1
|
Zhou Y, Li WW, Zhang YQ, Xing XC, Zhang JQ, Ren Y. Extensive reticulate evolution within Fargesia (s.l.) (Bambusoideae: Poaceae) and its allies: Evidence from multiple nuclear markers. Mol Phylogenet Evol 2020; 149:106842. [PMID: 32305509 DOI: 10.1016/j.ympev.2020.106842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022]
Abstract
Reticulate evolution resulting from hybridization and introgression has been recognized as a creative source of species and diversification in bamboos. Previous phylogenetic studies revealed that Fargesia (s.l.) (Fargesia and Yushania) was divided into the Fargesia spathe clade and the non-spathe clade. Interestingly, the Fargesia spathe clade may have originated from hybridization among other clades within Fargesia (s.l.). Understanding the hybrid origin of this clade requires a robust phylogenetic framework in which major clades within Fargesia (s.l.) are resolved. Here, we used three nuclear genes to reconstruct the evolutionary history of Fargesia (s.l.) and its allies to identify putative patterns in the origin of the Fargesia spathe clade and to examine the extent to which reticulate evolution has occurred at the interspecific level in bamboos. Bashania species form a clade with Fargesia (s.l.), which is further divided into Group I and Group II. The Fargesia spathe clade, the Alpine Bashania clade, and Fargesia yajiangensis comprise Group I, while the Bashania fargesii clade and the remaining Fargesia (s.l.) species form Group II. Incongruence between the current nuclear-based and previous plastid phylogenies demonstrate several possible hybridization events among Fargesia (s.l.) species and related taxa, which have given rise to the Fargesia spathe clade, the Phyllostachys clade, and the Ampelocalamus clade. We also detected several putative hybrid species of Fargesia (s.l.). Our results show that reticulate evolution has played a prominent role in Fargesia (s.l.) evolution, which could, in part, account for the taxonomic difficulty associated with Fargesia (s.l.) and the alpine bamboos. The study also underscores the importance of hybridization in the evolution of bamboos, at both intergeneric and intrageneric levels.
Collapse
Affiliation(s)
- Yun Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Wan-Wan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yu-Qu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiao-Cheng Xing
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jian-Qiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yi Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Yang Y, Fan X, Wang L, Zhang HQ, Sha LN, Wang Y, Kang HY, Zeng J, Yu XF, Zhou YH. Phylogeny and maternal donors of Elytrigia Desv. sensu lato (Triticeae; Poaceae) inferred from nuclear internal-transcribed spacer and trnL-F sequences. BMC PLANT BIOLOGY 2017; 17:207. [PMID: 29157213 PMCID: PMC5697114 DOI: 10.1186/s12870-017-1163-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Elytrigia Desv. is a genus with a varied array of morphology, cytology, ecology, and distribution in Triticeae. Classification and systematic position of Elytrigia remain controversial. We used nuclear internal-transcribed spacer (nrITS) sequences and chloroplast trnL-F region to study the relationships of phylogenetic and maternal genome donor of Elytrigia Desv. sensu lato. RESULTS (1) E, F, P, St, and W genomes bear close relationship with one another and are distant from H and Ns genomes. Ee and Eb are homoeologous. (2) In ESt genome species, E genome is the origin of diploid Elytrigia species with E genome, St genome is the origin of Pseudoroegneria. (3) Diploid species Et. elongata were differentiated. (4) Et. stipifolia and Et. varnensis sequences are diverse based on nrITS data. (5) Et. lolioides contains St and H genomes and belongs to Elymus s. l. (6) E genome diploid species in Elytrigia serve as maternal donors of E genome for Et. nodosa (PI547344), Et. farcta, Et. pontica, Et. pycnantha, Et. scirpea, and Et. scythica. At least two species act as maternal donor of allopolyploids (ESt and EStP genomes). CONCLUSIONS Our results suggested that Elytrigia s. l. species contain different genomes, which should be divided into different genera. However, the genomes of Elytrigia species had close relationships with one another. Diploid species were differentiated, because of introgression and different geographical sources. The results also suggested that the same species and the same genomes of different species have different maternal donor. Further study of molecular biology and cytology could facilitate the evaluation of our results of phylogenetic in a more specific and accurate way.
Collapse
Affiliation(s)
- Yan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009 Sichuan People’s Republic of China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Long Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Xiao-Fang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| |
Collapse
|
3
|
Sha LN, Fan X, Li J, Liao JQ, Zeng J, Wang Y, Kang HY, Zhang HQ, Zheng YL, Zhou YH. Contrasting evolutionary patterns of multiple loci uncover new aspects in the genome origin and evolutionary history of Leymus (Triticeae; Poaceae). Mol Phylogenet Evol 2017; 114:175-188. [PMID: 28533082 DOI: 10.1016/j.ympev.2017.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 12/28/2022]
Abstract
Leymus Hochst. (Triticeae: Poaceae), a group of allopolyploid species with the NsXm genomes, is a perennial genus with diversity in morphology, cytology, ecology, and distribution in the Triticeae. To investigate the genome origin and evolutionary history of Leymus, three unlinked low-copy nuclear genes (Acc1, Pgk1, and GBSSI) and three chloroplast regions (trnL-F, matK, and rbcL) of 32 Leymus species were analyzed with those of 36 diploid species representing 18 basic genomes in the Triticeae. The phylogenetic relationships were reconstructed using Bayesian inference, Maximum parsimony, and NeighborNet methods. A time-calibrated phylogeny was generated to estimate the evolutionary history of Leymus. The results suggest that reticulate evolution has occurred in Leymus species, with several distinct progenitors contributing to the Leymus. The molecular data in resolution of the Xm-genome lineage resulted in two apparently contradictory results, with one placing the Xm-genome lineage as closely related to the P/F genome and the other splitting the Xm-genome lineage as sister to the Ns-genome donor. Our results suggested that (1) the Ns genome of Leymus was donated by Psathyrostachys, and additional Ns-containing alleles may be introgressed into some Leymus polyploids by recurrent hybridization; (2) The phylogenetic incongruence regarding the resolution of the Xm-genome lineage suggested that the Xm genome of Leymus was closely related to the P genome of Agropyron; (3) Both Ns- and Xm-genome lineages served as the maternal donor during the speciation of Leymus species; (4) The Pseudoroegneria, Lophopyrum and Australopyrum genomes contributed to some Leymus species.
