1
|
Trujillo E, Angulo C. Perspectives on the use of the CRISPR system in plants to improve recombinant therapeutic protein production. J Biotechnol 2025; 405:111-123. [PMID: 40373829 DOI: 10.1016/j.jbiotec.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/29/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
The plant-based system is a promising platform for producing biotherapeutics due to its scalability, cost-effectiveness, and lower risk of contamination by human pathogens. However, several challenges remain, including optimizing yield, stability, functionality, and the immunogenic properties of recombinant proteins. In this context, this review explores the application of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology to improve the production of recombinant therapeutic proteins in plants. Traditional tools and strategies for plant-based recombinant protein production are discussed, highlighting their limitations and the potential of CRISPR to overcome these boundaries. It delves into the components of the CRISPR-Cas system and its application in optimizing therapeutic protein function and yield. Major strategies include modifying glycosylation patterns to humanize plant-produced proteins, metabolic pathway engineering to increase protein accumulation, and the precise integration of transgenes into specific genomic loci to enhance expression stability and productivity. These advancements demonstrate how CRISPR system can overcome bottlenecks in plant molecular farming and enable the production of high-quality therapeutic proteins. Lastly, future trends and perspectives are examined, emphasizing ongoing innovations and challenges in the field. The review underscores the potential of CRISPR to reshape plant biotechnology and support the growing demand for recombinant therapeutics, offering new avenues for sustainable and efficient protein production systems. KEY MESSAGE: CRISPR technology has the potential to improve plant-based therapeutic protein production by optimizing yield, stability, and humanization, overcoming bottlenecks, and enabling sustainable, efficient systems for recombinant biotherapeutics.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. C.P. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Instituto Politécnico Nacional, 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. C.P. 23096, Mexico.
| |
Collapse
|
2
|
Brooks EG, Elorriaga E, Liu Y, Duduit JR, Yuan G, Tsai CJ, Tuskan GA, Ranney TG, Yang X, Liu W. Plant Promoters and Terminators for High-Precision Bioengineering. BIODESIGN RESEARCH 2023; 5:0013. [PMID: 37849460 PMCID: PMC10328392 DOI: 10.34133/bdr.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 10/19/2023] Open
Abstract
High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.
Collapse
Affiliation(s)
- Emily G. Brooks
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Estefania Elorriaga
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James R. Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Jui Tsai
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas G. Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Xiaohan Yang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
3
|
Li H, Li L, Wu W, Wang F, Zhou F, Lin Y. SvSTL1 in the large subunit family of ribonucleotide reductases plays a major role in chloroplast development of Setaria viridis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:625-641. [PMID: 35608125 DOI: 10.1111/tpj.15842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Ribonucleotide reductases (RNRs) are essential enzymes in DNA synthesis. However, little is known about the RNRs in plants. Here, we identified a svstl1 mutant from the self-created ethyl methanesulfonate (EMS) mutant library of Setaria viridis. The mutant leaves exhibited a bleaching phenotype at the heading stage. Paraffin section analysis showed the destruction of the C4 Kranz anatomy. Transmission electron microscopy results further demonstrated the severely disturbed development of some chloroplasts. MutMap analysis revealed that the SvSTL1 gene is the primary candidate, encoding a large subunit of RNRs. Complementation experiments confirmed that SvSTL1 is responsible for the phenotype of svstl1. There are two additional RNR large subunit homologs in S. viridis, SvSTL2 and SvSTL3. To further understand the functions of these three RNR large subunit genes, a series of mutants were generated via CRISPR/Cas9 technology. In striking contrast to the finding that all three SvSTLs interact with the RNR small subunit, the phenotype varied along with the copies of chloroplast genome among different svstl single mutants: the svstl1 mutant exhibited pronounced chloroplast development and significantly fewer copies of the chloroplast genome than the svstl2 or svstl3 single mutants. These results suggested that SvSTL1 plays a major role in the optimal function of RNRs and is essential for chloroplast development. Furthermore, through the analysis of double and triple mutants, the study provides new insights into the finely tuned coordination among SvSTLs to maintain normal chloroplast development in the emerging C4 model plant S. viridis.
Collapse
Affiliation(s)
- Huanying Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Weichen Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Shi X, Wu J, Mensah RA, Tian N, Liu J, Liu F, Chen J, Che J, Guo Y, Wu B, Zhong G, Cheng C. Genome-Wide Identification and Characterization of UTR-Introns of Citrus sinensis. Int J Mol Sci 2020; 21:E3088. [PMID: 32349372 PMCID: PMC7247714 DOI: 10.3390/ijms21093088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 11/15/2022] Open
Abstract
Introns exist not only in coding sequences (CDSs) but also in untranslated regions (UTRs) of a gene. Recent studies in animals and model plants such as Arabidopsis have revealed that the UTR-introns (UIs) are widely presented in most genomes and involved in regulation of gene expression or RNA stability. In the present study, we identified introns at both 5'UTRs (5UIs) and 3'UTRs (3UIs) of sweet orange genes, investigated their size and nucleotide distribution characteristics, and explored the distribution of cis-elements in the UI sequences. Functional category of genes with predicted UIs were further analyzed using GO, KEGG, and PageMan enrichment. In addition, the organ-dependent splicing and abundance of selected UI-containing genes in root, leaf, and stem were experimentally determined. Totally, we identified 825 UI- and 570 3UI-containing transcripts, corresponding to 617 and 469 genes, respectively. Among them, 74 genes contain both 5UI and 3UI. Nucleotide distribution analysis showed that 5UI distribution is biased at both ends of 5'UTR whiles 3UI distribution is biased close to the start site of 3'UTR. Cis- elements analysis revealed that 5UI and 3UI sequences were rich of promoter-enhancing related elements, indicating that they might function in regulating the expression through them. Function enrichment analysis revealed that genes containing 5UI are significantly enriched in the RNA transport pathway. While, genes containing 3UI are significantly enriched in splicesome. Notably, many pentatricopeptide repeat-containing protein genes and the disease resistance genes were identified to be 3UI-containing. RT-PCR result confirmed the existence of UIs in the eight selected gene transcripts whereas alternative splicing events were found in some of them. Meanwhile, qRT-PCR result showed that UIs were differentially expressed among organs, and significant correlation was found between some genes and their UIs, for example: The expression of VPS28 and its 3UI was significantly negative correlated. This is the first report about the UIs in sweet orange from genome-wide level, which could provide evidence for further understanding of the role of UIs in gene expression regulation.
Collapse
Affiliation(s)
- Xiaobao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Raphael Anue Mensah
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiapeng Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jialan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingru Che
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binghua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangyan Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chunzhen Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Gonzalez DO, Church JB, Robinson A, Connell JP, Sopko M, Rowland B, Woodall K, Larsen CM, Davies JP. Expression characterization of the herbicide tolerance gene Aryloxyalkanoate Dioxygenase (aad-1) controlled by seven combinations of regulatory elements. BMC PLANT BIOLOGY 2018; 18:14. [PMID: 29334902 PMCID: PMC5769356 DOI: 10.1186/s12870-018-1227-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Availability of well characterized maize regulatory elements for gene expression in a variety of tissues and developmental stages provides effective alternatives for single and multigene transgenic concepts. We studied the expression of the herbicide tolerance gene aryloxyalkanoate dioxygenase (aad-1) driven by seven different regulatory element construct designs including the ubiquitin promoters of maize and rice, the actin promoters of melon and rice, three different versions of the Sugarcane Bacilliform Badnavirus promoters in association with other regulatory elements of gene expression. RESULTS Gene expression of aad-1 was characterized at the transcript and protein levels in a collection of maize tissues and developmental stages. Protein activity against its target herbicide was characterized by herbicide dosage response. Although differences in transcript and protein accumulation were observed among the different constructs tested, all events were tolerant to commercially relevant rates of quizalafop-P-ethyl compared to non-traited maize under greenhouse conditions. DISCUSSION The data reported demonstrate how different regulatory elements affect transcript and protein accumulation and how these molecular characteristics translate into the level of herbicide tolerance. The level of transcript detected did not reflect the amount of protein quantified in a particular tissue since protein accumulation may be influenced not only by levels of transcript produced but also by translation rate, post-translational regulation mechanisms and protein stability. The amount of AAD-1 enzyme produced with all constructs tested showed sufficient enzymatic activity to detoxify the herbicide and prevent most herbicidal damage at field-relevant levels without having a negative effect on plant health. CONCLUSIONS Distinctive profiles of aad-1 transcript and protein accumulation were observed when different regulatory elements were utilized in the constructs under study. The ZmUbi and the SCBV constructs showed the most consistent robust tolerance, while the melon actin construct provided the lowest level of tolerance compared to the other regulatory elements used in this study. These data provide insights into the effects of differing levels of gene expression and how these molecular characteristics translate into the level of herbicide tolerance. Furthermore, these data provide valuable information to optimize future designs of single and multiple gene constructs for maize research and crop improvement.
