: 21757457 DOI: 10.1093/pcp/pcr091] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The number of nodules formed in the roots of leguminous plants is systemically controlled by autoregulation of nodulation (AON). This study characterized two of the CLAVATA3/endosperm-surrounding region (CLE) genes involved in AON signal transduction. The GmRIC1 and GmRIC2 genes initiated expression solely in the roots at approximately 3 days after inoculation (DAI) with Nod factor-producing rhizobia, corresponding to the time point of AON, and the expression was up-regulated by cytokinins. Levels of GmRIC1 and GmRIC2 gene expression were much higher in the supernodulation mutant, SS2-2, than in wild-type (WT) soybeans during nodule development, even after initiation of nitrogen fixation. At 3 DAI, GmRIC2 was induced in the cells of the pericycle and the outer cortex, which undergo cell division to form nodule primordia and spreads from the central region to the whole nodule as it develops. Overexpression of GmRIC1 and GmRIC2 strongly suppressed the nodulation of WT roots as well as transgenic hairy roots in a GmNARK-dependent manner. This systemic suppression of nodulation was caused by the secretion of two CLE proteins into the extracellular space. Double grafting between WT and SS2-2 soybeans showed that signal Q is larger in SS2-2 than in WT roots during nodulation. The results of this study suggest that GmRIC1 and GmRIC2 are good candidates for root-derived signal Q in AON signal transduction.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Crop Science and Biotechnology, Dankook University, San 29 Anseodong, Cheonan, Chungnam 330-714, Republic of Korea
| | | | | |
Collapse
|
28
|
Abou-Elwafa SF, Büttner B, Chia T, Schulze-Buxloh G, Hohmann U, Mutasa-Göttgens E, Jung C, Müller AE. Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3359-74. [PMID: 20974738 PMCID: PMC3130164 DOI: 10.1093/jxb/erq321] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/13/2010] [Accepted: 09/15/2010] [Indexed: 05/19/2023]
Abstract
The transition from vegetative growth to reproductive development is a complex process that requires an integrated response to multiple environmental cues and endogenous signals. In Arabidopsis thaliana, which has a facultative requirement for vernalization and long days, the genes of the autonomous pathway function as floral promoters by repressing the central repressor and vernalization-regulatory gene FLC. Environmental regulation by seasonal changes in daylength is under control of the photoperiod pathway and its key gene CO. The root and leaf crop species Beta vulgaris in the caryophyllid clade of core eudicots, which is only very distantly related to Arabidopsis, is an obligate long-day plant and includes forms with or without vernalization requirement. FLC and CO homologues with related functions in beet have been identified, but the presence of autonomous pathway genes which function in parallel to the vernalization and photoperiod pathways has not yet been reported. Here, this begins to be addressed by the identification and genetic mapping of full-length homologues of the RNA-regulatory gene FLK and the chromatin-regulatory genes FVE, LD, and LDL1. When overexpressed in A. thaliana, BvFLK accelerates bolting in the Col-0 background and fully complements the late-bolting phenotype of an flk mutant through repression of FLC. In contrast, complementation analysis of BvFVE1 and the presence of a putative paralogue in beet suggest evolutionary divergence of FVE homologues. It is further shown that BvFVE1, unlike FVE in Arabidopsis, is under circadian clock control. Together, the data provide first evidence for evolutionary conservation of components of the autonomous pathway in B. vulgaris, while also suggesting divergence or subfunctionalization of one gene. The results are likely to be of broader relevance because B. vulgaris expands the spectrum of evolutionarily diverse species which are subject to differential developmental and/or environmental regulation of floral transition.