Collapse
Affiliation(s)
- Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, Sichuan, China
| | - Jin-Qiu Liao
- College of Life Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| |
Collapse
|
4
|
Hu Q, Sun G. Phylogenetic analysis of two single-copy nuclear genes revealed origin and complex relationships of polyploid species of Hordeum in Triticeae (Poaceae). Genome 2017; 60:518-529. [PMID: 28177826 DOI: 10.1139/gen-2016-0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two single-copy nuclear genes, the second largest subunit of RNA polymerase II (RPB2) and thioredoxin-like gene (HTL), were used to explore the phylogeny and origin of polyploid species in Hordeum. Our results were partly in accord with previous studies, but disclosed additional complexity. Both RPB2 and HTL trees confirmed the presence of Xa genome in H. capense and H. secalinum, and that H. depressum originated from H. californicum together with other American diploids, either H. intercedens or H. pusillum. American diploids solely contributed to the origin of H. depressum. The Asian diploids, either H. bogdanii or H. brevisubulatum, contributed to the formation of American polyploids except H. depressum. RPB2 and HTL sequences showed that H. roshevitzii did not contribute to the origin of American tetraploids. Our data showed a close relationship between the hexaploids H. procerum and H. parodii and the tetraploids H. brachyantherum, H. fuegianum, H. guatemalense, H. jubatum, and H. tetraploidum. The involvement of the diploid H. pusillum and the tetraploid H. jubatum in the formation of H. arizonicum was also indicated in the HTL phylogeny. Our results suggested a possible gene introgression of W- and P-genome species into the tetraploid H. jubatum and the hexaploid H. procerum.
Collapse
Affiliation(s)
- Qianni Hu
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada.,Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada.,Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
| |
Collapse
|
5
|
Origin and Evolution of Allopolyploid Wheatgrass Elymus fibrosus (Schrenk) Tzvelev (Poaceae: Triticeae) Reveals the Effect of Its Origination on Genetic Diversity. PLoS One 2016; 11:e0167795. [PMID: 27936163 PMCID: PMC5147983 DOI: 10.1371/journal.pone.0167795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/20/2016] [Indexed: 01/26/2023] Open
Abstract
Origin and evolution of tetraploid Elymus fibrosus (Schrenk) Tzvelev were characterized using low-copy nuclear gene Rpb2 (the second largest subunit of RNA polymerase II), and chloroplast region trnL-trnF (spacer between the tRNA Leu (UAA) gene and the tRNA-Phe (GAA) gene). Ten accessions of E. fibrosus along with 19 Elymus species with StH genomic constitution and diploid species in the tribe Triticeae were analyzed. Chloroplast trnL-trnF sequence data suggested that Pseudoroegneria (St genome) was the maternal donor of E. fibrosus. Rpb2 data confirmed the presence of StH genomes in E. fibrosus, and suggested that St and H genomes in E. fibrosus each is more likely originated from single gene pool. Single origin of E. fibrosus might be one of the reasons causing genetic diversity in E. fibrosus lower than those in E. caninus and E. trachycaulus, which have similar ecological preferences and breeding systems with E. fibrosus, and each was originated from multiple sources. Convergent evolution of St and H copy Rpb2 sequences in some accessions of E. fibrosus might have occurred during the evolutionary history of this allotetraploid.
Collapse
|
6
|
Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley. Sci Rep 2016; 6:36122. [PMID: 27786300 PMCID: PMC5081693 DOI: 10.1038/srep36122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm.
Collapse
|
7
|
Mirzaei M, Mirzaei H, Sahebkar A, Bagherian A, Masoud Khoi MJ, Reza Mirzaei H, Salehi R, Reza Jaafari M, Kazemi Oskuee R. Phylogenetic Analysis of Selected Menthol-Producing Species Belonging to the Lamiaceae Family. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 34:650-7. [PMID: 26252633 DOI: 10.1080/15257770.2015.1047030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Menthol is an organic compound with diverse medicinal and commercial applications, and is made either synthetically or through extraction from mint oils. The aim of the present study was to investigate menthol levels in selected menthol-producing species belonging to the Lamiaceae family, and to determine phylogenetic relationships of menthol dehydrogenase gene sequence among these species. Three genus of Lamiaceae, namely Mentha, Salvia, and Micromeria, were selected for phytochemical and phylogenetic analyses. After identification of each species based on menthol dehydrogenase gene in NCBI, BLAST software was used for the sequence alignment. MEGA4 software was used to draw phylogenetic tree for various species. Phytochemical analysis revealed that the highest and lowest amounts of both essential oil and menthol belonged to Mentha spicata and Micromeria hyssopifolia, respectively. The species Mentha spicata and Mentha piperita, which were assigned to one cluster in the dendrogram, contained the highest amounts of essential oil and menthol while Micromeria species, which was in the distinct cluster and placed in the farther evolutionary distance, contained the lowest amount of essential oil and menthol. Phylogenetic and phytochemistry analyses showed that essential oil and menthol contents of menthol-producing species are associated with menthol dehydrogenase gene sequence.