Collapse
Affiliation(s)
| | - Jeff B. Church
- Dow AgroSciences, LLC, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
| | - Andrew Robinson
- Dow AgroSciences, LLC, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
| | - James P. Connell
- Current address: Purdue University College of Pharmacy, 575 Stadium Mall Drive, West Lafayette, IN 47907 USA
| | - Megan Sopko
- Dow AgroSciences, LLC, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
| | - Boyd Rowland
- Dow AgroSciences, LLC, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
| | - Kristina Woodall
- Dow AgroSciences, LLC, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
| | - Cory M. Larsen
- Dow AgroSciences, LLC, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
| | - John P. Davies
- Dow AgroSciences, LLC, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
| |
Collapse
|
6
|
Grant TNL, De La Torre CM, Zhang N, Finer JJ. Synthetic introns help identify sequences in the 5' UTR intron of the Glycine max polyubiquitin (Gmubi) promoter that give increased promoter activity. PLANTA 2017; 245:849-860. [PMID: 28070655 DOI: 10.1007/s00425-016-2646-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/26/2016] [Indexed: 05/03/2023]
Abstract
MAIN CONCLUSION Specific sequences within the leader intron of a soybean polyubiquitin gene stimulated gene expression when placed either within a synthetic intron or upstream of a core promoter. The intron in the 5' untranslated region of the soybean polyubiquitin promoter, Gmubi, seems to contribute to the high activity of this promoter. To identify the stimulatory sequences within the intron, ten different sequential intronic sequences of 40 nt were isolated, cloned as tetrameric repeats and placed upstream of a minimal cauliflower mosaic virus 35S (35S) core promoter, which was used to control expression of the green fluorescent protein. Intron fragment tetramers were also cloned within a modified, native intron, creating a Synthetic INtron Cassette (SINC), which was then placed downstream of Gmubi and 35S core promoters. Intron fragment tetramers and SINC constructs were evaluated using transient expression in lima bean cotyledons and stable expression in soybean hairy roots. Intron fragments, used as tetramers upstream of the 35S core promoter, yielded up to 80 times higher expression than the core promoter in transient expression analyses and ten times higher expression in stably transformed hairy roots. Tetrameric intronic fragments, cloned downstream of the Gmubi and 35S core promoters and within the synthetic intron, also yielded increased transient and stable GFP expression that was up to 4 times higher than Gmubi alone and up to 40 times higher than the 35S core promoter alone. These intron fragments contain sequences that seem to act as promoter regulatory elements and may contribute to the increased expression observed with this native strong promoter. Intron regulatory elements and synthetic introns may provide additional tools for increasing transgene expression in plants.
Collapse
Affiliation(s)
- Trudi N L Grant
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA
- Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 2725 Binion Road, Apopka, FL, 32703-8504, USA
| | - Carola M De La Torre
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA
- Division of Plant Sciences, 315 Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Ning Zhang
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Rd, Ithaca, NY, 14853, USA
| | - John J Finer
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA.
| |
Collapse
|
7
|
Laxa M. Intron-Mediated Enhancement: A Tool for Heterologous Gene Expression in Plants? FRONTIERS IN PLANT SCIENCE 2017; 7:1977. [PMID: 28111580 PMCID: PMC5216049 DOI: 10.3389/fpls.2016.01977] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/13/2016] [Indexed: 05/03/2023]
Abstract
Many plant promoters were characterized and used for transgene expression in plants. Even though these promoters drive high levels of transgene expression in plants, the expression patterns are rarely constitutive but restricted to some tissues and developmental stages. In terms of crop improvement not only the enhancement of expression per se but, in particular, tissue-specific and spatial expression of genes plays an important role. Introns were used to boost expression in transgenic plants in the field of crop improvement for a long time. However, the mechanism behind this so called intron-mediated enhancement (IME) is still largely unknown. This review highlights the complexity of IME on the levels of its regulation and modes of action and gives an overview on IME methodology, examples in fundamental research and models of proposed mechanisms. In addition, the application of IME in heterologous gene expression is discussed.
Collapse
Affiliation(s)
- Miriam Laxa
- Institute of Botany, Leibniz University HannoverHannover, Germany
| |
Collapse
|
8
|
Wang BQ, Liu JH, Gong XQ, Long CA, Li GH. Characterization of the expression of the stress-responsive PpERS1 gene from peach and analysis of its promoter using transgenic tomato. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2016; 33:383-393. [PMID: 31274999 PMCID: PMC6587038 DOI: 10.5511/plantbiotechnology.16.1102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/02/2016] [Indexed: 06/09/2023]
Abstract
The PpERS1 gene, which encodes an ethylene receptor and responds to abiotic and biotic stresses, was cloned from peach (Prunus persica L. Batsch cv Okubao). The genomic DNA sequence of PpERS1 comprises seven exons which are separated by six introns, interestingly alternative splicing of the first intron produced three different PpERS1 transcripts. In addition, a 2.8-kb sequence including the promoter of PpERS1 was isolated and analyzed by placing expressing of the GUS reporter gene under its control. Several putative cis-elements were identified in the promoter of PpERS1, including two ethylene-responsive elements (EREs), five W boxes, and four putative binding sites for MYB-type transcription factors. Deletion analysis indicated the presence of an enhancer element in the PpERS1 promoter. Temporal and spatial expression analysis of the PpERS1 promoter using histochemical GUS staining showed GUS activity in all tissues examined throughout the development of transgenic tomato plants. Exposure to various stresses caused similar changes in expression patterns in peach and transgenic tomato plants. Overall, our results suggested that PpERS1 gene might play important roles in response to multiple stresses via signal transduction mediated by ethylene receptors. The characterization of the PpERS1 promoter contributes to our understanding of the transcriptional regulation of this ethylene receptor in peach.
Collapse
Affiliation(s)
- Bao-Quan Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education College of Horticulture and Forestry Sciences Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education College of Horticulture and Forestry Sciences Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Qing Gong
- Key Laboratory of Horticultural Plant Biology of Ministry of Education College of Horticulture and Forestry Sciences Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-An Long
- Key Laboratory of Horticultural Plant Biology of Ministry of Education College of Horticulture and Forestry Sciences Huazhong Agricultural University, Wuhan 430070, China
| | - Guo-Huai Li
- Key Laboratory of Horticultural Plant Biology of Ministry of Education College of Horticulture and Forestry Sciences Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Zale J, Jung JH, Kim JY, Pathak B, Karan R, Liu H, Chen X, Wu H, Candreva J, Zhai Z, Shanklin J, Altpeter F. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:661-669. [PMID: 26058948 PMCID: PMC11388909 DOI: 10.1111/pbi.12411] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/26/2015] [Accepted: 05/04/2015] [Indexed: 05/07/2023]
Abstract
Elevating the lipid content in vegetative tissues has emerged as a new strategy for increasing energy density and biofuel yield of crops. Storage lipids in contrast to structural and signaling lipids are mainly composed of glycerol esters of fatty acids, also known as triacylglycerol (TAG). TAGs are one of the most energy-rich and abundant forms of reduced carbon available in nature. Therefore, altering the carbon-partitioning balance in favour of TAG in vegetative tissues of sugarcane, one of the highest yielding biomass crops, is expected to drastically increase energy yields. Here we report metabolic engineering to elevate TAG accumulation in vegetative tissues of sugarcane. Constitutive co-expression of WRINKLED1 (WRI1), diacylglycerol acyltransferase1-2 (DGAT1-2) and oleosin1 (OLE1) and simultaneous cosuppression of ADP-glucose pyrophosphorylase (AGPase) and a subunit of the peroxisomal ABC transporter1 (PXA1) in transgenic sugarcane elevated TAG accumulation in leaves or stems by 95- or 43-fold to 1.9% or 0.9% of dry weight (DW), respectively, while expression or suppression of one to three of the target genes increased TAG levels by 1.5- to 9.5-fold. Accumulation of TAG in vegetative progeny plants was consistent with the results from primary transgenics and contributed to a total fatty acid content of up to 4.7% or 1.7% of DW in mature leaves or stems, respectively. Lipid droplets were visible within mesophyll cells of transgenic leaves by confocal fluorescence microscopy. These results provide the basis for optimizations of TAG accumulation in sugarcane and other high yielding biomass grasses and will open new prospects for biofuel applications.