Collapse
Affiliation(s)
- Salah F. Abou-Elwafa
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Bianca Büttner
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Tansy Chia
- Broom's Barn Research Centre, Higham, Bury St. Edmunds, Suffolk IP28 6NP, UK
| | - Gretel Schulze-Buxloh
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Uwe Hohmann
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | | | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Andreas E. Müller
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Liu JJ, Ekramoddoullah AKM. Genomic organization, induced expression and promoter activity of a resistance gene analog (PmTNL1) in western white pine (Pinus monticola). PLANTA 2011; 233:1041-53. [PMID: 21279649 DOI: 10.1007/s00425-011-1353-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/05/2011] [Indexed: 05/16/2023]
Abstract
Cronartium ribicola causes white pine blister rust (WPBR) in subgenus Strobus. Various genetic and molecular approaches were used to detect white pine genes contributing to host resistance. The molecular role of the NBS-LRR family is highly related to plant immuno-activity against various pathogens and pests. In the present study, genomic organization of a resistance gene analog (RGA), designated as PmTNL1, and its allelic variants were characterized in Pinus monticola. PmTNL1 showed high identity with TIR-NBS-LRR proteins from other plants. qRT-PCR revealed that the PmTNL1 transcript was expressed at low basal levels in different tissues and exhibited similar patterns during compatible and incompatible interactions of P. monticola with C. ribicola at early stages post inoculation. In comparison, PmTNL1 was up-regulated significantly in diseased P. monticola tissues with WPBR symptoms. Expression of the PmTNL1 promoter::GUS fusion gene in transgenic Arabidopsis demonstrated that GUS signal appeared only inside phloem tissues of young seedlings and at hydathodes and branching and organ-connecting points in mature Arabidopsis plants. Similar to the endogenous expression pattern for this gene in pine, GUS activity was up-regulated significantly around vascular tissues locally at pathogen infection sites, but little or no induction was observed in response to abiotic stresses. A DNA marker was developed based on variation of the LRR-coding region, and PmTNL1 was mapped to one genetic linkage group using a pedigree with major dominant gene (Cr2) conferring HR resistance to C. ribicola. These results suggest that PmTNL1 may play an important role in white pine partial resistance against C. ribicola.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada.
| | | |
Collapse
|
30
|
Shi J, An HL, Zhang L, Gao Z, Guo XQ. GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. PLANT MOLECULAR BIOLOGY 2010; 74:1-17. [PMID: 20602149 DOI: 10.1007/s11103-010-9661-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/23/2010] [Indexed: 05/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play a pivotal role in environmental responses and developmental processes in plants. Previous researches mainly focus on the MAPKs in groups A and B, and little is known on group C. In this study, we isolated and characterized GhMPK7, which is a novel gene from cotton belonging to the group C MAPK. RNA blot analysis indicated that GhMPK7 transcript was induced by pathogen infection and multiple defense-related signal molecules. Transgenic Nicotina benthamiana overexpressing GhMPK7 displayed significant resistance to fungus Colletotrichum nicotianae and virus PVY, and the transcript levels of SA pathway genes were more rapidly and strongly induced. Furthermore, the transgenic N. benthamiana showed reduced ROS-mediated injuries by upregulating expression of oxidative stress-related genes. Interestingly, the transgenic plants germinated earlier and grew faster in comparison to wild-type plants. beta-glucuronidase activity driven by the GhMPK7 promoter was detected in the apical meristem at the vegetative stage, and it was enhanced by treatments with signal molecules and phytohormones. These results suggest that GhMPK7 might play an important role in SA-regulated broad-spectrum resistance to pathogen infection, and that it is also involved in regulation of plant growth and development.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis
- Base Sequence
- Cloning, Molecular
- Colletotrichum/pathogenicity
- DNA Primers/genetics
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Gossypium/enzymology
- Gossypium/genetics
- Gossypium/growth & development
- Mitogen-Activated Protein Kinases/classification
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Diseases/virology
- Plants, Genetically Modified
- Promoter Regions, Genetic
- Reactive Oxygen Species/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Stress, Physiological
- Nicotiana
Collapse
Affiliation(s)
- Jing Shi