Collapse
Affiliation(s)
- Motahareh Mirzaei
- a Department of Biology , Faculty of Basic Sciences, University of Golestan , Gorgan , Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Phylogenetic analysis of the genus Pseudoroegneria and the Triticeae tribe using the rbcL gene. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Zuo H, Wu P, Wu D, Sun G. Origin and Reticulate Evolutionary Process of Wheatgrass Elymus trachycaulus (Triticeae: Poaceae). PLoS One 2015; 10:e0125417. [PMID: 25946188 PMCID: PMC4422617 DOI: 10.1371/journal.pone.0125417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
To study origin and evolutionary dynamics of tetraploid Elymus trachycaulus that has been cytologically defined as containing StH genomes, thirteen accessions of E. trachycaulus were analyzed using two low-copy nuclear gene Pepc (phosphoenolpyruvate carboxylase) and Rpb2 (the second largest subunit of RNA polymerase II), and one chloroplast region trnL–trnF (spacer between the tRNA Leu (UAA) gene and the tRNA-Phe (GAA) gene). Our chloroplast data indicated that Pseudoroegneria (St genome) was the maternal donor of E. trachycaulus. Rpb2 data indicated that the St genome in E. trachycaulus was originated from either P. strigosa, P. stipifolia, P. spicata or P. geniculate. The Hordeum (H genome)-like sequences of E. trachycaulus are polyphyletic in the Pepc tree, suggesting that the H genome in E. trachycaulus was contributed by multiple sources, whether due to multiple origins or introgression resulting from subsequent hybridization. Failure to recovering St copy of Pepc sequence in most accessions of E. trachycaulus might be caused by genome convergent evolution in allopolyploids. Multiple copies of H-like Pepc sequence from each accession with relative large deletions and insertions might be caused by either instability of Pepc sequence in H- genome or incomplete concerted evolution. Our results highlighted complex evolutionary history of E. trachycaulus.
Collapse
Affiliation(s)
- Hongwei Zuo
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Panpan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Dexiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- * E-mail: (GS); (DW)
| | - Genlou Sun
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Biology Department, Saint Mary’s University, Halifax, Nova Scotia, Canada
- * E-mail: (GS); (DW)
| |
Collapse
|
10
|
Diversity within the genus Elymus (Poaceae: Triticeae) as investigated by the analysis of the nr5S rDNA variation in species with St and H haplomes. Mol Genet Genomics 2014; 290:329-42. [PMID: 25248636 DOI: 10.1007/s00438-014-0907-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Abstract
The genus Elymus ("Ryegrass") is a repository for a range of species with a variety of haplome contents; hence the pejorative name "dustbin" genus. We have analyzed 1,059 sequences from 128 accessions representing 24 species to investigate the relationships among the StH haplomes-containing species described by Yen and Yang (Genus Elymus Beijing 5:58-362, 2013). Sequences were assigned to "unit classes" of orthologous sequences and subjected to a suite of analyses including BLAST (Basic Local Alignment Search Tool) searches, phylogenetic analysis and population genetic analysis to estimate species diversity. Our results support the genome analyses in Yen and Yang (Genus Elymus Beijing 5:58-362, 2013), i.e., genomic constitution StStHH including variants restricted to Elymus. Population genetic analysis of the 5S nrDNA sequence data revealed that the within-species variance component is roughly ±89 %; thus, we were unable to identify molecular markers capable to separate the 24 species analyzed. Separate phylogenetic analyses of the two unit classes and of all the data exhibit a trend only of the species to cluster on the phylograms. Finally, the analysis provides evidence for the multiple origins of American and Eurasian species.
Collapse
|
11
|
Wu D, Sun G, Yang L, Hu Q. Comparison of Acetyl-CoA carboxylase 1 (Acc-1) gene diversity among different Triticeae genomes. Gene 2014; 546:11-5. [PMID: 24865934 DOI: 10.1016/j.gene.2014.05.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/10/2014] [Accepted: 05/22/2014] [Indexed: 01/05/2023]
Abstract
It has widely been documented that life form and mating system have significant influences on genetic diversity. In the tribe Triticeae, several genera contain both annual and perennial species, whereas other genera comprise strictly annual or perennial species. It was suggested that Triticeae annuals have originated from Triticeae perennials. The present study aims to analyze nucleotide diversity of Acc-1 gene among different Triticeae genomes, and attempts to link effects of life history (annuals and perennials) and mating systems. The nucleotide diversity of 364 Acc-1 sequences in Triticeae species was characterized. The highest estimates of nucleotide diversity values (π=0.01919, θ=0.03515) were found for the Ns genome among the genomes analyzed. Nucleotide diversities in the D genome and Ns genome of polyploids are higher than those in respective genomes of diploids, while in the St genome of polyploids, it is lower than that in the St genome of diploids. The averaged π value (0.013705) in the genomes of perennials is more than twice of the value (0.00508) in the genomes of annuals. The averaged π value (0.01323) in the genomes of outcrossing species is two-fold of the value (0.005664) in the genomes of selfer. Our results suggested that the evolutionary history and mating system may play an important role in determining nucleotide diversity of Acc-1 gene in each genome.
