1
|
Abbasi-Vineh MA, Emadpour M. The First Introduction of an Exogenous 5' Untranslated Region for Control of Plastid Transgene Expression in Chlamydomonas reinhardtii. Mol Biotechnol 2024:10.1007/s12033-024-01279-3. [PMID: 39271617 DOI: 10.1007/s12033-024-01279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
The utilization of heterologous 5' untranslated regions (5'UTRs) for expressing foreign proteins in the chloroplast of Chlamydomonas reinhardtii (C. reinhardtii) has posed a persistent challenge over the years. This challenge stems from the lack of a defined and comprehensive set of translational cis-elements responsible for stability, ribosome binding, and translation initiation, which are mediated by trans-acting factors native to C. reinhardtii. In the current study, we aimed to address this bottleneck by employing the 5'UTR from gene 10 of the T7 bacteriophage (T7g10 5'UTR), fused to the promoter of C. reinhardtii small subunit ribosomal RNA (rrnS), to facilitate the translation of a reporter gene, YFP. Using a chimeric construct, the YFP mRNA was efficiently translated utilizing the heterologous T7g10 5'UTR. Furthermore, the accumulation of YFP protein under the control of the T7g10 5'UTR was approximately one third of that observed under the control of the endogenous psaA promoter/5'UTR in the C. reinhardtii chloroplast. The results of computational analyses demonstrated that the T7g10 5'UTR sequence shares common elements with the endogenous 5'UTRs of the chloroplast genes. Moreover, the findings of the current study highlighted the potential of employing bacteriophage 5'UTRs for the foreign protein accumulation from the chloroplast genome of C. reinhardtii.
Collapse
Affiliation(s)
- Mohammad Ali Abbasi-Vineh
- Department of Agricultural Biotechnology, Tarbiat Modares University (TMU), 1497713111, Tehran, Iran
| | - Masoumeh Emadpour
- Department of Agricultural Biotechnology, Tarbiat Modares University (TMU), 1497713111, Tehran, Iran.
| |
Collapse
|
2
|
Tuttle JT, Williams JR, Higgs DC. Characterization of a Chlamydomonas reinhardtii mutant strain with tolerance to low nitrogen and increased growth and biomass under nitrogen stress. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Larrea-Alvarez M, Purton S. Multigenic engineering of the chloroplast genome in the green alga Chlamydomonas reinhardtii. MICROBIOLOGY (READING, ENGLAND) 2020; 166:510-515. [PMID: 32250732 PMCID: PMC7376270 DOI: 10.1099/mic.0.000910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/11/2020] [Indexed: 12/25/2022]
Abstract
The chloroplast of microalgae such as Chlamydomonas reinhardtii represents an attractive chassis for light-driven production of novel recombinant proteins and metabolites. Methods for the introduction and expression of transgenes in the chloroplast genome (=plastome) of C. reinhardtii are well-established and over 100 different proteins have been successfully produced. However, in almost all reported cases the complexity of the genetic engineering is low, and typically involves introduction into the plastome of just a single transgene together with a selectable marker. In order to exploit fully the potential of the algal chassis it is necessary to establish methods for multigenic engineering in which many transgenes can be stably incorporated into the plastome. This would allow the synthesis of multi-subunit proteins and the introduction into the chloroplast of whole new metabolic pathways. In this short communication we report a proof-of-concept study involving both a combinatorial and serial approach, with the goal of synthesizing five different test proteins in the C. reinhardtii chloroplast. Analysis of the various transgenic lines confirmed the successful integration of the transgenes and accumulation of the gene products. However, the work also highlights an issue of genetic instability when using the same untranslated region for each of the transgenes. Our findings therefore help to define appropriate strategies for robust multigenic engineering of the algal chloroplast.
