1
|
Recent advances in molecular farming using monocot plants. Biotechnol Adv 2022; 58:107913. [DOI: 10.1016/j.biotechadv.2022.107913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022]
|
2
|
Liu S, Liu C, Wang X, Chen H. Seed-specific activity of the Arabidopsis β-glucosidase 19 promoter in transgenic Arabidopsis and tobacco. PLANT CELL REPORTS 2021; 40:213-221. [PMID: 33099669 DOI: 10.1007/s00299-020-02627-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/10/2020] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE The promoter of the Arabidopsis thaliana β-glucosidase 19 gene directs GUS expression in a seed-specific manner in transgenic Arabidopsis and tobacco. In the present study, an 898-bp putative promoter of the Arabidopsis β-glucosidase 19 (AtBGLU19) gene was cloned. The bioinformatics analysis of the cis-acting elements indicated that this putative promoter contains many seed-specific elements, such as RY elements. The features of this promoter fragment were evaluated for the capacity to direct the β-glucuronidase (GUS) reporter gene in transgenic Arabidopsis and tobacco. Histochemical and fluorometric GUS analyses of transgenic Arabidopsis plants revealed that the AtBGLU19 promoter directed strong GUS activity in late-maturing seeds and dry seeds, whereas no GUS expression was observed in other organs. The results indicated that the AtBGLU19 promoter was able to direct GUS expression in a seed-specific manner in transgenic Arabidopsis. In tobacco, the intensity of the staining and the level of GUS activity were considerably higher in the seeds than in the other tissues. These results further confirmed that the AtBGLU19 promoter is seed specific and can be used to control transgene expression in a heterologous plant system.
Collapse
Affiliation(s)
- Shijuan Liu
- School of Life Science, Qufu Normal University, Qufu, 273165, China.
| | - Changju Liu
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Xue Wang
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Huiqing Chen
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
3
|
Panting M, Holme IB, Björnsson JM, Brinch-Pedersen H. Modulation of Barley (Hordeum vulgare L.) Grain Protein Sink-Source Relations Towards Human Epidermal Growth Factor Instead of B-hordein Storage Protein. Mol Biotechnol 2020; 63:13-23. [PMID: 33051823 DOI: 10.1007/s12033-020-00279-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Seeds have evolutionarily developed to store protein without immediately degrading it and constitute ideal tissues for recombinant protein storage. Unfortunately, the production of recombinant protein in seeds is compromised by low yield as compared to other heterologous expression systems. In order to improve the yield of the human epidermal growth factor (EGF) in barley, protein sink-source relations in the developing grain were modulated towards EGF instead of the barley storage protein. The EGF gene, under the control of a B-hordein and a seed-specific oat globulin promoter, was introduced by crossing EGF lines into the Risø 56 mutant deficient in B-hordein storage protein synthesis. Offspring plants were analysed for EGF and Hordein expression and for expression of the unfolded protein response (UPR) genes PDI and CRT to monitor changes in ER stress levels. EGF content was increased significantly in the mature grain of homozygous offspring and PDI and CRT gene expressions were upregulated. We demonstrate, for the first time in barley, that replacement of an abundant seed storage protein with a specific heterologous protein driven by the promoter of the removed gene can accelerate the production of a specific heterologous protein in barley grains.