Collapse
Affiliation(s)
- Janice Zale
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Je Hyeong Jung
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Jae Yoon Kim
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Bhuvan Pathak
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Ratna Karan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Hui Liu
- Biosciences Department, Brookhaven National Laboratory 463, Upton, NY, USA
| | - Xiuhua Chen
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Hao Wu
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Jason Candreva
- Biosciences Department, Brookhaven National Laboratory 463, Upton, NY, USA
| | - Zhiyang Zhai
- Biosciences Department, Brookhaven National Laboratory 463, Upton, NY, USA
| | - John Shanklin
- Biosciences Department, Brookhaven National Laboratory 463, Upton, NY, USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| |
Collapse
|
10
|
Petrik DL, Cass CL, Padmakshan D, Foster CE, Vogel JP, Karlen SD, Ralph J, Sedbrook JC. BdCESA7, BdCESA8, and BdPMT Utility Promoter Constructs for Targeted Expression to Secondary Cell-Wall-Forming Cells of Grasses. FRONTIERS IN PLANT SCIENCE 2016; 7:55. [PMID: 26870070 PMCID: PMC4740387 DOI: 10.3389/fpls.2016.00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/14/2016] [Indexed: 05/13/2023]
Abstract
Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned into binary vectors designed for Agrobacterium-mediated transformation of monocots. Expression patterns were assessed using the β-glucuronidase gene GUSPlus and X-glucuronide staining. All three promoters showed strong expression levels in stem tissue at the base of internodes where cell wall deposition is most active, in both vascular bundle xylem vessels and tracheids, and in interfascicular tissues, with expression less pronounced in developmentally older tissues. In leaves, BdCESA7 and BdCESA8 promoter-driven expression was strongest in leaf veins, leaf margins, and trichomes; relatively weaker and patchy expression was observed in the epidermis. BdPMT promoter-driven expression was similar to the BdCESA promoters expression patterns, including strong expression in trichomes. The intensity and extent of GUS staining varied considerably between transgenic lines, suggesting that positional effects influenced promoter activity. Introducing the BdPMT and BdCESA8 Open Reading Frames into BdPMT and BdCESA8 utility promoter binary vectors, respectively, and transforming those constructs into Brachypodium pmt and cesa8 loss-of-function mutants resulted in rescue of the corresponding mutant phenotypes. This work therefore validates the functionality of these utility promoter binary vectors for use in Brachypodium and likely other grass species. The identification, in Bdcesa8-1 T-DNA mutant stems, of an 80% reduction in crystalline cellulose levels confirms that the BdCESA8 gene is a secondary-cell-wall-forming cellulose synthase.
Collapse
Affiliation(s)
- Deborah L. Petrik
- School of Biological Sciences, Illinois State University, NormalIL, USA
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, MadisonWI, USA
| | - Cynthia L. Cass
- School of Biological Sciences, Illinois State University, NormalIL, USA
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, MadisonWI, USA
| | - Dharshana Padmakshan
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, MadisonWI, USA
| | - Cliff E. Foster
- U.S. Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East LansingMI, USA
| | - John P. Vogel
- U.S. Department of Energy Joint Genome Institute, Walnut CreekCA, USA
| | - Steven D. Karlen
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, MadisonWI, USA
| | - John Ralph
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, MadisonWI, USA
- Department of Biochemistry, Wisconsin Energy Institute, University of Wisconsin–Madison, MadisonWI, USA
| | - John C. Sedbrook
- School of Biological Sciences, Illinois State University, NormalIL, USA
- U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, MadisonWI, USA
- *Correspondence: John C. Sedbrook,
| |
Collapse
|
11
|
Zhang N, McHale LK, Finer JJ. Isolation and characterization of "GmScream" promoters that regulate highly expressing soybean (Glycine max Merr.) genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:189-98. [PMID: 26706070 DOI: 10.1016/j.plantsci.2015.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/22/2015] [Accepted: 10/17/2015] [Indexed: 05/25/2023]
Abstract
To increase our understanding of the regulatory components that control gene expression, it is important to identify, isolate and characterize new promoters. In this study, a group of highly expressed soybean (Glycine max Merr.) genes, which we have named "GmScream", were first identified from RNA-Seq data. The promoter regions were then identified, cloned and fused with the coding region of the green fluorescent protein (gfp) gene, for introduction and analysis in different tissues using 3 tools for validation. Approximately half of the GmScream promoters identified showed levels of GFP expression comparable to or higher than the Cauliflower Mosaic Virus 35S (35S) promoter. Using transient expression in lima bean cotyledonary tissues, the strongest GmScream promoters gave over 6-fold higher expression than the 35S promoter while several other GmScream promoters showed 2- to 3-fold higher expression. The two highest expressing promoters, GmScreamM4 and GmScreamM8, regulated two different elongation factor 1A genes in soybean. In stably transformed soybean tissues, GFP driven by the GmScreamM4 or GmScreamM8 promoter exhibited constitutive high expression in most tissues with preferentially higher expression in proliferative embryogenic tissues, procambium, vascular tissues, root tips and young embryos. Using deletion analysis of the promoter, two proximal regions of the GmScreamM8 promoter were identified as contributing significantly to high levels of gene expression.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA
| | - Leah K McHale
- Department of Horticulture and Crop Science, The Ohio State University, 2021Coffey Rd, Columbus, OH 43210, USA
| | - John J Finer
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA.
| |
Collapse
|
12
|
Chakravarthi M, Philip A, Subramonian N. Truncated Ubiquitin 5′ Regulatory Region from Erianthus arundinaceus Drives Enhanced Transgene Expression in Heterologous Systems. Mol Biotechnol 2015; 57:820-35. [DOI: 10.1007/s12033-015-9875-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Kumar S, AlAbed D, Worden A, Novak S, Wu H, Ausmus C, Beck M, Robinson H, Minnicks T, Hemingway D, Lee R, Skaggs N, Wang L, Marri P, Gupta M. A modular gene targeting system for sequential transgene stacking in plants. J Biotechnol 2015; 207:12-20. [PMID: 25913173 DOI: 10.1016/j.jbiotec.2015.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/14/2015] [Accepted: 04/03/2015] [Indexed: 11/16/2022]
Abstract
A modular, selection-based method was developed for site-specific integration of transgenes into a genomic locus to create multigene stacks. High-frequency gene targeting was obtained using zinc finger nuclease (ZFN)-mediated double-strand break (DSB) formation at a pre-defined target genomic location using a unique intron directly downstream of a promoter driving a selectable marker gene to facilitate homology between target and donor sequences. In this system, only insertion into the target locus leads to a functional selectable marker, and regeneration from random insertions of the promoterless donor construct are reduced on selection media. A new stack of transgenes can potentially be loaded with each successive cycle of gene targeting by exchanging the selectable marker gene using the intron homology. This system was tested in maize using the pat selectable marker gene, whereby up to 30% of the plants regenerated on Bialaphos-containing medium were observed to have the donor construct integrated into the target locus. Unlike previous gene targeting methods that utilize defective or partial genes for selecting targeted events, the present method exchanges fully functional genes with every cycle of targeting, thereby allowing the recycling of selectable marker genes, hypothetically for multiple generations of gene targeting.
Collapse
Affiliation(s)
- Sandeep Kumar
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA.
| | - Diaa AlAbed
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Andrew Worden
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Stephen Novak
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Huixia Wu
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Carla Ausmus
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Margaret Beck
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Heather Robinson
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Tatyana Minnicks
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Daren Hemingway
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Ryan Lee
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Nicole Skaggs
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Lizhen Wang
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Pradeep Marri
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Manju Gupta
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| |
Collapse
|
14
|
Tao YB, He LL, Niu LJ, Xu ZF. Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas. PLANTA 2015; 241:823-36. [PMID: 25502690 DOI: 10.1007/s00425-014-2222-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/30/2014] [Indexed: 05/09/2023]
Abstract
The JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha. Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed. Thus, we isolated a 1.2 kb fragment of the 5' flanking region of JcUEP and evaluated its activity as a constitutive promoter in Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. As expected, histochemical GUS assay showed that the JcUEP promoter was active in all Arabidopsis and Jatropha tissues tested. We also compared the activity of the JcUEP promoter with that of the cauliflower mosaic virus 35S (CaMV35S) promoter, a well-characterized constitutive promoter conferring strong transgene expression in dicot species, in various tissues of Jatropha. In a fluorometric GUS assay, the two promoters showed similar activities in stems, mature leaves and female flowers; while the CaMV35S promoter was more effective than the JcUEP promoter in other tissues, especially young leaves and inflorescences. In addition, the JcUEP promoter retained its activity under stress conditions in low temperature, high salt, dehydration and exogenous ABA treatments. These results suggest that the plant-derived JcUEP promoter could be an alternative to the CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha and other plants.