Collapse
Affiliation(s)
- Marco Larrea-Alvarez
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Present address: School of Biological Sciences and Engineering. Yachay-Tech University Hacienda San José, Urcuquí-Imbabura, Ecuador
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
4
|
Gimpel JA, Mayfield SP. Analysis of heterologous regulatory and coding regions in algal chloroplasts. Appl Microbiol Biotechnol 2012. [PMID: 23179624 DOI: 10.1007/s00253-012-4580-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The basic photosynthetic apparatus is highly conserved across all photosynthetic organisms, and this conservation can be seen in both protein composition and amino acid sequence. Conservation of regulatory elements also seems possible in chloroplast genes, as many mRNA untranslated regions (UTRs) appear to have similar structural elements. The D1 protein of Photosystem II (psbA gene) is a highly conserved core reaction center protein that shows very similar regulation from cyanobacteria through higher plants. We engineered full and partial psbA genes from a diverse set of photosynthetic organisms into a psbA deficient strain of Chlamydomonas reinhardtii. Analysis of D1 protein accumulation and photosynthetic growth revealed that coding sequences and promoters are interchangeable even between anciently diverged species. On the other hand functional recognition of 5' UTRs is limited to closely related organisms. Furthermore transformation of heterologous promoters and 5' UTRs from the atpA, tufA and psbD genes conferred psbA mRNA accumulation but not translation. Overall, our results show that heterologous D1 proteins can be expressed and complement Photosystem II function in green algae, while RNA regulatory elements appear to be very specific and function only from closely related species. Nonetheless, there is great potential for the expression of heterologous photosynthetic coding sequences for studying and modifying photosynthesis in C. reinhardtii chloroplasts.
Collapse
Affiliation(s)
- Javier A Gimpel
- San Diego Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0368, USA
| | | |
Collapse
|
5
|
Baecker JJ, Sneddon JC, Hollingsworth MJ. Efficient translation in chloroplasts requires element(s) upstream of the putative ribosome binding site from atpI. AMERICAN JOURNAL OF BOTANY 2009; 96:627-636. [PMID: 21628219 DOI: 10.3732/ajb.0800259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Thousands of proteins make up a chloroplast, but fewer than 100 are encoded by the chloroplast genome. Despite this low number, expression of chloroplast-encoded genes is essential for plant survival. Every chloroplast has its own gene expression system with a major regulatory point at the initiation of protein synthesis (translation). In chloroplasts, most protein-encoding genes contain elements resembling the ribosome binding sites (RBS) found in prokaryotes. In vitro, these putative chloroplast ribosome binding sequences vary in their ability to support translation. Here we report results from an investigation into effects of the predicted RBS for the tobacco chloroplast atpI gene on translation in vivo. Two reporter constructs, differing only in their 5'-untranslated regions (5'UTRs) were stably incorporated into tobacco chloroplast genomes and their expression analyzed. One 5'UTR was derived from the wild-type (WT) atpI gene. The second, Holo-substitution (Holo-sub), had nonchloroplast sequence replacing all wild-type nucleotides, except for the putative RBS. The abundance of reporter RNA was the same for both 5'UTRs. However, translation controlled by Holo-sub was less than 4% that controlled by WT. These in vivo experiments support the idea that translation initiation in land plant chloroplasts depends on 5'UTR elements outside the putative RBS.
Collapse
Affiliation(s)
- Joshua J Baecker
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, New York 14260 USA
| | | | | |
Collapse
|
6
|
Marín-Navarro J, Manuell AL, Wu J, P Mayfield S. Chloroplast translation regulation. PHOTOSYNTHESIS RESEARCH 2007; 94:359-74. [PMID: 17661159 DOI: 10.1007/s11120-007-9183-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs. Translation is regulated in response to a variety of biotic and abiotic factors, and requires a coordinate expression with the nuclear genome. The translational apparatus of chloroplasts is related to that of bacteria, but has adopted novel mechanisms in order to execute the specific roles that this organelle performs within a eukaryotic cell. Accordingly, plastid ribosomes contain a number of chloroplast-unique proteins and domains that may function in translational regulation. Chloroplast translation regulation involves cis-acting RNA elements (located in the mRNA 5' UTR) as well as a set of corresponding trans-acting protein factors. While regulation of chloroplast translation is primarily controlled at the initiation steps through these RNA-protein interactions, elongation steps are also targets for modulating chloroplast gene expression. Translation of chloroplast mRNAs is regulated in response to light, and the molecular mechanisms underlying this response involve changes in the redox state of key elements related to the photosynthetic electron chain, fluctuations of the ADP/ATP ratio and the generation of a proton gradient. Photosynthetic complexes also experience assembly-related autoinhibition of translation to coordinate the expression of different subunits of the same complex. Finally, the localization of all these molecular events among the different chloroplast subcompartments appear to be a crucial component of the regulatory mechanisms of chloroplast gene expression.