Collapse
Affiliation(s)
- Michael Panting
- Department of AgroEcology, Research Center Flakkebjerg, Aarhus University, 4200, Slagelse, Denmark
| | - Inger Bæksted Holme
- Department of AgroEcology, Research Center Flakkebjerg, Aarhus University, 4200, Slagelse, Denmark
| | | | - Henrik Brinch-Pedersen
- Department of AgroEcology, Research Center Flakkebjerg, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|
4
|
Lim WL, Collins HM, Byrt CS, Lahnstein J, Shirley NJ, Aubert MK, Tucker MR, Peukert M, Matros A, Burton RA. Overexpression of HvCslF6 in barley grain alters carbohydrate partitioning plus transfer tissue and endosperm development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:138-153. [PMID: 31536111 PMCID: PMC6913740 DOI: 10.1093/jxb/erz407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 05/05/2023]
Abstract
In cereal grain, sucrose is converted into storage carbohydrates: mainly starch, fructan, and mixed-linkage (1,3;1,4)-β-glucan (MLG). Previously, endosperm-specific overexpression of the HvCslF6 gene in hull-less barley was shown to result in high MLG and low starch content in mature grains. Morphological changes included inwardly elongated aleurone cells, irregular cell shapes of peripheral endosperm, and smaller starch granules of starchy endosperm. Here we explored the physiological basis for these defects by investigating how changes in carbohydrate composition of developing grain impact mature grain morphology. Augmented MLG coincided with increased levels of soluble carbohydrates in the cavity and endosperm at the storage phase. Transcript levels of genes relating to cell wall, starch, sucrose, and fructan metabolism were perturbed in all tissues. The cell walls of endosperm transfer cells (ETCs) in transgenic grain were thinner and showed reduced mannan labelling relative to the wild type. At the early storage phase, ruptures of the non-uniformly developed ETCs and disorganization of adjacent endosperm cells were observed. Soluble sugars accumulated in the developing grain cavity, suggesting a disturbance of carbohydrate flow from the cavity towards the endosperm, resulting in a shrunken mature grain phenotype. Our findings demonstrate the importance of regulating carbohydrate partitioning in maintenance of grain cellularization and filling processes.
Collapse
Affiliation(s)
- Wai Li Lim
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Helen M Collins
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Caitlin S Byrt
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Present address: Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Jelle Lahnstein
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Neil J Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew K Aubert
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Manuela Peukert
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research Stadt Seeland, Gatersleben, Germany
- Present address: Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Meat, Kulmbach, Bavaria, Germany
| | - Andrea Matros
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research Stadt Seeland, Gatersleben, Germany
- Present address: Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Correspondence:
| |
Collapse
|
5
|
Gao L, Tian Y, Chen MC, Wei L, Gao TG, Yin HJ, Zhang JL, Kumar T, Liu LB, Wang SM. Cloning and functional characterization of epidermis-specific promoter MtML1 from Medicago truncatula. J Biotechnol 2019; 300:32-39. [PMID: 31085201 DOI: 10.1016/j.jbiotec.2019.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023]
Abstract
Epidermis-specific promoters are necessary for ectopic expression of specific functional genes such as the cuticle-related genes. Previous studies indicated that both ECERIFERUM 6 (AtCER6) and MERISTEM L1 LAYER (ATML1) promoters from Arabidopsis thaliana can drive gene expression specifically in the epidermis of shoot apical meristems (SAMs) and leaves. However, the epidermis-specific promoters from legume plants have not been reported. Here, we cloned a 5' flanking sequence from the upstream -2150 bp to the translational start ATG codon of MtML1 gene of legume model plant Medicago truncatula. PlantCARE analysis indicated that this sequence matches the characteristics of a promoter, having TATA box and CAAT box, as well as contains some conserved elements of epidermis-specific promoters like AtCER6 and ATML1 promoters. The β-glucuronidase (GUS) histochemical analysis showed that MtML1 promoter can drive GUS gene expression in transiently transformed Nicotiana tabacum leaves under non-inducing condition. Furthermore, it can also control GUS expression in leaves and siliques rather than roots of the stably transformed Arabidopsis. More importantly, the leaf cross-section observations indicated that MtML1 exclusively expressed in the epidermis of leaves. These results suggested that MtML1 promoter performed the epidermis-specific in plant shoot. Our study establishes the foundation for driving the cuticle-related gene to express in epidermis, which may be very useful in genetic engineering of legume plants.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P.R. China
| | - Ye Tian
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P.R. China
| | - Meng-Ci Chen
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P.R. China
| | - Li Wei
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P.R. China
| | - Tian-Ge Gao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P.R. China
| | - Hong-Ju Yin
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P.R. China
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P.R. China
| | - Tanweer Kumar
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P.R. China
| | - Lin-Bo Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P.R. China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P.R. China.