Collapse
Affiliation(s)
- Dexiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Genlou Sun
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China; Biology Department, Saint Mary's University, Halifax, NS B3H 3C3, Canada.
| | - Lie Yang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Qunwen Hu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
12
|
Yan C, Hu Q, Sun G. Nuclear and chloroplast DNA phylogeny reveals complex evolutionary history of Elymus pendulinus. Genome 2014; 57:97-109. [DOI: 10.1139/gen-2014-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Evidence accumulated over the last decade has shown that allopolyploid genomes may undergo complex reticulate evolution. In this study, 13 accessions of tetraploid Elymus pendulinus were analyzed using two low-copy nuclear genes (RPB2 and PepC) and two regions of chloroplast genome (Rps16 and trnD-trnT). Previous studies suggested that Pseudoroegneria (St) and an unknown diploid (Y) were genome donors to E. pendulinus, and that Pseudoroegneria was the maternal donor. Our results revealed an extreme reticulate pattern, with at least four distinct gene lineages coexisting within this species that might be acquired through a possible combination of allotetraploidization and introgression from both within and outside the tribe Hordeeae. Chloroplast DNA data identified two potential maternal genome donors (Pseudoroegneria and an unknown species outside Hordeeae) to E. pendulinus. Nuclear gene data indicated that both Pseudoroegneria and an unknown Y diploid have contributed to the nuclear genome of E. pendulinus, in agreement with cytogenetic data. However, unexpected contributions from Hordeum and unknown aliens from within or outside Hordeeae to E. pendulinus without genome duplication were observed. Elymus pendulinus provides a remarkable instance of the previously unsuspected chimerical nature of some plant genomes and the resulting phylogenetic complexity produced by multiple historical reticulation events.
Collapse
Affiliation(s)
- Chi Yan
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Qianni Hu
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Genlou Sun
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| |
Collapse
|
13
|
Fan X, Sha LN, Dong ZZ, Zhang HQ, Kang HY, Wang Y, Wang XL, Zhang L, Ding CB, Yang RW, Zheng YL, Zhou YH. Phylogenetic relationships and Y genome origin in Elymus L. sensu lato (Triticeae; Poaceae) based on single-copy nuclear Acc1 and Pgk1 gene sequences. Mol Phylogenet Evol 2013; 69:919-28. [DOI: 10.1016/j.ympev.2013.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
|
14
|
Hu Q, Yan C, Sun G. Phylogenetic analysis revealed reticulate evolution of allotetraploid Elymus ciliaris. Mol Phylogenet Evol 2013; 69:805-13. [DOI: 10.1016/j.ympev.2013.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/24/2013] [Accepted: 06/29/2013] [Indexed: 11/17/2022]
|
15
|
Liao JQ, Ross L, Fan X, Sha LN, Kang HY, Zhang HQ, Wang Y, Liu J, Wang XL, Yu XF, Yang RW, Ding CB, Zhang L, Zhou YH. Phylogeny and maternal donors of the tetraploid species with St genome (Poaceae: Triticeae) inferred from CoxII and ITS sequences. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Dong ZZ, Fan X, Sha LN, Zeng J, Wang Y, Chen Q, Kang HY, Zhang HQ, Zhou YH. Phylogeny and molecular evolution of the rbcL gene of St genome in Elymus sensu lato (Poaceae: Triticeae). BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Phylogeny and molecular evolution of the Acc1 gene within the StH genome species in Triticeae (Poaceae). Gene 2013; 529:57-64. [PMID: 23911302 DOI: 10.1016/j.gene.2013.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/14/2013] [Indexed: 12/26/2022]
Abstract
To estimate the phylogeny and molecular evolution of a single-copy gene encoding plastid acetyl-CoA carboxylase (Acc1) within the StH genome species, two Acc1 homoeologous sequences were isolated from nearly all the sampled StH genome species and were analyzed with those from 35 diploid taxa representing 19 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) the StH genome species from the same areas or neighboring geographic regions are closely related to each other; (2) the Acc1 gene sequences of the StH genome species from North America and Eurasia are evolutionarily distinct; (3) Dasypyrum has contributed to the nuclear genome of Elymus repens and Elymus mutabilis; (4) the StH genome polyploids have higher levels of sequence diversity in the H genome homoeolog than the St genome homoeolog; and (5) the Acc1 sequence may evolve faster in the polyploid species than in the diploids. Our result provides some insight on evolutionary dynamics of duplicate Acc1 gene, the polyploidy speciation and phylogeny of the StH genome species.
Collapse
|
18
|
Zimmer EA, Wen J. Reprint of: using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 2013; 66:539-50. [PMID: 23375140 DOI: 10.1016/j.ympev.2013.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022]
Abstract
The paper reviews the current state of low and single copy nuclear markers that have been applied successfully in plant phylogenetics to date, and discusses case studies highlighting the potential of massively parallel high throughput or next-generation sequencing (NGS) approaches for molecular phylogenetic and evolutionary investigations. The current state, prospects and challenges of specific single- or low-copy plant nuclear markers as well as phylogenomic case studies are presented and evaluated.
Collapse
Affiliation(s)
- Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| | | |
Collapse
|
19
|
Naghavi MR, Rad MB, Riahi M, Taleie A. Phylogenetic analysis in some Hordeum species (Triticeae; Poaceae) based on two single-copy nuclear genes encoding acetyl-CoA carboxylase. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2012.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Fattash I, Rooke R, Wong A, Hui C, Luu T, Bhardwaj P, Yang G. Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome 2013; 56:475-86. [PMID: 24168668 DOI: 10.1139/gen-2012-0174] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Eukaryotic organisms have dynamic genomes, with transposable elements (TEs) as a major contributing factor. Although the large autonomous TEs can significantly shape genomic structures during evolution, genomes often harbor more miniature nonautonomous TEs that can infest genomic niches where large TEs are rare. In spite of their cut-and-paste transposition mechanisms that do not inherently favor copy number increase, miniature inverted-repeat transposable elements (MITEs) are abundant in eukaryotic genomes and exist in high copy numbers. Based on the large number of MITE families revealed in previous studies, accurate annotation of MITEs, particularly in newly sequenced genomes, will identify more genomes highly rich in these elements. Novel families identified from these analyses, together with the currently known families, will further deepen our understanding of the origins, transposase sources, and dramatic amplification of these elements.