Collapse
Affiliation(s)
- Yan-Bin Tao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | | | | | | |
Collapse
|
15
|
De La Torre CM, Finer JJ. The intron and 5' distal region of the soybean Gmubi promoter contribute to very high levels of gene expression in transiently and stably transformed tissues. PLANT CELL REPORTS 2015; 34:111-20. [PMID: 25292438 DOI: 10.1007/s00299-014-1691-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 06/03/2023]
Abstract
KEY MESSAGE An extended version of an intron-containing soybean polyubiquitin promoter gave very high levels of gene expression using three different validation tools. The intron-containing Glycine max polyubiquitin promoter (Gmubi) is able to regulate expression levels five times higher than the widely used CaMV35S promoter. In this study, eleven Gmubi derivatives were designed and evaluated to determine which regions contributed to the high levels of gene expression, observed with this promoter. Derivative constructs regulating GFP were evaluated using transient expression in lima bean cotyledons and stable expression in soybean hairy roots. With both expression systems, removal of the intron in the 5'UTR led to reduced levels of gene expression suggesting a role of the intron in promoter activity. Promoter constructs containing an internal intron duplication and upstream translocations of the intron resulted in higher and similar expression levels to Gmubi, respectively, indicating the presence of enhancers within the intron. Evaluation of 5' distal extensions of the Gmubi promoter resulted in significantly higher levels of GFP expression, suggesting the presence of upstream regulatory elements. A twofold increase in promoter strength was obtained when Gmubi was extended 1.5 kb upstream to generate GmubiXL (2.4 kb total length). In stably transformed soybean plants containing GFP regulated by CaMV35S, Gmubi and GmubiXL, the GmubiXL promoter clearly produced the highest levels of gene expression, with especially high GFP fluorescence in the vascular tissue and root tips. Use of GmubiXL leads to very high levels of gene expression in soybean and represents a native soybean promoter, which may be useful for regulating transgene expression for both basic and applied research.
Collapse
Affiliation(s)
- Carola M De La Torre
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA,
| | | |
Collapse
|
16
|
Du Q, Pan W, Tian J, Li B, Zhang D. The UDP-glucuronate decarboxylase gene family in Populus: structure, expression, and association genetics. PLoS One 2013; 8:e60880. [PMID: 23613749 PMCID: PMC3629030 DOI: 10.1371/journal.pone.0060880] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/04/2013] [Indexed: 12/01/2022] Open
Abstract
In woody crop plants, the oligosaccharide components of the cell wall are essential for important traits such as bioenergy content, growth, and structural wood properties. UDP-glucuronate decarboxylase (UXS) is a key enzyme in the synthesis of UDP-xylose for the formation of xylans during cell wall biosynthesis. Here, we isolated a multigene family of seven members (PtUXS1-7) encoding UXS from Populus tomentosa, the first investigation of UXSs in a tree species. Analysis of gene structure and phylogeny showed that the PtUXS family could be divided into three groups (PtUXS1/4, PtUXS2/5, and PtUXS3/6/7), consistent with the tissue-specific expression patterns of each PtUXS. We further evaluated the functional consequences of nucleotide polymorphisms in PtUXS1. In total, 243 single-nucleotide polymorphisms (SNPs) were identified, with a high frequency of SNPs (1/18 bp) and nucleotide diversity (πT = 0.01033, θw = 0.01280). Linkage disequilibrium (LD) analysis showed that LD did not extend over the entire gene (r2<0.1, P<0.001, within 700 bp). SNP- and haplotype-based association analysis showed that nine SNPs (Q <0.10) and 12 haplotypes (P<0.05) were significantly associated with growth and wood property traits in the association population (426 individuals), with 2.70% to 12.37% of the phenotypic variation explained. Four significant single-marker associations (Q <0.10) were validated in a linkage mapping population of 1200 individuals. Also, RNA transcript accumulation varies among genotypic classes of SNP10 was further confirmed in the association population. This is the first comprehensive study of the UXS gene family in woody plants, and lays the foundation for genetic improvements of wood properties and growth in trees using genetic engineering or marker-assisted breeding.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|
17
|
Azad MAK, Morita K, Ohnishi JI, Kore-eda S. Isolation and characterization of a polyubiquitin gene and its promoter region from Mesembryanthemum crystallinum. Biosci Biotechnol Biochem 2013; 77:551-9. [PMID: 23470760 DOI: 10.1271/bbb.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcript levels of the polyubiquitin gene McUBI1 had been reported to be constant during Crassulacean acid metabolism (CAM) induction in the facultative CAM plant, Mesembryanthemum crystallinum. Here, we report the sequences of the full-length cDNA of McUBI1 and its promoter, and validation of the McUBI1 promoter as an internal control driving constitutive expression in transient assays using the dual-luciferase system to investigate the regulation of CAM-related gene expression. The McUBI1 promoter drove strong, constitutive expression during CAM induction. We compared the activities of this promoter with those of the cauliflower mosaic virus (CaMV) 35S promoter in detached C3- and CAM-performing M. crystallinum and tobacco leaves. We confirmed stable expression of the genes controlled by the McUBI1 promoter with far less variability than under the CaMV 35S promoter in M. crystallinum, whereas both promoters worked well in tobacco. We found the McUBI1 promoter more suitable than the CaMV 35S promoter as an internal control for transient expression assays in M. crystallinum.
Collapse
Affiliation(s)
- Muhammad Abul Kalam Azad
- Division of Life Sciences, Graduate School of Science and Engineering, Saitama University, Japan
| | | | | | | |
Collapse
|
18
|
A mini-intronic plasmid (MIP): a novel robust transgene expression vector in vivo and in vitro. Mol Ther 2013; 21:954-63. [PMID: 23459514 DOI: 10.1038/mt.2013.33] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The bacterial backbone (BB) sequences contained within a canonical plasmid DNA dampen exogenous transgene expression by tenfold to 1,000-fold over a period of a few weeks following transfection into quiescent tissues such as the liver. Minicircle DNA vectors devoid of bacterial plasmid backbone sequences overcome transgene silencing providing persistent transgene expression. Because, we recently established that the length rather than sequence of the DNA flanking the transgene expression cassette is the major parameter affecting transgene silencing, we developed an alternative plasmid propagation process in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within the eukaryotic expression cassette. As with the minicircle vector, the mini-intronic plasmid (MIP) vector system overcomes transgene silencing observed with plasmids but in addition provides between 2 and often 10 times or higher levels of transgene expression compared with minicircle vectors containing the same expression cassette in vivo and in vitro. These improved plasmids will benefit all studies involving gene transfer/therapy approaches.
Collapse
|
19
|
Buyel JF, Kaever T, Buyel JJ, Fischer R. Predictive models for the accumulation of a fluorescent marker protein in tobacco leaves according to the promoter/5'UTR combination. Biotechnol Bioeng 2013; 110:471-82. [PMID: 22948957 DOI: 10.1002/bit.24715] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 12/23/2022]
Abstract
The promoter and 5'-untranslated region (5'UTR) play a key role in determining the efficiency of recombinant protein expression in plants. Comparative experiments are used to identify suitable elements but these are usually tested in transgenic plants or in transformed protoplasts/suspension cells, so their relevance in whole-plant transient expression systems is unclear given the greater heterogeneity in expression levels among different leaves. Furthermore, little is known about the impact of promoter/5'UTR interactions on protein accumulation. We therefore established a predictive model using a design of experiments (DoE) approach to compare the strong double-enhanced Cauliflower mosaic virus 35S promoter (CaMV 35SS) and the weaker Agrobacterium tumefaciens Ti-plasmid nos promoter in whole tobacco plants transiently expressing the fluorescent marker protein DsRed. The promoters were combined with one of three 5'UTRs (one of which was tested with and without an additional protein targeting motif) and the accumulation of DsRed was measured following different post-agroinfiltration incubation periods in all leaves and at different leaf positions. The model predictions were quantitative, allowing the rapid identification of promoter/5'UTR combinations stimulating the highest and quickest accumulation of the marker protein in all leaves. The model also suggested that increasing the incubation time from 5 to 8 days would reduce batch-to-batch variability in protein yields. We used the model to identify promoter/5'UTR pairs that resulted in the least spatiotemporal variation in expression levels. These ideal pairs are suitable for the simultaneous, balanced production of several proteins in whole plants by transient expression.
Collapse
Affiliation(s)
- J F Buyel
- Institute for Molecular Biotechnology, Worringer Weg 1, RWTH Aachen University, Aachen 52074, Germany.
| | | | | | | |
Collapse
|
20
|
Zhang WJ, Dewey RE, Boss W, Phillippy BQ, Qu R. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. PLANT MOLECULAR BIOLOGY 2013; 81:273-286. [PMID: 23242917 DOI: 10.1007/s11103-012-9997-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/06/2012] [Indexed: 05/27/2023]
Abstract
Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species.