| |
Collapse
|
6
|
Lim WL, Collins HM, Singh RR, Kibble NAJ, Yap K, Taylor J, Fincher GB, Burton RA. Method for hull-less barley transformation and manipulation of grain mixed-linkage beta-glucan. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:382-396. [PMID: 29247595 DOI: 10.1111/jipb.12625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/13/2017] [Indexed: 05/18/2023]
Abstract
Hull-less barley is increasingly offering scope for breeding grains with improved characteristics for human nutrition; however, recalcitrance of hull-less cultivars to transformation has limited the use of these varieties. To overcome this limitation, we sought to develop an effective transformation system for hull-less barley using the cultivar Torrens. Torrens yielded a transformation efficiency of 1.8%, using a modified Agrobacterium transformation method. This method was used to over-express genes encoding synthases for the important dietary fiber component, (1,3;1,4)-β-glucan (mixed-linkage glucan), primarily present in starchy endosperm cell walls. Over-expression of the HvCslF6 gene, driven by an endosperm-specific promoter, produced lines where mixed-linkage glucan content increased on average by 45%, peaking at 70% in some lines, with smaller increases in transgenic HvCslH1 grain. Transgenic HvCslF6 lines displayed alterations where grain had a darker color, were more easily crushed than wild type and were smaller. This was associated with an enlarged cavity in the central endosperm and changes in cell morphology, including aleurone and sub-aleurone cells. This work provides proof-of-concept evidence that mixed-linkage glucan content in hull-less barley grain can be increased by over-expression of the HvCslF6 gene, but also indicates that hull-less cultivars may be more sensitive to attempts to modify cell wall composition.
Collapse
Affiliation(s)
- Wai Li Lim
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Helen M Collins
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Rohan R Singh
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Natalie A J Kibble
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Kuok Yap
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Jillian Taylor
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Geoffrey B Fincher
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
7
|
Cu S, Collins HM, Betts NS, March TJ, Janusz A, Stewart DC, Skadhauge B, Eglinton J, Kyriacou B, Little A, Burton RA, Fincher GB. Water uptake in barley grain: Physiology; genetics and industrial applications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:260-269. [PMID: 26566843 DOI: 10.1016/j.plantsci.2015.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/08/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries.
Collapse
Affiliation(s)
- Suong Cu
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Helen M Collins
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Natalie S Betts
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Timothy J March
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Agnieszka Janusz
- Cargill Malt, Cargill, 65 Magill Road, Stepney SA 5069, Australia
| | - Doug C Stewart
- Coopers Brewery, 461 South Rd, Regency Park SA 5010, Australia
| | - Birgitte Skadhauge
- Carlsberg Group Research, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Jason Eglinton
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Bianca Kyriacou
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Alan Little
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Geoffrey B Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
8
|
Transgenic Production of an Anti HIV Antibody in the Barley Endosperm. PLoS One 2015; 10:e0140476. [PMID: 26461955 PMCID: PMC4604167 DOI: 10.1371/journal.pone.0140476] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/25/2015] [Indexed: 01/21/2023] Open
Abstract
Barley is an attractive vehicle for producing recombinant protein, since it is a readily transformable diploid crop species in which doubled haploids can be routinely generated. High amounts of protein are naturally accumulated in the grain, but optimal endosperm-specific promoters have yet to be perfected. Here, the oat GLOBULIN1 promoter was combined with the legumin B4 (LeB4) signal peptide and the endoplasmic reticulum (ER) retention signal (SE)KDEL. Transgenic barley grain accumulated up to 1.2 g/kg dry weight of recombinant protein (GFP), deposited in small roundish compartments assumed to be ER-derived protein bodies. The molecular farming potential of the system was tested by generating doubled haploid transgenic lines engineered to synthesize the anti-HIV-1 monoclonal antibody 2G12 with up to 160 μg recombinant protein per g grain. The recombinant protein was deposited at the periphery of protein bodies in the form of a mixture of various N-glycans (notably those lacking terminal N-acetylglucosamine residues), consistent with their vacuolar localization. Inspection of protein-A purified antibodies using surface plasmon resonance spectroscopy showed that their equilibrium and kinetic rate constants were comparable to those associated with recombinant 2G12 synthesized in Chinese hamster ovary cells.