Collapse
Affiliation(s)
- Isam Fattash
- a Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Sun D, Sun G. Untangling nucleotide diversity and evolution of the H genome in polyploid Hordeum and Elymus species based on the single copy of nuclear gene DMC1. PLoS One 2012; 7:e50369. [PMID: 23251367 PMCID: PMC3519468 DOI: 10.1371/journal.pone.0050369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/24/2012] [Indexed: 01/17/2023] Open
Abstract
Numerous hybrid and polypoid species are found within the Triticeae. It has been suggested that the H subgenome of allopolyploid Elymus (wheatgrass) species originated from diploid Hordeum (barley) species, but the role of hybridization between polyploid Elymus and Hordeum has not been studied. It is not clear whether gene flow across polyploid Hordeum and Elymus species has occurred following polyploid speciation. Answering these questions will provide new insights into the formation of these polyploid species, and the potential role of gene flow among polyploid species during polyploid evolution. In order to address these questions, disrupted meiotic cDNA1 (DMC1) data from the allopolyploid StH Elymus are analyzed together with diploid and polyploid Hordeum species. Phylogenetic analysis revealed that the H copies of DMC1 sequence in some Elymus are very close to the H copies of DMC1 sequence in some polyploid Hordeum species, indicating either that the H genome in theses Elymus and polyploid Hordeum species originated from same diploid donor or that gene flow has occurred among them. Our analysis also suggested that the H genomes in Elymus species originated from limited gene pool, while H genomes in Hordeum polyploids have originated from broad gene pools. Nucleotide diversity (π) of the DMC1 sequences on H genome from polyploid species (π = 0.02083 in Elymus, π = 0.01680 in polyploid Hordeum) is higher than that in diploid Hordeum (π = 0.01488). The estimates of Tajima's D were significantly departure from the equilibrium neutral model at this locus in diploid Hordeum species (P<0.05), suggesting an excess of rare variants in diploid species which may not contribute to the origination of polyploids. Nucleotide diversity (π) of the DMC1 sequences in Elymus polyploid species (π = 0.02083) is higher than that in polyploid Hordeum (π = 0.01680), suggesting that the degree of relationships between two parents of a polyploid might be a factor affecting nucleotide diversity in allopolyploids.
Collapse
Affiliation(s)
- Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Genlou Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
22
|
Zimmer EA, Wen J. Using nuclear gene data for plant phylogenetics: Progress and prospects. Mol Phylogenet Evol 2012; 65:774-85. [DOI: 10.1016/j.ympev.2012.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
23
|
Yan C, Sun G. Multiple origins of allopolyploid wheatgrass Elymus caninus revealed by RPB2, PepC and TrnD/T genes. Mol Phylogenet Evol 2012; 64:441-51. [DOI: 10.1016/j.ympev.2012.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/28/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022]
|
24
|
Wang XL, Fan X, Zeng J, Sha LN, Zhang HQ, Kang HY, Yang RW, Zhang L, Ding CB, Zhou YH. Phylogeny and molecular evolution of the DMC1 gene within the StH genome species in Triticeae (Poaceae). Genes Genomics 2012. [DOI: 10.1007/s13258-011-0169-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Ekenäs C, Heidari N, Andreasen K. Arnica (Asteraceae) phylogeny revisited using RPB2: complex patterns and multiple d-paralogues. Mol Phylogenet Evol 2012; 64:261-70. [PMID: 22425730 DOI: 10.1016/j.ympev.2012.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 01/20/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
The region coding for the second largest subunit of RNA polymerase II (RPB2) was explored for resolving interspecific relationships in Arnica and lower level taxa in general. The region between exons 17 and 23 was cloned and sequenced for 33 accessions of Arnica and four outgroup taxa. Three paralogues of the RPB2-d copy (RPB2-dA, B and C) were detected in Arnica and outgroup taxa, indicating that the duplications must have occurred before the divergence of Arnica. Parsimony and Bayesian analyses of separate alignments of the three copies reveal complex patterns in Arnica, likely reflecting a history of lineage sorting in combination with apomixis, polyploidization, and possibly hybridization. Cloned sequences of some taxa do not form monophyletic clades within paralogues, but form multiple strongly supported clades with sequences of other taxa. Some well supported groups are present in more than one paralogue and many groups are in line with earlier hypotheses regarding interspecific relationships within the genus. Low levels of homoplasy in combination with relatively high sequence variation indicates that the introns of the RPB2 region could be suitable for phylogenetic studies in low level taxonomy.
Collapse
Affiliation(s)
- Catarina Ekenäs
- Department of Systematic Biology, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, S-752 36 Uppsala, Sweden.