Collapse
Affiliation(s)
- Wan-Jun Zhang
- Department of Grassland Science, China Agricultural University, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
21
|
Huerta C, Freire M, Cardemil L. Expression of hsp70, hsp100 and ubiquitin in Aloe barbadensis Miller under direct heat stress and under temperature acclimation conditions. PLANT CELL REPORTS 2013; 32:293-307. [PMID: 23111788 DOI: 10.1007/s00299-012-1363-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/04/2012] [Accepted: 10/21/2012] [Indexed: 06/01/2023]
Abstract
KEY MESSAGE : The study determined the tolerance of Aloe vera to high temperature, focusing on the expression of hsp70 , hsp100 and ubiquitin genes. These were highly expressed in plants acclimated at 35 °C prior to a heat shock of 45 °C. Aloe barbadensis Miller (Aloe vera), a CAM plant, was introduced into Chile in the semiarid IV and III Regions, which has summer diurnal temperature fluctuations of 25 to 40 °C and annual precipitation of 40 mm (dry years) to 170 mm (rainy years). The aim of this study was to investigate how Aloe vera responds to water and heat stress, focusing on the expression of heat shock genes (hsp70, hsp100) and ubiquitin, which not studied before in Aloe vera. The LT(50) of Aloe vera was determined as 53.2 °C. To study gene expression by semi-quantitative RT-PCR, primers were designed against conserved regions of these genes. Sequencing the cDNA fragments for hsp70 and ubiquitin showed a high identity, over 95 %, with the genes from cereals. The protein sequence of hsp70 deduced from the sequence of the cDNA encloses partial domains for binding ATP and the substrate. The protein sequence of ubiquitin deduced from the cDNA encloses a domain for interaction with the enzymes E2, UCH and CUE. The expression increased with temperature and water deficit. Hsp70 expression at 40-45 °C increased 50 % over the controls, while the expression increased by 150 % over the controls under a water deficit of 50 % FC. The expression of all three genes was also studied under 2 h of acclimation at 35 or 40 °C prior to a heat shock at 45 °C. Under these conditions, the plants showed greater expression of all genes than when they were subjected to direct heat stress.
Collapse
Affiliation(s)
- Claudia Huerta
- Laboratorio de Biología Molecular Vegetal Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | |
Collapse
|
22
|
Radici L, Bianchi M, Crinelli R, Magnani M. Ubiquitin C gene: Structure, function, and transcriptional regulation. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.412141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Greenham T, Altosaar I. Molecular strategies to engineer transgenic rice seed compartments for large-scale production of plant-made pharmaceuticals. Methods Mol Biol 2013; 956:311-26. [PMID: 23135861 DOI: 10.1007/978-1-62703-194-3_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of plants as bioreactors for the large-scale production of recombinant proteins has emerged as an exciting area of research. The current shortages in protein therapeutics due to the capacity and economic bottlenecks faced with modern protein production platforms (microbial, yeast, mammalian) has driven considerable attention towards molecular pharming. Utilizing plants for the large-scale production of recombinant proteins is estimated to be 2-10% the cost of microbial platforms, and up to 1,000-fold more cost effective than mammalian platforms (Twyman et al. Trends Biotechnol 21:570-578, 2003; Sharma and Sharma, Biotechnol Adv 27:811-832, 2009). In order to achieve an economically feasible plant production host, protein expression and accumulation must be optimized. The seed, and more specifically the rice seed has emerged as an ideal candidate in molecular pharming due to its low protease activity, low water content, stable protein storage environment, relatively high biomass, and the molecular tools available for manipulation (Lau and Sun, Biotechnol Adv 27:1015-1022, 2009).
Collapse
Affiliation(s)
- Trevor Greenham
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
24
|
Li ZT, Kim KH, Jasinski JR, Creech MR, Gray DJ. Large-scale characterization of promoters from grapevine (Vitis spp.) using quantitative anthocyanin and GUS assay systems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 196:132-42. [PMID: 23017908 DOI: 10.1016/j.plantsci.2012.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 06/01/2023]
Abstract
Successful implementation of cisgenic/intragenic/ingenic technology for crop improvement necessitates a better understanding of the function of native promoters for driving desired gene expression in host plant. Although the genome of grapevine (Vitis vinifera) has been determined, efforts to explore promoter resources for the development of cisgenics are still lacking. Particularly, there is a shortage of constitutive promoters for marker and/or target gene expression in this species. In this work, we utilized an anthocyanin-based color histogram analysis method to evaluate quantitatively a large number of promoters for their ability to activate transgene expression. Promoter fragments corresponding to known genes were amplified from various genotypes and used to drive the VvMybA1 gene of 'Merlot' for anthocyanin production in non-pigmented somatic embryo (SE) explants to infer transcriptional activity. Results revealed that among 15 tested promoters belonging to seven ubiquitin genes, at least three promoters generated constitutive activities reaching up to 100% value of the d35S promoter. In particular, the high activity levels of VvUb6-1 and VvUb7-2 promoters were verified by transient GUS quantitative assay as well as stable anthocyanin expression in sepal and corolla of transgenic tobacco. Variations in promoter activity of different ubiquitin genes in grapevine did not correlate with the presence and sizes of 5' UTR intron, but seemed to be related positively and negatively to the number of positive cis-acting elements and root-specific elements respectively. In addition, several of the 13 promoters derived from a PR1 gene and a PAL gene produced a higher basal activity as compared to previously reported inducible promoters and might be useful for further identification of strong inducible promoters. Our study contributed invaluable information on transcriptional activity of many previously uncharacterized native promoters that could be used for genetic engineering of grapevine.
Collapse
Affiliation(s)
- Zhijian T Li
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504, USA
| | | | | | | | | |
Collapse
|
25
|
Shen B, Sun X, Zuo X, Shilling T, Apgar J, Ross M, Bougri O, Samoylov V, Parker M, Hancock E, Lucero H, Gray B, Ekborg NA, Zhang D, Johnson JCS, Lazar G, Raab RM. Engineering a thermoregulated intein-modified xylanase into maize for consolidated lignocellulosic biomass processing. Nat Biotechnol 2012; 30:1131-6. [PMID: 23086202 DOI: 10.1038/nbt.2402] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/28/2012] [Indexed: 11/09/2022]
Abstract
Plant cellulosic biomass is an abundant, low-cost feedstock for producing biofuels and chemicals. Expressing cell wall-degrading (CWD) enzymes (e.g. xylanases) in plant feedstocks could reduce the amount of enzymes required for feedstock pretreatment and hydrolysis during bioprocessing to release soluble sugars. However, in planta expression of xylanases can reduce biomass yield and plant fertility. To overcome this problem, we engineered a thermostable xylanase (XynB) with a thermostable self-splicing bacterial intein to control the xylanase activity. Intein-modified XynB (iXynB) variants were selected that have <10% wild-type enzymatic activity but recover >60% enzymatic activity upon intein self-splicing at temperatures >59 °C. Greenhouse-grown xynB maize expressing XynB has shriveled seeds and low fertility, but ixynB maize had normal seeds and fertility. Processing dried ixynB maize stover by temperature-regulated xylanase activation and hydrolysis in a cocktail of commercial CWD enzymes produced >90% theoretical glucose and >63% theoretical xylose yields.
Collapse
|
26
|
Bhattacharyya J, Chowdhury AH, Ray S, Jha JK, Das S, Gayen S, Chakraborty A, Mitra J, Maiti MK, Basu A, Sen SK. Native polyubiquitin promoter of rice provides increased constitutive expression in stable transgenic rice plants. PLANT CELL REPORTS 2012; 31:271-9. [PMID: 21996937 DOI: 10.1007/s00299-011-1161-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/16/2011] [Accepted: 09/22/2011] [Indexed: 05/04/2023]
Abstract
The rice Ubiquitin1 (Ubi1) promoter was tested to evaluate its capacity to express the heterologous gusA gene encoding β-glucuronidase in transgenic rice tissue relative to the commonly used Ubi1 corn promoter and the rice gibberellic acid insensitive (GAI) gene promoter element. Experimental results showed increased expression of gusA gene in rice tissue when driven by the native Ubi1 promoter when compared to the use of corn Ubi1 promoter. Results further indicated that the cis-regulatory elements present in the native promoter element might have been responsible for high expression. However, the gusA gene expression level when driven by the rice GAI promoter was notably lower than both Ubi1 promoters. The present study, thus, for the first time helped to demonstrate that the native Ubi1 promoter is a promising genetic element in transgenic approaches for constitutive expression of any gene in rice tissue.
Collapse
Affiliation(s)
- Jagannath Bhattacharyya
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mann DGJ, Lafayette PR, Abercrombie LL, King ZR, Mazarei M, Halter MC, Poovaiah CR, Baxter H, Shen H, Dixon RA, Parrott WA, Neal Stewart C. Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:226-36. [PMID: 21955653 DOI: 10.1111/j.1467-7652.2011.00658.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Switchgrass (Panicum virgatum L.) is a C4 perennial grass and has been identified as a potential bioenergy crop for cellulosic ethanol because of its rapid growth rate, nutrient use efficiency and widespread distribution throughout North America. The improvement of bioenergy feedstocks is needed to make cellulosic ethanol economically feasible, and genetic engineering of switchgrass is a promising approach towards this goal. A crucial component of creating transgenic switchgrass is having the capability of transforming the explants with DNA sequences of interest using vector constructs. However, there are limited options with the monocot plant vectors currently available. With this in mind, a versatile set of Gateway-compatible destination vectors (termed pANIC) was constructed to be used in monocot plants for transgenic crop improvement. The pANIC vectors can be used for transgene overexpression or RNAi-mediated gene suppression. The pANIC vector set includes vectors that can be utilized for particle bombardment or Agrobacterium-mediated transformation. All the vectors contain (i) a Gateway cassette for overexpression or silencing of the target sequence, (ii) a plant selection cassette and (iii) a visual reporter cassette. The pANIC vector set was functionally validated in switchgrass and rice and allows for high-throughput screening of sequences of interest in other monocot species as well.