Collapse
|
9
|
Peng B, Williams TC, Henry M, Nielsen LK, Vickers CE. Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities. Microb Cell Fact 2015; 14:91. [PMID: 26112740 PMCID: PMC4480987 DOI: 10.1186/s12934-015-0278-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background Predictable control of gene expression is necessary for the rational design and optimization of cell factories. In the yeast Saccharomyces cerevisiae, the promoter is one of the most important tools available for controlling gene expression. However, the complex expression patterns of yeast promoters have not been fully characterised and compared on different carbon sources (glucose, sucrose, galactose and ethanol) and across the diauxic shift in glucose batch cultivation. These conditions are of importance to yeast cell factory design because they are commonly used and encountered in industrial processes. Here, the activities of a series of “constitutive” and inducible promoters were characterised in single cells throughout the fermentation using green fluorescent protein (GFP) as a reporter. Results The “constitutive” promoters, including glycolytic promoters, transcription elongation factor promoters and ribosomal promoters, differed in their response patterns to different carbon sources; however, in glucose batch cultivation, expression driven by these promoters decreased sharply as glucose was depleted and cells moved towards the diauxic shift. Promoters induced at low-glucose levels (PHXT7, PSSA1 and PADH2) varied in induction strength on non-glucose carbon sources (sucrose, galactose and ethanol); in contrast to the “constitutive” promoters, GFP expression increased as glucose decreased and cells moved towards the diauxic shift. While lower than several “constitutive” promoters during the exponential phase, expression from the SSA1 promoter was higher in the post-diauxic phase than the commonly-used TEF1 promoter. The galactose-inducible GAL1 promoter provided the highest GFP expression on galactose, and the copper-inducible CUP1 promoter provided the highest induced GFP expression following the diauxic shift. Conclusions The data provides a foundation for predictable and optimised control of gene expression levels on different carbon sources and throughout batch fermentation, including during and after the diauxic shift. This information can be applied for designing expression approaches to improve yields, rates and titres in yeast cell factories. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0278-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Thomas C Williams
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Matthew Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
10
|
Favre P, Bapaume L, Bossolini E, Delorenzi M, Falquet L, Reinhardt D. A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants. BMC PLANT BIOLOGY 2014; 14:333. [PMID: 25465219 PMCID: PMC4274732 DOI: 10.1186/s12870-014-0333-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/11/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Genes involved in arbuscular mycorrhizal (AM) symbiosis have been identified primarily by mutant screens, followed by identification of the mutated genes (forward genetics). In addition, a number of AM-related genes has been identified by their AM-related expression patterns, and their function has subsequently been elucidated by knock-down or knock-out approaches (reverse genetics). However, genes that are members of functionally redundant gene families, or genes that have a vital function and therefore result in lethal mutant phenotypes, are difficult to identify. If such genes are constitutively expressed and therefore escape differential expression analyses, they remain elusive. The goal of this study was to systematically search for AM-related genes with a bioinformatics strategy that is insensitive to these problems. The central element of our approach is based on the fact that many AM-related genes are conserved only among AM-competent species. RESULTS Our approach involves genome-wide comparisons at the proteome level of AM-competent host species with non-mycorrhizal species. Using a clustering method we first established orthologous/paralogous relationships and subsequently identified protein clusters that contain members only of the AM-competent species. Proteins of these clusters were then analyzed in an extended set of 16 plant species and ranked based on their relatedness among AM-competent monocot and dicot species, relative to non-mycorrhizal species. In addition, we combined the information on the protein-coding sequence with gene expression data and with promoter analysis. As a result we present a list of yet uncharacterized proteins that show a strongly AM-related pattern of sequence conservation, indicating that the respective genes may have been under selection for a function in AM. Among the top candidates are three genes that encode a small family of similar receptor-like kinases that are related to the S-locus receptor kinases involved in sporophytic self-incompatibility. CONCLUSIONS We present a new systematic strategy of gene discovery based on conservation of the protein-coding sequence that complements classical forward and reverse genetics. This strategy can be applied to diverse other biological phenomena if species with established genome sequences fall into distinguished groups that differ in a defined functional trait of interest.
Collapse
Affiliation(s)
- Patrick Favre
- />Department of Biology, University of Fribourg, Fribourg, Switzerland
- />Swiss Institute of Bioinformatics, Fribourg, Switzerland
- />SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laure Bapaume
- />Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Eligio Bossolini
- />Department of Biology, University of Fribourg, Fribourg, Switzerland
- />Current address: Crop Genetics, Bayer CropScience NV, Ghent, Belgium
| | - Mauro Delorenzi
- />Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
- />Oncology Department, University of Lausanne, Lausanne, Switzerland
- />SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laurent Falquet
- />Department of Biology, University of Fribourg, Fribourg, Switzerland
- />Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Didier Reinhardt
- />Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
11
|
Ravel C, Fiquet S, Boudet J, Dardevet M, Vincent J, Merlino M, Michard R, Martre P. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits. FRONTIERS IN PLANT SCIENCE 2014; 5:621. [PMID: 25429295 PMCID: PMC4228979 DOI: 10.3389/fpls.2014.00621] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/21/2014] [Indexed: 05/19/2023]
Abstract
The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.