| | | | | |
Collapse
|
26
|
Fan X, Sha LN, Zeng J, Kang HY, Zhang HQ, Wang XL, Zhang L, Yang RW, Ding CB, Zheng YL, Zhou YH. Evolutionary dynamics of the Pgk1 gene in the polyploid genus Kengyilia (Triticeae: Poaceae) and its diploid relatives. PLoS One 2012; 7:e31122. [PMID: 22363562 PMCID: PMC3282717 DOI: 10.1371/journal.pone.0031122] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/03/2012] [Indexed: 01/31/2023] Open
Abstract
The level and pattern of nucleotide variation in duplicate gene provide important information on the evolutionary history of polyploids and divergent process between homoeologous loci within lineages. Kengyilia is a group of allohexaploid species with the StYP genomic constitutions in the wheat tribe. To investigate the evolutionary dynamics of the Pgk1 gene in Kengyilia and its diploid relatives, three copies of Pgk1 homoeologues were isolated from all sampled hexaploid Kengyilia species and analyzed with the Pgk1 sequences from 47 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) Kengyilia species from the Central Asia and the Qinghai-Tibetan plateau have independent origins with geographically differentiated P genome donors and diverged levels of nucleotide diversity at Pgk1 locus; (2) a relatively long-time sweep event has allowed the Pgk1 gene within Agropyron to adapt to cold climate triggered by the recent uplifts of the Qinghai-Tibetan Plateau; (3) sweep event and population expansion might result in the difference in the dN/dS value of the Pgk1 gene in allopatric Agropyron populations, and this difference may be genetically transmitted to Kengyilia lineages via independent polyploidization events; (4) an 83 bp MITE element insertion has shaped the Pgk1 loci in the P genome lineage with different geographical regions; (5) the St and P genomes in Kengyilia were donated by Pseudoroegneria and Agropyron, respectively, and the Y genome is closely related to the Xp genome of Peridictyon sanctum. The interplay of evolutionary forces involving diverged natural selection, population expansion, and transposable events in geographically differentiated P genome donors could attribute to geographical differentiation of Kengyilia species via independent origins.
Collapse
Affiliation(s)
- Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People's Republic of China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Jian Zeng
- College of Resources and Environment, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Xiao-Li Wang
- Department of Biology and Science, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Li Zhang
- Department of Biology and Science, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Rui-Wu Yang
- Department of Biology and Science, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Chun-Bang Ding
- Department of Biology and Science, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People's Republic of China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People's Republic of China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Sichuan, People's Republic of China
- * E-mail:
| |
Collapse
|
27
|
Distinct origin of the Y and St genome in Elymus species: evidence from the analysis of a large sample of St genome species using two nuclear genes. PLoS One 2011; 6:e26853. [PMID: 22046383 PMCID: PMC3203181 DOI: 10.1371/journal.pone.0026853] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/05/2011] [Indexed: 12/02/2022] Open
Abstract
Background Previous cytological and single copy nuclear genes data suggested the St and Y genome in the StY-genomic Elymus species originated from different donors: the St from a diploid species in Pseudoroegneria and the Y from an unknown diploid species, which are now extinct or undiscovered. However, ITS data suggested that the Y and St genome shared the same progenitor although rather few St genome species were studied. In a recent analysis of many samples of St genome species Pseudoroegneria spicata (Pursh) À. Löve suggested that one accession of P. spicata species was the most likely donor of the Y genome. The present study tested whether intraspecific variation during sampling could affect the outcome of analyses to determining the origin of Y genome in allotetraploid StY species. We also explored the evolutionary dynamics of these species. Methodology/Principal Findings Two single copy nuclear genes, the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor G (EF-G) sequences from 58 accessions of Pseudoroegneria and Elymus species, together with those from Hordeum (H), Agropyron (P), Australopyrum (W), Lophopyrum (Ee), Thinopyrum (Ea), Thinopyrum (Eb), and Dasypyrum (V) were analyzed using maximum parsimony, maximum likelihood and Bayesian methods. Sequence comparisons among all these genomes revealed that the St and Y genomes are relatively dissimilar. Extensive sequence variations have been detected not only between the sequences from St and Y genome, but also among the sequences from diploid St genome species. Phylogenetic analyses separated the Y sequences from the St sequences. Conclusions/Significance Our results confirmed that St and Y genome in Elymus species have originated from different donors, and demonstrated that intraspecific variation does not affect the identification of genome origin in polyploids. Moreover, sequence data showed evidence to support the suggestion of the genome convergent evolution in allopolyploid StY genome species.
Collapse
|
28
|
Sun G, Zhang X. Origin of the H genome in StH-genomic Elymus species based on the single-copy nuclear gene DMC1. Genome 2011; 54:655-62. [PMID: 21848405 DOI: 10.1139/g11-036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous studies have suggested that the H haplome in Elymus could originate from different diploid Hordeum species, however, which diploid species best represent the parental species remains unanswered. The focus of this study seeks to pinpoint the origin of the H genome in Elymus. Allopolyploid Elymus species that contain the StH genome were analyzed together with diploid Hordeum species and a broad sample of diploid genera in the tribe Triticeae using DMC1 sequences. Both parsimony and maximum likelihood analyses well separated the American Hordeum species, except Hordeum brachyantherum subsp. californicum, from the H genome of polyploid Elymus species. The Elymus H-genomic sequences were formed into different groups. Our data suggested that the American Horedeum species, except H. brachyantherum subsp. californicum, are not the H-genomic donor to the Elymus species. Hordeum brevisubulatum subsp. violaceum was the progenitor species to Elymus virescens, Elymus confusus, Elymus lanceolatus, Elymus wawawaiensis, and Elymus caninus. Furthermore, North American H. brachyantherum subsp. californicum was a progenitor of the H genome to Elymus hystrix and Elymus cordilleranus. The H genomes in Elymus canadensis, Elymus sibiricus, and Elymus multisetus were highly differentiated from the H genome in Hordeum and other Elymus species. The H genome in both North American and Eurasian Elymus species was contributed by different Hordeum species.