Collapse
Affiliation(s)
- David G J Mann
- Department of Plant Sciences, The University of Tennessee, Knoxville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gray BN, Bougri O, Carlson AR, Meissner J, Pan S, Parker MH, Zhang D, Samoylov V, Ekborg NA, Michael Raab R. Global and grain-specific accumulation of glycoside hydrolase family 10 xylanases in transgenic maize (Zea mays). PLANT BIOTECHNOLOGY JOURNAL 2011; 9:1100-8. [PMID: 21689368 DOI: 10.1111/j.1467-7652.2011.00632.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In planta expression of cell wall degrading enzymes is a promising approach for developing optimized biomass feedstocks that enable low-cost cellulosic biofuels production. Transgenic plants could serve as either an enzyme source for the hydrolysis of pretreated biomass or as the primary biomass feedstock in an autohydrolysis process. In this study, two xylanase genes, Bacillus sp. NG-27 bsx and Clostridium stercorarium xynB, were expressed in maize (Zea mays) under the control of two different promoters. Severe phenotypic effects were associated with xylanase accumulation in maize, including stunted plants and sterile grains. Global expression of these xylanases from the rice ubiquitin 3 promoter (rubi3) resulted in enzyme accumulation of approximately 0.01 mg enzyme per gram dry weight, or approximately 0.1% of total soluble protein (TSP). Grain-specific expression of these enzymes from the rice glutelin 4 promoter (GluB-4) resulted in higher-level accumulation of active enzyme, with BSX and XynB accumulating up to 4.0% TSP and 16.4% TSP, respectively, in shriveled grains from selected T0 plants. These results demonstrate the potential utility of the GluB-4 promoter for biotechnological applications. The phenotypic effects of xylanase expression in maize presented here demonstrate the difficulties of hemicellulase expression in an important crop for cellulosic biofuels production. Potential alternate approaches to achieve xylanase accumulation in planta without the accompanying negative phenotypes are discussed.
Collapse
|
29
|
Mann DGJ, King ZR, Liu W, Joyce BL, Percifield RJ, Hawkins JS, LaFayette PR, Artelt BJ, Burris JN, Mazarei M, Bennetzen JL, Parrott WA, Stewart CN. Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation. BMC Biotechnol 2011; 11:74. [PMID: 21745390 PMCID: PMC3161867 DOI: 10.1186/1472-6750-11-74] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/11/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The ubiquitin protein is present in all eukaryotic cells and promoters from ubiquitin genes are good candidates to regulate the constitutive expression of transgenes in plants. Therefore, two switchgrass (Panicum virgatum L.) ubiquitin genes (PvUbi1 and PvUbi2) were cloned and characterized. Reporter constructs were produced containing the isolated 5' upstream regulatory regions of the coding sequences (i.e. PvUbi1 and PvUbi2 promoters) fused to the uidA coding region (GUS) and tested for transient and stable expression in a variety of plant species and tissues. RESULTS PvUbi1 consists of 607 bp containing cis-acting regulatory elements, a 5' untranslated region (UTR) containing a 93 bp non-coding exon and a 1291 bp intron, and a 918 bp open reading frame (ORF) that encodes four tandem, head -to-tail ubiquitin monomer repeats followed by a 191 bp 3' UTR. PvUbi2 consists of 692 bp containing cis-acting regulatory elements, a 5' UTR containing a 97 bp non-coding exon and a 1072 bp intron, a 1146 bp ORF that encodes five tandem ubiquitin monomer repeats and a 183 bp 3' UTR. PvUbi1 and PvUbi2 were expressed in all examined switchgrass tissues as measured by qRT-PCR. Using biolistic bombardment, PvUbi1 and PvUbi2 promoters showed strong expression in switchgrass and rice callus, equaling or surpassing the expression levels of the CaMV 35S, 2x35S, ZmUbi1, and OsAct1 promoters. GUS staining following stable transformation in rice demonstrated that the PvUbi1 and PvUbi2 promoters drove expression in all examined tissues. When stably transformed into tobacco (Nicotiana tabacum), the PvUbi2+3 and PvUbi2+9 promoter fusion variants showed expression in vascular and reproductive tissues. CONCLUSIONS The PvUbi1 and PvUbi2 promoters drive expression in switchgrass, rice and tobacco and are strong constitutive promoter candidates that will be useful in genetic transformation of monocots and dicots.
Collapse
Affiliation(s)
- David GJ Mann
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6026, USA
| | - Zachary R King
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6026, USA
| | - Wusheng Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Blake L Joyce
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Ryan J Percifield
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6026, USA
| | - Jennifer S Hawkins
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6026, USA
| | - Peter R LaFayette
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6026, USA
| | - Barbara J Artelt
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6026, USA
| | - Jason N Burris
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6026, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6026, USA
| | - Jeffrey L Bennetzen
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6026, USA
| | - Wayne A Parrott
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6026, USA
| | - Charles N Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6026, USA
| |
Collapse
|
30
|
Morello L, Gianì S, Troina F, Breviario D. Testing the IMEter on rice introns and other aspects of intron-mediated enhancement of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:533-44. [PMID: 20855457 PMCID: PMC3003800 DOI: 10.1093/jxb/erq273] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 05/19/2023]
Abstract
In many eukaryotes, spliceosomal introns are able to influence the level and site of gene expression. The mechanism of this Intron Mediated Enhancement (IME) has not yet been elucidated, but regulation of gene expression is likely to occur at several steps during and after transcription. Different introns have different intrinsic enhancing properties, but the determinants of these differences remain unknown. Recently, an algorithm called IMEter, which is able to predict the IME potential of introns without direct testing, has been proposed. A computer program was developed for Arabidopsis thaliana and rice (Oryza sativa L.), but was only tested experimentally in Arabidopsis by measuring the enhancement effect on GUS expression of different introns inserted within otherwise identical plasmids. To test the IMEter potential in rice, a vector bearing the upstream regulatory sequence of a rice β-tubulin gene (OsTub6) fused to the GUS reporter gene was used. The enhancing intron interrupting the OsTub6 5'-UTR was precisely replaced by seven other introns carrying different features. GUS expression level in transiently transformed rice calli does not significantly correlate with the calculated IMEter score. It was also found that enhanced GUS expression was mainly due to a strong increase in the mRNA steady-state level and that mutations at the splice recognition sites almost completely abolished the enhancing effect. Splicing also appeared to be required for IME in Arabidopsis cell cultures, where failure of the OsTub6 5' region to drive high level gene expression could be rescued by replacing the poorly spliced rice intron with one from Arabidopsis.
Collapse
Affiliation(s)
- Laura Morello
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, I-20133 Milano, Italy.
| | | | | | | |
Collapse
|
31
|
Li XP, Zhao XQ, He X, Zhao GY, Li B, Liu DC, Zhang AM, Zhang XY, Tong YP, Li ZS. Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use- and yield-related traits in bread wheat. THE NEW PHYTOLOGIST 2011; 189:449-58. [PMID: 21039562 DOI: 10.1111/j.1469-8137.2010.03490.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glutamine synthetase (GS) plays a key role in the growth, nitrogen (N) use and yield potential of cereal crops. Investigating the haplotype variation of GS genes and its association with agronomic traits may provide useful information for improving wheat N-use efficiency and yield. We isolated the promoter and coding region sequences of the plastic glutamine synthetase isoform (GS2) genes located on chromosomes 2A, 2B and 2D in bread wheat. By analyzing nucleotide sequence variations of the coding region, two, six and two haplotypes were distinguished for TaGS2-A1 (a and b), TaGS2-B1 (a-f) and TaGS2-D1 (a and b), respectively. By analyzing the frequency data of different haplotypes and their association with N use and agronomic traits, four major and favorable TaGS2 haplotypes (A1b, B1a, B1b, D1a) were revealed. These favorable haplotypes may confer better seedling growth, better agronomic performance, and improved N uptake during vegetative growth or grain N concentration. Our data suggest that certain TaGS2 haplotypes may be valuable in breeding wheat varieties with improved agronomic performance and N-use efficiency.