Collapse
Affiliation(s)
- Catherine Ravel
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Samuel Fiquet
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Julie Boudet
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Mireille Dardevet
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Jonathan Vincent
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Marielle Merlino
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Robin Michard
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Pierre Martre
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| |
Collapse
|
12
|
Jeong HJ, Choi JY, Shin HY, Bae JM, Shin JS. Seed-specific expression of seven Arabidopsis promoters. Gene 2014; 553:17-23. [PMID: 25261846 DOI: 10.1016/j.gene.2014.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
Seeds contain storage compounds, from various carbohydrates to proteins and lipids, which are synthesized during seed development. For the purposes of many plant researches or commercial applications, developing promoter systems expressing specifically in seeds or in particular constituents or tissues/compartments of seeds are indispensable. To screen genes dominantly or specifically expressed in seed tissues, we analyzed Arabidopsis ATH1 microarray data open to the public. Thirty-two candidate genes were selected and their expressions in seed tissues were confirmed by RT-PCR. Finally, seven genes were selected for promoter analysis. The promoters of seven genes were cloned into pBI101 vector and transformed into Arabidopsis to assay histochemical β-glucuronidase (GUS) activity. We found that Pro-at3g03230 promoter drove GUS expression in a chalazal endosperm, Pro-at4g27530:GUS expressed in both chalazal endosperm and embryo, Pro-at4g31830 accelerated GUS expression both in radicle and procambium, Pro-at5g10120 and Pro-at5g16460 drove GUS expression uniquely in embryo, Pro-at5g53100:GUS expressed only in endosperm, and Pro-at5g54000 promoted GUS expression in both embryo and inner integument. These promoters can be used for expressing any genes in specific seed tissues for practical application.
Collapse
Affiliation(s)
- Hee-Jeong Jeong
- Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea; Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Jun Young Choi
- Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Hyun Young Shin
- Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Jung-Myung Bae
- Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
13
|
Transgenic barley: a prospective tool for biotechnology and agriculture. Biotechnol Adv 2013; 32:137-57. [PMID: 24084493 DOI: 10.1016/j.biotechadv.2013.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 11/21/2022]
Abstract
Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.
Collapse
|
14
|
Uji T, Mizuta H, Saga N. Characterization of the sporophyte-preferential gene promoter from the red alga Porphyra yezoensis using transient gene expression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:188-196. [PMID: 22865243 DOI: 10.1007/s10126-012-9475-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/05/2012] [Indexed: 06/01/2023]
Abstract
The life cycle of plants entails an alternation of generations, the diploid sporophyte and haploid gametophyte stages. There is little information about the characteristics of gene expression during each phase of marine macroalgae. Promoter analysis is a useful method for understanding transcriptional regulation; however, there is no report of promoter analyses in marine macroalgae. In this study, with the aim of elucidating the differences in the transcriptional regulatory mechanisms between the gametophyte and sporophyte stages in the marine red alga Porphyra yezoensis, we isolated the promoter from the sporophyte preferentially expressed gene PyKPA1, which encodes a sodium pump, and analyzed its promoter using a transient gene expression system with a synthetic β-glucuronidase (PyGUS) reporter. The deletion of -1432 to -768 relative to the transcription start site resulted in decreased GUS activity in sporophytes. In contrast, deletion from -767 to -527 increased GUS activity in gametophytes. Gain-of-function analyses showed that the -1432 to -760 region enhanced the GUS activity of a heterologous promoter in sporophytes, whereas the -767 to -510 region repressed it in gametophytes. Further mutation and gain-of-function analyses of the -767 to -510 region revealed that a 20-bp GC-rich sequence (-633 to -614) is responsible for the gametophyte-specific repressed expression. These results showed that the sporophyte-specific positive regulatory region and gametophyte-specific negative regulatory sequence play a crucial role in the preferential expression of PyKPA1 in P. yezoensis sporophytes.