Collapse
Affiliation(s)
- Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Canada.
| | | |
Collapse
|
29
|
|
30
|
liao JQ, Fan X, Zhang HQ, Sha LN, Kang HY, Wang XL, Liu J, Zhou YH. Molecular phylogeny of RNA polymerase II gene reveals the relationships of tetraploid species with St genome (Triticeae: Poaceae). BIOCHEM SYST ECOL 2011. [DOI: 10.1016/j.bse.2011.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Fat element—a new marker for chromosome and genome analysis in the Triticeae. Chromosome Res 2010; 18:697-709. [DOI: 10.1007/s10577-010-9151-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/05/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
32
|
Zhang X, Sun G. RPB2 sequences reveal a close phylogenetic relationship between tetraploid Hordelymus and diploid Hordeum species in Triticeae (Poaceae). BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Jia J, Li G, Liu C, Zhou J, Yang Z. Sequence variations of PDHA1 gene in Triticeae species allow for identifying wheat-alien introgression lines. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11703-010-0110-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Mahelka V, Kopecký D. Gene capture from across the grass family in the allohexaploid Elymus repens (L.) Gould (Poaceae, Triticeae) as evidenced by ITS, GBSSI, and molecular cytogenetics. Mol Biol Evol 2010; 27:1370-90. [PMID: 20106909 DOI: 10.1093/molbev/msq021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Four accessions of hexaploid Elymus repens from its native Central European distribution area were analyzed using sequencing of multicopy (internal transcribed spacer, ITS) and single-copy (granule-bound starch synthase I, GBSSI) DNA in concert with genomic and fluorescent in situ hybridization (GISH and FISH) to disentangle its allopolyploid origin. Despite extensive ITS homogenization, nrDNA in E. repens allowed us to identify at least four distinct lineages. Apart from Pseudoroegneria and Hordeum, representing the major genome constituents, the presence of further unexpected alien genetic material, originating from species outside the Triticeae and close to Panicum (Paniceae) and Bromus (Bromeae), was revealed. GBSSI sequences provided information complementary to the ITS. Apart from Pseudoroegneria and Hordeum, two additional gene variants from within the Triticeae were discovered: One was Taeniatherum-like, but the other did not have a close relationship with any of the diploids sampled. GISH results were largely congruent with the sequence-based markers. GISH clearly confirmed Pseudoroegneria and Hordeum as major genome constituents and further showed the presence of a small chromosome segment corresponding to Panicum. It resided in the Hordeum subgenome and probably represents an old acquisition of a Hordeum progenitor. Spotty hybridization signals across all chromosomes after GISH with Taeniatherum and Bromus probes suggested that gene acquisition from these species is more likely due to common ancestry of the grasses or early introgression than to recent hybridization or allopolyploid origin of E. repens. Physical mapping of rDNA loci using FISH revealed that all rDNA loci except one minor were located on Pseudoroegneria-derived chromosomes, which suggests the loss of all Hordeum-derived loci but one. Because homogenization mechanisms seem to operate effectively among Pseudoroegneria-like copies in this species, incomplete ITS homogenization in our samples is probably due to an interstitial position of an individual minor rDNA locus located within the Hordeum-derived subgenome.
Collapse
Affiliation(s)
- Václav Mahelka
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic.
| | | |
Collapse
|
35
|
Liu Q, Zhang N, Li L, Liu J. Identification of Elymus (Triticeae, Poaceae) and its related genera genomes by RFLP analysis of PCR-amplified Adh genes. Mol Biol Rep 2009; 37:3249-57. [PMID: 19885741 DOI: 10.1007/s11033-009-9909-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 10/16/2009] [Indexed: 11/24/2022]
Abstract
Elymus L. is the largest genus in Triticeae, containing about 150 species with four recognized genome donors (St, H, P, and W). Traditionally, the genome compound of this genus is identified based on cytological data. Recently, molecular phylogenetic analysis was used to investigate its genomic combination. Here we describe a restriction fragment length polymorphism (RFLP) assay based on digesting alcohol dehydrogenase (Adh) amplicons with two restriction enzyme combinations, EcoRI-HindIII and EcoRI-PstI, which easily can be used to distinguish Elymus and its closely related genera genomes. The method includes only four steps: (1) amplifying nuclear Adh genes with universal primers; (2) purifying and cloning PCR products; (3) digesting plasmids with restriction enzymes that identify a given genome; (4) running the digested products on an agarose gel and identify the sample based on the restriction profiles. Results showed that: (1) PCR products ranged from 1,200 to 2,000 bp; (2) Adh2 gene was amplified from all the tested genomes; Adh1 gene was amplified from almost all of the tested genomes except the W genome; Adh3 gene was amplified only from the St genome; (3) the EcoRI-HindIII combination was effective to distinguish different Adh gene types (Adh1, Adh2, and Adh3); (4) the Adh2-EcoRI-PstI fragments could be used to distinguish Elymus and its closely related genera genomes. Therefore, This RFLP assay provides an inexpensive and simple means of identifying Elymus genomes.
Collapse
Affiliation(s)
- QuanLan Liu
- Department of Bioengineering and Biotechnology, Qingdao University of Science & Technology, 266042, Qingdao, China.