Collapse
Affiliation(s)
- Julia Marín-Navarro
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
7
|
Zicker AA, Kadakia CS, Herrin DL. Distinct roles for the 5' and 3' untranslated regions in the degradation and accumulation of chloroplast tufA mRNA: identification of an early intermediate in the in vivo degradation pathway. PLANT MOLECULAR BIOLOGY 2007; 63:689-702. [PMID: 17180456 DOI: 10.1007/s11103-006-9117-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 11/13/2006] [Indexed: 05/13/2023]
Abstract
Elongation factor Tu in Chlamydomonas reinhardtii is a chloroplast-encoded gene (tufA) whose 1.7-kb mRNA has a relatively short half-life. In the presence of chloramphenicol (CAP), which freezes translating chloroplast ribosomes, a 1.5-kb tufA RNA becomes prominent. Rifampicin-chase analysis indicates that the 1.5-kb RNA is a degradation intermediate, and mapping studies show that it is missing 176-180 nucleotides from the 5' end of tufA. The 5' terminus of the intermediate maps to a section of the untranslated region (UTR) predicted to be highly structured and to encode a small ORF. The intermediate could be detected in older cultures in the absence of CAP, indicating that it is not an artifact of drug treatment. Also, it did not overaccumulate in the chloroplast ribosome-deficient mutant, ac20 cr1, indicating its stabilization is specific to elongation-arrested ribosomes. To determine if the 5' UTR of tufA is destabilizing, the corresponding region of the atpA-aadA-rbcL gene was replaced with the tufA sequence, and introduced into the chloroplast genome; the 3' UTR was also substituted for comparison. Analysis of these transformants showed that the transcripts containing the tufA 3'-UTR accumulate to significantly lower levels. Data from constructs based on the vital reporter, Renilla luciferase, confirmed the importance of the tufA 3'-UTR in determining RNA levels, and suggested that the 5' UTR of tufA affects translation efficiency. These data indicate that the in vivo degradation of tufA mRNA begins in the 5' UTR, and is promoted by translation. The data also suggest, however, that the level of the mature RNA is determined more by the 3' UTR than the 5' UTR.
Collapse
Affiliation(s)
- Alicia A Zicker
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, School of Biological Sciences, University of Texas at Austin, 1 University Station A6700, Austin, TX 78712, USA
| | | | | |
Collapse
|
8
|
Processing, degradation, and polyadenylation of chloroplast transcripts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0235] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Translation and translational regulation in chloroplasts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0234] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H. Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 2006; 7:222. [PMID: 16945140 PMCID: PMC1579219 DOI: 10.1186/1471-2164-7-222] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/31/2006] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. RESULTS The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats > or = 30 bp with a sequence identity > or = 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. CONCLUSION The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements.
Collapse
Affiliation(s)
- Tracey Ruhlman
- Dept. of Molecular Biology & Microbiology, University of Central Florida, Biomolecular Science, Building #20, Room 336, Orlando, FL 32816-2364, USA
| | - Seung-Bum Lee
- Dept. of Molecular Biology & Microbiology, University of Central Florida, Biomolecular Science, Building #20, Room 336, Orlando, FL 32816-2364, USA
| | - Robert K Jansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Patterson Laboratories 141, University of Texas, Austin, TX 78712, USA
| | - Jessica B Hostetler
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Luke J Tallon
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Christopher D Town
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Henry Daniell
- Dept. of Molecular Biology & Microbiology, University of Central Florida, Biomolecular Science, Building #20, Room 336, Orlando, FL 32816-2364, USA
| |
Collapse
|