Collapse
Affiliation(s)
- Xin-Peng Li
- The State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hernandez-Garcia CM, Bouchard RA, Rushton PJ, Jones ML, Chen X, Timko MP, Finer JJ. High level transgenic expression of soybean (Glycine max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline. BMC PLANT BIOLOGY 2010; 10:237. [PMID: 21050446 PMCID: PMC3095320 DOI: 10.1186/1471-2229-10-237] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/04/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Although numerous factors can influence gene expression, promoters are perhaps the most important component of the regulatory control process. Promoter regions are often defined as a region upstream of the transcriptional start. They contain regulatory elements that interact with regulatory proteins to modulate gene expression. Most genes possess their own unique promoter and large numbers of promoters are therefore available for study. Unfortunately, relatively few promoters have been isolated and characterized; particularly from soybean (Glycine max). RESULTS In this research, a bioinformatics approach was first performed to identify members of the Gmubi (G.max ubiquitin) and the GmERF (G. max Ethylene Response Factor) gene families of soybean. Ten Gmubi and ten GmERF promoters from selected genes were cloned upstream of the gfp gene and successfully characterized using rapid validation tools developed for both transient and stable expression. Quantification of promoter strength using transient expression in lima bean (Phaseolus lunatus) cotyledonary tissue and stable expression in soybean hairy roots showed that the intensity of gfp gene expression was mostly conserved across the two expression systems. Seven of the ten Gmubi promoters yielded from 2- to 7-fold higher expression than a standard CaMV35S promoter while four of the ten GmERF promoters showed from 1.5- to 2.2-times higher GFP levels compared to the CaMV35S promoter. Quantification of GFP expression in stably-transformed hairy roots of soybean was variable among roots derived from different transformation events but consistent among secondary roots, derived from the same primary transformation events. Molecular analysis of hairy root events revealed a direct relationship between copy number and expression intensity; higher copy number events displayed higher GFP expression. CONCLUSION In this study, we present expression intensity data on 20 novel soybean promoters from two different gene families, ubiquitin and ERF. We also demonstrate the utility of lima bean cotyledons and soybean hairy roots for rapid promoter analyses and provide novel insights towards the utilization of these expression systems. The soybean promoters characterized here will be useful for production of transgenic soybean plants for both basic research and commercial plant improvement.
Collapse
Affiliation(s)
- Carlos M Hernandez-Garcia
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH 44691 USA
| | - Robert A Bouchard
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH 44691 USA
| | - Paul J Rushton
- Department of Biology, University of Virginia, Charlottesville, VA 22904 USA
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007 USA
| | - Michelle L Jones
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH 44691 USA
| | - Xianfeng Chen
- Department of Microbiology, University of Virginia Health Systems, Charlottesville, VA 22908 USA
- USACE, Environmental Lab, ERDC, 3909 Halls Ferry Road, Vicksburg, MS 39180 USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904 USA
| | - John J Finer
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH 44691 USA
| |
Collapse
|
33
|
Masura SS, Parveez GKA, Ismail I. Isolation and characterization of oil palm constitutive promoter derived from ubiquitin extension protein (uep1) gene. N Biotechnol 2010; 27:289-99. [PMID: 20123048 DOI: 10.1016/j.nbt.2010.01.337] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 01/08/2010] [Accepted: 01/25/2010] [Indexed: 11/30/2022]
Abstract
The ubiquitin extension protein (uep1) gene was identified as a constitutively expressed gene in oil palm. We have isolated and characterized the 5' region of the oil palm uep1 gene, which contains an 828 bp sequence upstream of the uep1 translational start site. Construction of a pUEP1 transformation vector, which contains gusA reporter gene under the control of uep1 promoter, was carried out for functional analysis of the promoter through transient expression studies. It was found that the 5' region of uep1 functions as a constitutive promoter in oil palm and could drive GUS expression in all tissues tested, including embryogenic calli, embryoid, immature embryo, young leaflet from mature palm, green leaf, mesocarp and meristematic tissues (shoot tip). This promoter could also be used in dicot systems as it was demonstrated to be capable of driving gusA gene expression in tobacco.
Collapse
Affiliation(s)
- Subhi Siti Masura
- Advanced Biotechnology and Breeding Centre, Biological Research Division, Malaysian Palm Oil Board, P.O. Box 10620, 50720 Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
34
|
A potent enhancer element in the 5′-UTR intron is crucial for transcriptional regulation of the human ubiquitin C gene. Gene 2009; 448:88-101. [DOI: 10.1016/j.gene.2009.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 02/01/2023]
|
35
|
Thilmony R, Guttman M, Thomson JG, Blechl AE. The LP2 leucine-rich repeat receptor kinase gene promoter directs organ-specific, light-responsive expression in transgenic rice. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:867-82. [PMID: 19781006 DOI: 10.1111/j.1467-7652.2009.00449.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biotechnologists seeking to limit gene expression to nonseed tissues of genetically engineered cereal crops have only a few choices of well characterized organ-specific promoters. We have isolated and characterized the promoter of the rice Leaf Panicle 2 gene (LP2, Os02g40240). The LP2 gene encodes a leucine-rich repeat-receptor kinase-like protein that is strongly expressed in leaves and other photosynthetic tissues. Transgenic rice plants containing an LP2 promoter-GUS::GFP bifunctional reporter gene displayed an organ-specific pattern of expression. This expression corresponded to transcript levels observed on RNA blots of various rice organs and microarray gene expression data. The strongest beta-glucuronidase activity was observed in histochemically stained mesophyll cells, but other green tissues and leaf cell types including epidermal cells also exhibited expression. Low or undetectable levels of LP2 transcript and LP2-mediated reporter gene expression were observed in roots, mature seeds, and reproductive tissues. The LP2 promoter is highly responsive to light and only weak expression was detected in etiolated rice seedlings. The specificity and strength of the LP2 promoter suggests that this promoter will be a useful control element for green tissue-specific expression in rice and potentially other plants. Organ-specific promoters like LP2 will enable precise, localized expression of transgenes in biotechnology-derived crops and limit the potential of unintended impacts on plant physiology and the environment.
Collapse
Affiliation(s)
- Roger Thilmony
- USDA-ARS, Western Regional Research Center, Crop Improvement and Utilization Research Unit, Albany, CA, USA.
| | | | | | | |
Collapse
|
36
|
Hernandez-Garcia CM, Martinelli AP, Bouchard RA, Finer JJ. A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. PLANT CELL REPORTS 2009; 28:837-49. [PMID: 19229538 DOI: 10.1007/s00299-009-0681-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/20/2009] [Accepted: 01/27/2009] [Indexed: 05/19/2023]
Abstract
The success of plant genetic transformation relies greatly on the strength and specificity of the promoters used to drive genes of interest. In this study, we analyzed gfp gene expression mediated by a polyubiquitin promoter (Gmubi) from soybean (Glycine max) in stably transformed soybean tissues. Strong GFP expression was observed in stably transformed proliferative embryogenic tissues. In whole transgenic plants, GFP expression was observed in root tips, main and lateral roots, cotyledons and plumules in young plants as well as in leaf veins, petioles, flower petals, pollen, pods and developing seeds in mature plants. GFP expression was localized mainly in epidermal cells, leaf mesophyll, procambium and vascular tissues. Introduction of an intron-less version of the Gmubi promoter (Gmupri) displayed almost the same GFP expression pattern albeit at lower intensities. The Gmubi promoter showed high levels of constitutive expression and represents an alternative to viral promoters for driving gene expression in soybean.
Collapse
Affiliation(s)
- Carlos M Hernandez-Garcia
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, Wooster, OH 44691, USA
| | | | | | | |
Collapse
|
37
|
Sivamani E, DeLong RK, Qu R. Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. PLANT CELL REPORTS 2009; 28:213-221. [PMID: 19015859 DOI: 10.1007/s00299-008-0636-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/24/2008] [Accepted: 10/26/2008] [Indexed: 05/27/2023]
Abstract
We have developed a method by which remarkably higher efficiencies of transient and stable transformation were achieved in bombardment transformation of plants. Over fivefold increase in transient gus gene expression was achieved when rice or maize suspension cells were bombarded with gold particles coated with plasmid DNA in the presence of protamine instead of the conventional spermidine. A 3.3-fold improvement in stable transformation efficiency was also observed using rice suspension cells with the new coating approach. The coated protamine-plasmid DNA complex resisted degradation by a DNase or by rice cell extract much longer than the spermidine-plasmid DNA complex. The results from this study suggest that protamine protects plasmid DNA longer than spermidine when being delivered inside the cells, probably by forming a nano-scale complex, and thus helps improve the efficiency of particle bombardment-mediated plant transformation.
Collapse
Affiliation(s)
- Elumalai Sivamani
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620, USA
| | | | | |
Collapse
|
38
|
Abstract
Transient expression in plants is a valuable tool for many aspects of functional genomics and promoter testing. It can be used both to over-express and to silence candidate genes. It is also scaleable and provides a viable alternative to microbial fermentation and animal cell culture for the production of recombinant proteins. It does not depend on chromosomal integration of heterologous DNA so is a relatively facile procedure and can lead to high levels of transgene expression. Recombinant DNA can be introduced into plant cells via physical methods, via Agrobacterium or via viral vectors.