- Shandong Agricultural University, Tai'an, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Gollan PJ, Bhave M. A thylakoid-localised FK506-binding protein in wheat may be linked to chloroplast biogenesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:655-662. [PMID: 20570161 DOI: 10.1016/j.plaphy.2010.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 04/21/2010] [Accepted: 05/03/2010] [Indexed: 05/29/2023]
Abstract
Plant chloroplasts contain a large proportion of immunophilins, comprising the FK506-binding proteins (FKBPs) and cyclophilins (CYPs), which are members of the peptidyl-prolyl cis/trans isomerase (PPIase) family of proline-folding enzymes. Some of the chloroplastic immunophilins are known to chaperone certain photosynthetic proteins, however the functions of a majority of these proteins are unknown. This work focussed on characterisation of genes encoding the chloroplast-localised FKBP16-1 from wheat and its progenitor species, and identification of its putative promoters, as well as investigations into the effects of light regulation and plant development on its expression. The work identified several alternatively spliced FKBP16-1 transcripts, indicating expression of FKBP16-1 may be post-transcriptionally regulated. FKBP16-1 was expressed in both green and etiolated tissues, and highest levels were detected in developing tissues, indicating a role in chloroplast biogenesis. We also report a novel transcription module, designated 'chloroplast biogenesis module' (CBM) in the FKBP16-1 promoter of cereals that also appears to be involved in the regulation of additional genes involved in chloroplast biogenesis or other aspects of plant development. The results point to considerable potential for a role for FKBP16-1 in early chloroplast development, architecture of photosynthetic apparatus and plant development.
Collapse
Affiliation(s)
- Peter J Gollan
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, P O Box 218, Hawthorn, Victoria 3122, Australia
| | | |
Collapse
|
32
|
Guo L, Yu Y, Xia X, Yin W. Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC PLANT BIOLOGY 2010; 10:18. [PMID: 20113489 PMCID: PMC2844064 DOI: 10.1186/1471-2229-10-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 01/29/2010] [Indexed: 05/06/2023]
Abstract
BACKGROUND CBL1 is a calcium sensor that regulates drought, cold and salt signals in Arabidopsis. Overexpression of CBL1 gene in Arabidopsis and in Ammopiptanthus mongolicus showed different tolerant activities. We are interested in understanding the molecular mechanism of the upstream region of the CBL1 gene of A. mongolicus (AmCBL1). We investigated and characterized the promoter of the AmCBL1 gene, for promoters play a very important role in regulating gene expression in eukaryotes. RESULTS A 1683-bp 5' flanking region was isolated from A. mongolicus. The sequence was identified as AmCBL1 promoter. Analysis of the promoter sequence indicated a 690-bp intron and some basic cis-acting elements were related to various environmental stresses and plant hormones. To identify the functional region of the AmCBL1 promoter, five plant expression vectors fused with the GUS (beta-glucuronidase) gene, driven by series deleted fragments of AmCBL1 promoter at different lengths from -1659, -1414, -1048, -296 to -167 bp relative to the transcriptional start site were constructed and transformed into Nicotiana tabacum L. cv. 89. Functional properties of each promoter segment were examined by GUS staining and fluorescence quantitative analyses using at least three single-copy PCR-positive plants of transgenic tobacco, treated with various environmental stresses and plant hormones for different times. We demonstrated that the AmCBL1 promoter was a vascular-specific and multiple-stress-inducible promoter. Our results further imply that the promoter fragment B1S3 possessed sufficient essential cis-acting elements, accounting for vascular-specific and stress-induced expression patterns. It may also indicate that for response to some stresses certain cis-elements are required in tissues outside the region of the B1S3 construct. CONCLUSIONS To help resolve uncertainties about the upstream regulatory mechanism of the CBL1 gene in desert plants, we suggest that the function of the AmCBL1 promoter, particularly under conditions of abiotic stress, to be examined for possible usefulness in molecular breeding. Regardless of the outcome, the allocation and relative quantification of the GUS-fusion AmCBL1 promoter segments at transcriptional levels in different tissues under various stresses across separate promoter segments suggests that the AmCBL1 promoter is a phloem-specific and multiple-stress-inducible promoter. These data coupled with the ongoing AmCBL1 5' UTR intron analyses provide a solid foundation for their future use in molecular breeding as new promoters of stress-resistance genes from desert plants.