Collapse
Affiliation(s)
- Toshiki Uji
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | | | | |
Collapse
|
15
|
Smirnova OG, Ibragimova SS, Kochetov AV. Simple database to select promoters for plant transgenesis. Transgenic Res 2011; 21:429-37. [PMID: 21811802 DOI: 10.1007/s11248-011-9538-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/08/2011] [Indexed: 11/28/2022]
Abstract
The experiments with transgenic plants frequently demand selection of promoters providing appropriate transcription patterns. The set of promoters commonly used in vectors and genetic constructs is very limited, and these promoters provide only a few variants of gene expression patterns. Moreover, identical promoters in a complex construct can induce transgene silencing. This problem can be solved using a variety of plant gene promoters with experimentally verified characteristics. However, this requires a time-consuming analysis of literature data. Here, we describe a database of plant promoters (TransGene Promoters, TGP; http://wwwmgs.bionet.nsc.ru/mgs/dbases/tgp/home.html ). TGP contains the information on genomic DNA segments providing certain expression patterns of reporter genes in experiments with transgenic plants. TGP was constructed on the SRS platform, and its interface allows users to search for the promoters with particular characteristics.
Collapse
Affiliation(s)
- Olga G Smirnova
- Institute of Cytology and Genetics, 10, Lavrentieva ave, 630090, Novosibirsk, Russia.
| | | | | |
Collapse
|
16
|
Burton RA, Collins HM, Kibble NAJ, Smith JA, Shirley NJ, Jobling SA, Henderson M, Singh RR, Pettolino F, Wilson SM, Bird AR, Topping DL, Bacic A, Fincher GB. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-d-glucans and alters their fine structure. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:117-35. [PMID: 20497371 DOI: 10.1111/j.1467-7652.2010.00532.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cell walls in commercially important cereals and grasses are characterized by the presence of (1,3;1,4)-β-d-glucans. These polysaccharides are beneficial constituents of human diets, where they can reduce the risk of hypercholesterolemia, type II diabetes, obesity and colorectal cancer. The biosynthesis of cell wall (1,3;1,4)-β-d-glucans in the Poaceae is mediated, in part at least, by the cellulose synthase-like CslF family of genes. Over-expression of the barley CslF6 gene under the control of an endosperm-specific oat globulin promoter results in increases of more than 80% in (1,3;1,4)-β-d-glucan content in grain of transgenic barley. Analyses of (1,3;1,4)-β-d-glucan fine structure indicate that individual CslF enzymes might direct the synthesis of (1,3;1,4)-β-d-glucans with different structures. When expression of the CslF6 transgene is driven by the Pro35S promoter, the transgenic lines have up to sixfold higher levels of (1,3;1,4)-β-d-glucan in leaves, but similar levels as controls in the grain. Some transgenic lines of Pro35S:CslF4 also show increased levels of (1,3;1,4)-β-d-glucans in grain, but not in leaves. Thus, the effects of CslF genes on (1,3;1,4)-β-d-glucan levels are dependent not only on the promoter used, but also on the specific member of the CslF gene family that is inserted into the transgenic barley lines. Altering (1,3;1,4)-β-d-glucan levels in grain and vegetative tissues will have potential applications in human health, where (1,3;1,4)-β-d-glucans contribute to dietary fibre, and in tailoring the composition of biomass cell walls for the production of bioethanol from cereal crop residues and grasses.
Collapse
Affiliation(s)
- Rachel A Burton
- School of Agriculture, Food and Wine, and the Australian Centre for Plant Functional Genomics, University of Adelaide, Glen Osmond, SA, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hensel G, Himmelbach A, Chen W, Douchkov DK, Kumlehn J. Transgene expression systems in the Triticeae cereals. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:30-44. [PMID: 20739094 DOI: 10.1016/j.jplph.2010.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 07/19/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
The control of transgene expression is vital both for the elucidation of gene function and for the engineering of transgenic crops. Given the dominance of the Triticeae cereals in the agricultural economy of the temperate world, the development of well-performing transgene expression systems of known functionality is of primary importance. Transgenes can be expressed either transiently or stably. Transient expression systems based on direct or virus-mediated gene transfer are particularly useful in situations where the need is to rapidly screen large numbers of genes. However, an unequivocal understanding of gene function generally requires that a transgene functions throughout the plant's life and is transmitted through the sexual cycle, since this alone allows its effect to be decoupled from the plant's response to the generally stressful gene transfer event. Temporal, spatial and quantitative control of a transgene's expression depends on its regulatory environment, which includes both its promoter and certain associated untranslated region sequences. While many transgenic approaches aim to manipulate plant phenotype via ectopic gene expression, a transgene sequence can be also configured to down-regulate the expression of its endogenous counterpart, a strategy which exploits the natural gene silencing machinery of plants. In this review, current technical opportunities for controlling transgene expression in the Triticeae species are described. Apart from protocols for transient and stable gene transfer, the choice of promoters and other untranslated regulatory elements, we also consider signal peptides, as they too govern the abundance and particularly the sub-cellular localization of transgene products.