Collapse
Affiliation(s)
- Huw D Jones
- CPI Division, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | | |
Collapse
|
39
|
Chymotrypsin protease inhibitor gene family in rice: Genomic organization and evidence for the presence of a bidirectional promoter shared between two chymotrypsin protease inhibitor genes. Gene 2008; 428:9-19. [PMID: 18952157 DOI: 10.1016/j.gene.2008.09.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/06/2008] [Accepted: 09/22/2008] [Indexed: 11/20/2022]
Abstract
Protease inhibitors play important roles in stress and developmental responses of plants. Rice genome contains 17 putative members in chymotrypsin protease inhibitor (ranging in size from 7.21 to 11.9 kDa) gene family with different predicted localization sites. Full-length cDNA encoding for a putative subtilisin-chymotrypsin protease inhibitor (OCPI2) was obtained from Pusa basmati 1 (indica) rice seedlings. 620 bp-long OCPI2 cDNA contained 219 bp-long ORF, coding for 72 amino acid-long 7.7 kDa subtilisin-chymotrypsin protease inhibitor (CPI) cytoplasmic protein. Expression analysis by semi-quantitative RT-PCR analysis showed that OCPI2 transcript is induced by varied stresses including salt, ABA, low temperature and mechanical injury in both root and shoot tissues of the seedlings. Transgenic rice plants produced with OCPI2 promoter-gus reporter gene showed that this promoter directs high salt- and ABA-regulated expression of the GUS gene. Another CPI gene (OCPI1) upstream to OCPI2 (with 1126 bp distance between the transcription initiation sites of the two genes; transcription in the reverse orientation) was noted in genome sequence of rice genome. A vector that had GFP and GUS reporter genes in opposite orientations driven by 1881 bp intergenic sequence between the OCPI2 and OCPI1 (encompassing the region between the translation initiation sites of the two genes) was constructed and shot in onion epidermal cells by particle bombardment. Expression of both GFP and GUS from the same epidermal cell showed that this sequence represents a bidirectional promoter. Examples illustrating gene pairs showing co-expression of two divergent neighboring genes sharing a bidirectional promoter have recently been extensively worked out in yeast and human systems. We provide an example of a gene pair constituted of two homologous genes showing co-expression governed by a bidirectional promoter in rice.
Collapse
|
40
|
Lu J, Sivamani E, Li X, Qu R. Activity of the 5' regulatory regions of the rice polyubiquitin rubi3 gene in transgenic rice plants as analyzed by both GUS and GFP reporter genes. PLANT CELL REPORTS 2008; 27:1587-600. [PMID: 18636262 DOI: 10.1007/s00299-008-0577-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 06/03/2008] [Accepted: 06/20/2008] [Indexed: 05/09/2023]
Abstract
Ubiquitin is an abundant protein involved in protein degradation and cell cycle control in plants and rubi3 is a polyubiquitin gene isolated from rice (Oryza sativa L.). Using both GFP and GUS as reporter genes, we analyzed the expression pattern of the rubi3 promoter as well as the effects of the rubi3 5'-UTR (5' untranslated region) intron and the 5' terminal 27 bp of the rubi3 coding sequence on the activity of the promoter in transgenic rice plants. The rubi3 promoter with the 5'-UTR intron was active in all the tissue and cell types examined and supported more constitutive expression of reporter genes than the maize Ubi-1 promoter. The rubi3 5'-UTR intron mediated enhancement on the activity of its promoter in a tissue-specific manner but did not alter its overall expression pattern. The enhancement was particularly intense in roots, pollen grains, inner tissue of ovaries, and embryos and aleurone layers in maturing seeds. The translational fusion of the first 27 bp of the rubi3 coding sequence to GUS gene further enhanced GUS expression directed by the rubi3 promoter in all the tissues examined. The rubi3 promoter should be an important addition to the arsenal of strong and constitutive promoters for monocot transformation and biotechnology.
Collapse
Affiliation(s)
- Jianli Lu
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
41
|
Taylor LE, Dai Z, Decker SR, Brunecky R, Adney WS, Ding SY, Himmel ME. Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 2008; 26:413-24. [PMID: 18579242 DOI: 10.1016/j.tibtech.2008.05.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 05/01/2008] [Accepted: 05/07/2008] [Indexed: 11/18/2022]
Abstract
The concept of expressing non-plant glycosyl hydrolase genes in plant tissue is nearly two decades old, yet relatively little work in this field has been reported. However, resurgent interest in technologies aimed at enabling processes that convert biomass to sugars and fuels has turned attention toward this intuitive solution. There are several challenges facing researchers in this field, including the development of better and more specifically targeted delivery systems for hydrolytic genes, the successful folding and post-translational modification of heterologous proteins and the development of cost-effective process strategies utilizing these transformed plants. The integration of these concepts, from the improvement of biomass production and conversion characteristics to the heterologous production of glycosyl hydrolases in a high yielding bioenergy crop, holds considerable promise for improving the lignocellulosic conversion of biomass to ethanol and subsequently to fuels.
Collapse
Affiliation(s)
- Larry E Taylor
- Chemical and Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Gene expression enhancement mediated by the 5′ UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Mol Genet Genomics 2008; 279:563-72. [DOI: 10.1007/s00438-008-0333-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
|
43
|
Rose AB, Elfersi T, Parra G, Korf I. Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. THE PLANT CELL 2008; 20:543-51. [PMID: 18319396 PMCID: PMC2329928 DOI: 10.1105/tpc.107.057190] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/01/2008] [Accepted: 02/16/2008] [Indexed: 05/18/2023]
Abstract
Introns that elevate mRNA accumulation have been found in a wide range of eukaryotes. However, not all introns affect gene expression, and direct testing is currently the only way to identify stimulatory introns. Our genome-wide analysis in Arabidopsis thaliana revealed that promoter-proximal introns as a group are compositionally distinct from distal introns and that the degree to which an individual intron matches the promoter-proximal intron profile is a strong predictor of its ability to increase expression. We found that the sequences responsible for elevating expression are dispersed throughout an enhancing intron, as is a candidate motif that is overrepresented in first introns and whose occurrence in tested introns is proportional to its effect on expression. The signals responsible for intron-mediated enhancement are apparently conserved between Arabidopsis and rice (Oryza sativa) despite the large evolutionary distance separating these plants.
Collapse
Affiliation(s)
- Alan B Rose
- Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
44
|
Perales L, Peñarrubia L, Cornejo MJ. Induction of a polyubiquitin gene promoter by dehydration stresses in transformed rice cells. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:159-71. [PMID: 17570562 DOI: 10.1016/j.jplph.2006.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 05/11/2023]
Abstract
The expression of the maize polyubiquitin gene promoter UBI1 in rice cells has been used to study the involvement of ubiquitin in cell protection responses to dehydration caused by osmotic, saline or freezing stress. The effect of these stresses on UBI1 activity was investigated by the use of stably transformed rice calli (UBI1:GUS), as well as by transient expression experiments performed with cell lines with high or low tolerance to each type of stress. The theoretical analysis of the UBI1 promoter shows several putative stress-regulated boxes that could account for the stress-related UBI1 induction pattern described in this work. We suggest that the study of the differential UBI1 promoter-driven expression in rice cell lines with different level of tolerance to stress might be useful to elucidate complex signal transduction pathways in response to dehydration stresses in monocots.
Collapse
Affiliation(s)
- Lorena Perales
- Departmento de Biología Vegetal, Facultad de Biología, Avda. Dr Moliner 50, 46100 Burjasot, Valencia, Spain
| | | | | |
Collapse
|
45
|
Transcriptional and post-transcriptional enhancement of gene expression by the 5' UTR intron of rice rubi3 gene in transgenic rice cells. Mol Genet Genomics 2008; 279:429-39. [PMID: 18236078 DOI: 10.1007/s00438-008-0323-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 01/13/2008] [Indexed: 01/01/2023]
Abstract
Introns play a very important role in regulating gene expression in eukaryotes. In plants, many introns enhance gene expression, and the effect of intron-mediated enhancement (IME) of gene expression is reportedly often more profound in monocots than in dicots. To further gain insight of IME in monocot plants, we quantitatively dissected the effect of the 5' UTR intron of the rice rubi3 gene at various gene expression levels in stably transformed suspension cell lines. The intron enhanced the GUS reporter gene activity in these lines by about 29-fold. Nuclear run-on experiments demonstrated a nearly twofold enhancement by the 5' UTR intron at the transcriptional level. RNA analysis by RealTime quantitative RT-PCR assays indicated the intron enhanced the steady state RNA level of the GUS reporter gene by nearly 20-fold, implying a strong role of the intron in RNA processing and/or export. The results also implicated a moderate role of the intron in enhancement at the translational level ( approximately 45%). Moreover, results from a transient assay experiment using a shortened exon 1 sequence revealed an important role of exon 1 of rubi3 in gene expression. It may also hint a divergence in IME mechanisms between plant and animal cells. These results demonstrated transcriptional enhancement by a plant intron, but suggested that post-transcriptional event(s) be the major source of IME.
Collapse
|
46
|
|