Collapse
Affiliation(s)
- Lili Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, PR China
| | - Yanhua Yu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, PR China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, PR China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, PR China
| |
Collapse
|
33
|
Grimm B. Chapter 3 Control of the Metabolic Flow in Tetrapyrrole Biosynthesis: Regulation of Expression and Activity of Enzymes in the Mg Branch of Tetrapyrrole Biosynthesis. THE CHLOROPLAST 2010. [DOI: 10.1007/978-90-481-8531-3_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
Aspartic proteases gene family in rice: Gene structure and expression, predicted protein features and phylogenetic relation. Gene 2009; 442:108-18. [DOI: 10.1016/j.gene.2009.04.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 01/25/2023]
|
35
|
Bao Y, Dharmawardhana P, Arias R, Allen MB, Ma C, Strauss SH. WUS and STM-based reporter genes for studying meristem development in poplar. PLANT CELL REPORTS 2009; 28:947-62. [PMID: 19280192 DOI: 10.1007/s00299-009-0685-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/08/2009] [Accepted: 02/08/2009] [Indexed: 05/08/2023]
Abstract
We describe the development of a reporter system for monitoring meristem initiation in poplar using promoters of poplar homologs to the meristem-active regulatory genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM). When ~3 kb of the 5' flanking regions of close homologs were used to drive expression of the GUSPlus gene, 50-60% of the transgenic events showed expression in apical and axillary meristems. However, expression was also common in other organs, including in leaf veins (40 and 46% of WUS and STM transgenic events, respectively) and hydathodes (56% of WUS transgenic events). Histochemical GUS staining of explants during callogenesis and shoot regeneration using in vitro stems as explants showed that expression was detectable prior to visible shoot development, starting 3-15 days after explants were placed onto callus inducing medium. A minority of WUS and STM events also showed expression in the cambium, phloem, or xylem of regenerated, greenhouse grown plants undergoing secondary growth. Based on microarray gene expression data, a paralog of poplar WUS was detectably up-regulated during shoot initiation, but the other paralog was not. Both paralogs of poplar STM were down-regulated threefold to sixfold during early callus initiation. We identified 15-35 copies of cytokinin response regulator binding motifs (ARR1AT) and one copy of the auxin response element (AuxRE) in both promoters. Several of the events recovered may be useful for studying the process of primary and secondary meristem development, including treatments intended to stimulate meristem development to promote clonal propagation and genetic transformation.
Collapse
Affiliation(s)
- Y Bao
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | | | | | | | | | | |
Collapse
|
36
|
Du L, Jiao F, Chu J, Jin G, Chen M, Wu P. The two-component signal system in rice (Oryza sativa L.): A genome-wide study of cytokinin signal perception and transduction. Genomics 2007; 89:697-707. [PMID: 17408920 DOI: 10.1016/j.ygeno.2007.02.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 02/11/2007] [Accepted: 02/22/2007] [Indexed: 02/03/2023]
Abstract
In this report we define the genes of two-component regulatory systems in rice through a comprehensive computational analysis of rice (Oryza sativa L.) genome sequence databases. Thirty-seven genes were identified, including 5 HKs (cytokinin-response histidine protein kinase) (OsHK1-4, OsHKL1), 5 HPs (histidine phosphotransfer proteins) (OsHP1-5), 15 type-A RRs (response regulators) (OsRR1-15), 7 type B RR genes (OsRR16-22), and 5 predicted pseudo-response regulators (OsPRR1-5). Protein motif organization, gene structure, phylogenetic analysis, chromosomal location, and comparative analysis between rice, maize, and Arabidopsis are described. Full-length cDNA clones of each gene were isolated from rice. Heterologous expression of each of the OsHKs in yeast mutants conferred histidine kinase function in a cytokinin-dependent manner. Nonconserved regions of individual cDNAs were used as probes in expression profiling experiments. This work provides a foundation for future functional dissection of the rice cytokinin two-component signaling pathway.
Collapse
Affiliation(s)
- Liming Du
- The Key State Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|