| | | | | | | |
Collapse
|
36
|
Fan X, Sha LN, Yang RW, Zhang HQ, Kang HY, Ding CB, Zhang L, Zheng YL, Zhou YH. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evol Biol 2009; 9:247. [PMID: 19814813 PMCID: PMC2770499 DOI: 10.1186/1471-2148-9-247] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 10/08/2009] [Indexed: 11/28/2022] Open
Abstract
Background Single- and low- copy genes are less likely subject to concerted evolution, thus making themselves ideal tools for studying the origin and evolution of polyploid taxa. Leymus is a polyploid genus with a diverse array of morphology, ecology and distribution in Triticeae. The genomic constitution of Leymus was assigned as NsXm, where Ns was presumed to be originated from Psathyrostachys, while Xm represented a genome of unknown origin. In addition, little is known about the evolutionary history of Leymus. Here, we investigate the phylogenetic relationship, genome donor, and evolutionary history of Leymus based on a single-copy nuclear Acc1 gene. Results Two homoeologues of the Acc1 gene were isolated from nearly all the sampled Leymus species using allele-specific primer and were analyzed with those from 35 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) Leymus is closely related to Psathyrostachys, Agropyron, and Eremopyrum; (2) Psathyrostachys juncea is an ancestral Ns-genome donor of Leymus species; (3) the Xm genome in Leymus may be originated from an ancestral lineage of Agropyron and Eremopyrum triticeum; (4) the Acc1 sequences of Leymus species from the Qinghai-Tibetan plateau are evolutionarily distinct; (5) North America Leymus species might originate from colonization via the Bering land bridge; (6) Leymus originated about 11-12MYA in Eurasia, and adaptive radiation might have occurred in Leymus during the period of 3.7-4.3 MYA and 1.7-2.1 MYA. Conclusion Leymus species have allopolyploid origin. It is hypothesized that the adaptive radiation of Leymus species might have been triggered by the recent upliftings of the Qinghai-Tibetan plateau and subsequent climatic oscillations. Adaptive radiation may have promoted the rapid speciation, as well as the fixation of unique morphological characters in Leymus. Our results shed new light on our understanding of the origin of Xm genome, the polyploidization events and evolutionary history of Leymus that could account for the rich diversity and ecological adaptation of Leymus species.
Collapse
Affiliation(s)
- Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang C, Fan X, Yu HQ, Zeng J, Zhang HQ, Wang XL, Zhou YH. Phylogenetic relationships among the species of Elymus sensu lato in Triticeae (Poaceae) based on nuclear rDNA ITS sequences. RUSS J GENET+ 2009. [DOI: 10.1134/s102279540906009x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Fijridiyanto IA, Murakami N. Phylogeny of Litsea and related genera (Laureae-Lauraceae) based on analysis of rpb2 gene sequences. JOURNAL OF PLANT RESEARCH 2009; 122:283-98. [PMID: 19219578 DOI: 10.1007/s10265-009-0218-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 01/05/2009] [Indexed: 05/16/2023]
Abstract
The relationship between Litsea and related genera is currently unclear. Previous molecular studies on these taxa using cpDNA and nrITS were unable to produce well-resolved phylogenetic trees. In this study, we explored the potential of the rpb2 gene as a source of molecular information to better resolve the phylogenetic analysis. Although rpb2 was believed to be a single-copy gene, our cloning results showed that most species examined possessed several copies of these sequences. However, the genetic distance among copies from any one species was low, and these copies always formed monophyletic groups in our molecular trees. Our phylogenetic analyses of rpb2 data resulted in better resolved tree topologies compared to those based on cpDNA or nrITS data. Our results show that monophyly of the genus Litsea is supported only for section Litsea. As a genus, Litsea was shown to be polyphyletic. The genera Actinodaphne and Neolitsea were resolved as monophyletic groups in all analyses. They were also shown to be sisters and closer to the genus Lindera than to the genus Litsea. Our results also revealed that the genus Lindera is not a monophyletic group.
Collapse
Affiliation(s)
- Izu A Fijridiyanto
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-850, Japan
| | | |
Collapse
|
39
|
Sun G, Pourkheirandish M, Komatsuda T. Molecular evolution and phylogeny of the RPB2 gene in the genus Hordeum. ANNALS OF BOTANY 2009; 103:975-83. [PMID: 19213797 PMCID: PMC2707890 DOI: 10.1093/aob/mcp020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS It is known that the miniature inverted-repeat terminal element (MITE) preferentially inserts into low-copy-number sequences or genic regions. Characterization of the second largest subunit of low-copy nuclear RNA polymerase II (RPB2) has indicated that MITE and indels have shaped the homoeologous RPB2 loci in the St and H genome of Eymus species in Triticeae. The aims of this study was to determine if there is MITE in the RPB2 gene in Hordeum genomes, and to compare the gene evolution of RPB2 with other diploid Triticeae species. The sequences were used to reconstruct the phylogeny of the genus Hordeum. METHODS RPB2 regions from all diploid species of Hordeum, one tetraploid species (H. brevisubulatum) and ten accessions of diploid Triticeae species were amplified and sequenced. Parsimony analysis of the DNA dataset was performed in order to reveal the phylogeny of Hordeum species. KEY RESULTS MITE was detected in the Xu genome. A 27-36 bp indel sequence was found in the I and Xu genome, but deleted in the Xa and some H genome species. Interestingly, the indel length in H genomes corresponds well to their geographical distribution. Phylogenetic analysis of the RPB2 sequences positioned the H and Xa genome in one monophyletic group. The I and Xu genomes are distinctly separated from the H and Xa ones. The RPB2 data also separated all New World H genome species except H. patagonicum ssp. patagonicum from the Old World H genome species. CONCLUSIONS MITE and large indels have shaped the RPB2 loci between the Xu and H, I and Xa genomes. The phylogenetic analysis of the RPB2 sequences confirmed the monophyly of Hordeum. The maximum-parsimony analysis demonstrated the four genomes to be subdivided into two groups.
Collapse
Affiliation(s)
- Genlou Sun
- Biology Department, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada.
| | | | | |
Collapse
|
40
|
Phylogenetic relationships of species in Pseudoroegneria (Poaceae: Triticeae) and related genera inferred from nuclear rDNA ITS (internal transcribed spacer) sequences. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0091-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Mol Phylogenet Evol 2008; 46:897-907. [DOI: 10.1016/j.ympev.2007.12.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 10/02/2007] [Accepted: 12/29/2007] [Indexed: 11/20/2022]
|