Collapse
Affiliation(s)
- Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Gatersleben, Germany
| | | | | | | | | |
Collapse
|
18
|
Kumlehn J, Zimmermann G, Berger C, Marthe C, Hensel G. Triticeae Cereals. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 2010. [DOI: 10.1007/978-3-642-02391-0_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Eskelin K, Ritala A, Suntio T, Blumer S, Holkeri H, Wahlström EH, Baez J, Mäkinen K, Maria NA. Production of a recombinant full-length collagen type I alpha-1 and of a 45-kDa collagen type I alpha-1 fragment in barley seeds. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:657-672. [PMID: 19656332 DOI: 10.1111/j.1467-7652.2009.00432.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recombinant DNA technology can be used to design and express collagen and gelatin-related proteins with predetermined composition and structure. Barley seed was chosen as a production host for a recombinant full-length collagen type I alpha1 (rCIa1) and a related 45-kDa rCIa1 fragment. The transgenic barley seeds were shown to accumulate both the rCIa1 and the 45-kDa rCIa1 fragment. Even when the amount of the rCIa1 was just above the detection threshold, this work using rCIa1 as a model demonstrated for the first time that barley seed can be used as a production system for collagen-related structural proteins. The 45-kDa rCI1a fragment expression, targeted to the endoplasmic reticulum, was controlled by three different promoters (a constitutive maize ubiquitin, seed endosperm-specific rice glutelin and germination-specific barley alpha-amylase fusion) to compare their effects on rCIa1 accumulation. Highest accumulation of the 45-kDa rCIa1 was obtained with the glutelin promoter (140 mg/kg seed), whereas the lowest accumulation was obtained with the alpha-amylase promoter. To induce homozygosity for stable 45-kDa rCIa1 production in the transgenic lines, doubled haploid (DH) progeny was generated through microspore culture. The 45-kDa rCIa1 expression levels achieved from the best DH lines were 13 mg/kg dry seeds under the ubiquitin promoter and 45 mg/kg dry seeds under the glutelin promoter. Mass spectroscopy and amino acid composition analysis of the purified 45-kDa rCIa1 fragment revealed that a small percent of prolines were hydroxylated with no additional detectable post-translational modifications.
Collapse
Affiliation(s)
- Katri Eskelin
- Department of Applied Chemistry and Microbiology and Department of Applied Biology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Transient expression in plants is a valuable tool for many aspects of functional genomics and promoter testing. It can be used both to over-express and to silence candidate genes. It is also scaleable and provides a viable alternative to microbial fermentation and animal cell culture for the production of recombinant proteins. It does not depend on chromosomal integration of heterologous DNA so is a relatively facile procedure and can lead to high levels of transgene expression. Recombinant DNA can be introduced into plant cells via physical methods, via Agrobacterium or via viral vectors.
Collapse
Affiliation(s)
- Huw D Jones
- CPI Division, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | | |
Collapse
|
21
|
Abstract
The design of reverse genetic experiments that utilize transgenic approaches often requires transgenes to be expressed in a predefined pattern and there is limited information regarding the gene expression profile for specific promoters. It is important that expression patterns are predetermined in the specific genotype targeted for transformation because the same promoter-transgene construct can produce different expression patterns in different host species. This chapter compares constitutive, targeted, or inducible promoters that have been characterized in specific cereal species.
Collapse
Affiliation(s)
- Huw D Jones
- Department of Plant Sciences, Rothamsted Research, Centre for Crop Genetic Improvement, Harpenden, Hertfordshire, UK
| | | |
Collapse
|
22
|
Abstract
Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.
Collapse
Affiliation(s)
- Jim M Dunwell
- School of Biological Sciences, University of Reading, Reading, Berkshire, UK
| |
Collapse
|
23
|
Synthesis and assembly ofEscherichia coli heat-labile enterotoxin B subunit in transgenic rice (Oryza sativa L.). BIOTECHNOL BIOPROC E 2007. [DOI: 10.1007/bf02931085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Himmelbach A, Zierold U, Hensel G, Riechen J, Douchkov D, Schweizer P, Kumlehn J. A set of modular binary vectors for transformation of cereals. PLANT PHYSIOLOGY 2007; 145:1192-200. [PMID: 17981986 PMCID: PMC2151723 DOI: 10.1104/pp.107.111575] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 10/25/2007] [Indexed: 05/18/2023]
Abstract
Genetic transformation of crop plants offers the possibility of testing hypotheses about the function of individual genes as well as the exploitation of transgenes for targeted trait improvement. However, in most cereals, this option has long been compromised by tedious and low-efficiency transformation protocols, as well as by the lack of versatile vector systems. After having adopted and further improved the protocols for Agrobacterium-mediated stable transformation of barley (Hordeum vulgare) and wheat (Triticum aestivum), we now present a versatile set of binary vectors for transgene overexpression, as well as for gene silencing by double-stranded RNA interference. The vector set is offered with a series of functionally validated promoters and allows for rapid integration of the desired genes or gene fragments by GATEWAY-based recombination. Additional in-built flexibility lies in the choice of plant selectable markers, cassette orientation, and simple integration of further promoters to drive specific expression of genes of interest. Functionality of the cereal vector set has been demonstrated by transient as well as stable transformation experiments for transgene overexpression, as well as for targeted gene silencing in barley.
Collapse
Affiliation(s)
- Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Vickers CE, Schenk PM, Li D, Mullineaux PM, Gresshoff PM. pGFPGUSPlus, a new binary vector for gene expression studies and optimising transformation systems in plants. Biotechnol Lett 2007; 29:1793-6. [PMID: 17687623 DOI: 10.1007/s10529-007-9467-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/25/2007] [Indexed: 10/23/2022]
Abstract
A binary vector containing two reporter gene cassettes has been developed. This vector is ideal for optimising new plant transformation systems. Following optimisation, one of the reporter genes can be replaced with a gene of interest; the second can be used as a marker to confirm transgenic lines, and to estimate locus number and determine zygosity. This allows simple, efficient and economical screening for homozygous single-insert lines and azygous controls.
Collapse
Affiliation(s)
- Claudia E Vickers
- Department of Biological Sciences, The University of Essex, Wivenhoe Park, Colchester, C04 3SQ, England
| | | | | | | | | |
Collapse
|
26
|
Cai M, Wei J, Li X, Xu C, Wang S. A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific gene expression in transgenic plants. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:664-74. [PMID: 17596180 DOI: 10.1111/j.1467-7652.2007.00271.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The tissue-specific expression of transgenes is essential in plant breeding programmes to avoid the fitness costs caused by constitutive expression of a target gene. However, knowledge on the molecular mechanisms of tissue-specific gene expression and practicable tissue-specific promoters is limited. In this study, we identified the cis-acting elements of a tissue-specific promoter from rice, P(D54O), and tested the application of original and modified P(D54O) and its cis-elements in the regulation of gene expression. P(D54O) is a green tissue-specific promoter. Five novel tissue-specific cis-elements (LPSE1, LPSE2, LPSRE1, LPSRE2, PSE1) were characterized from P(D54O). LPSE1 activated gene expression in leaf and young panicle. LPSRE2 suppressed gene expression in leaf, root, young panicle and stem, and PSE1 suppressed gene expression in young panicle and stem. LPSRE1 and LPSE2 had dual roles in the regulation of tissue-specific gene expression; both functioned as activators in leaf, but LPSRE1 acted as a repressor in stem and LPSE2 as a repressor in young panicle and root. Transgenic rice plants carrying cry1Ac encoding Bacillus thuringiensis endotoxin, regulated by P(D54O), were resistant to leaf-folders, with no Cry1Ac protein found in endosperm or embryo. A reporter gene regulated by a series of truncated P(D54O) showed various tissue-specific expression patterns. Different fragments of P(D54O) fused with the constitutive cauliflower mosaic virus 35S promoter suppressed 35S-regulated gene expression in various tissues. P(D54O), truncated P(D54O) and the tissue-specific cis-elements provide useful tools for the regulation of tissue-specific gene expression in rice breeding programmes.
Collapse
Affiliation(s)
- Meng Cai
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|