1
|
Cao Y, Chen Q, Xu X, Fernie AR, Li J, Zhang Y. Insights from natural rubber biosynthesis evolution for pathway engineering. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00090-1. [PMID: 40254503 DOI: 10.1016/j.tplants.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Natural rubber (NR), valued for its elasticity and impact resistance, is essential for numerous industrial and medical applications, with global demand continuously rising. While approximately 2500 plant species from more than 40 families can produce rubber, the majority is sourced from Hevea brasiliensis grown in tropical regions. Alternative rubber-producing plants, such as Parthenium argentatum and Taraxacum kok-saghyz, offer enhanced environmental adaptability and species diversity, making them promising candidates for rubber production. Recent genome sequencing has shed light on rubber biosynthesis pathways, although the mechanisms involved in producing different forms of polyisoprene across species remain unclear. We explore the evolution of rubber biosynthesis and discuss synthetic biological strategies for enhancing NR-production in subtropical plants and a broader range of plant materials (e.g., Manilkara zapota).
Collapse
Affiliation(s)
- Yinhong Cao
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qingwen Chen
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Xu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jiayang Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China.
| | - Youjun Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Wolters SM, Laibach N, Riekötter J, Roelfs KU, Müller B, Eirich J, Twyman RM, Finkemeier I, Prüfer D, Schulze Gronover C. The interaction networks of small rubber particle proteins in the latex of Taraxacum koksaghyz reveal diverse functions in stress responses and secondary metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1498737. [PMID: 39735776 PMCID: PMC11671276 DOI: 10.3389/fpls.2024.1498737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/31/2024]
Abstract
The Russian dandelion (Taraxacum koksaghyz) is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5. These three proteins support NR synthesis by maintaining rubber particle stability. We used homology-based searches to identify the whole TkSRPP gene family and qPCR to create their spatial expression profiles. Affinity enrichment-mass spectrometry was applied to identify TkSRPP3/4/5 protein interaction partners in T. koksaghyz latex and selected interaction partners were analyzed using qPCR, confocal laser scanning microscopy and heterologous expression in yeast. We identified 17 SRPP-like sequences in the T. koksaghyz genome, including three apparent pseudogenes, 10 paralogs arranged as an inverted repeat in a cluster with TkSRPP3/4/5, and one separate gene (TkSRPP6). Their sequence diversity and different expression profiles indicated distinct functions and the latex interactomes obtained for TkSRPP3/4/5 suggested that TkSRPP4 is a promiscuous hub protein that binds many partners from different compartments, whereas TkSRPP3 and 5 have more focused interactomes. Two interactors shared by TkSRPP3/4/5 (TkSRPP6 and TkUGT80B1) were chosen for independent validation and detailed characterization. TkUGT80B1 triterpenoid glycosylating activity provided first evidence for triterpenoid saponin synthesis in T. koksaghyz latex. Based on its identified interaction partners, TkSRPP4 appears to play a special role in the endoplasmic reticulum, interacting with lipidmodifying enzymes that may facilitate rubber particle formation. TkSRPP5 appears to be involved in GTPase-dependent signaling and TkSRPP3 may act as part of a kinase signaling cascade, with roles in stress tolerance. TkSRPP interaction with TkUGT80B1 draws a new connection between TkSRPPs and triterpenoid saponin synthesis in T. koksaghyz latex. Our data contribute to the functional differentiation between TkSRPP paralogs and demonstrate unexpected interactions that will help to further elucidate the network of proteins linking TkSRPPs, stress responses and NR biosynthesis within the cellular complexity of latex.
Collapse
Affiliation(s)
- Silva Melissa Wolters
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Natalie Laibach
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Jenny Riekötter
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Kai-Uwe Roelfs
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | |
Collapse
|
3
|
Wu Y, Dong G, Luo F, Xie H, Li X, Yan J. TkJAZs-TkMYC2-TkSRPP/REF Regulates the Biosynthesis of Natural Rubber in Taraxacum kok-saghyz. PLANTS (BASEL, SWITZERLAND) 2024; 13:2034. [PMID: 39124151 PMCID: PMC11314035 DOI: 10.3390/plants13152034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Taraxacum kok-saghyz (TKS) is a natural rubber (NR)-producing plant and a model plant for studying the biosynthesis of NR. Analyzing and studying the biosynthetic mechanism of NR is an important way to cultivate high-yield rubber TKS varieties. JAZ proteins, which belong to the Jasmonate ZIM domain family, function as negative regulators in the jasmonic acid (JA) signal transduction pathway. MYC2 is typically regarded as a regulatory factor for the target genes of JAZ proteins; JAZ proteins indirectly influence the gene expression regulated by MYC2 by modulating its activity. Theoretically, JAZ is expected to participate in growth, development, and responses to environmental cues related to rubber and biomass accumulation in TKS, all of which rely on the interaction between JAZ and MYC2. In this study, we identified 11 TkJAZs through homology searching of the TKS genomes and bioinformatics analyses. Subcellular localization, Y2H, and BiFC analysis demonstrate that TkJAZs and TkMYC2 are localized in the nucleus, with all TkJAZs and TkMYC2 showing nuclear colocalization interactions. Overexpression of TkMYC2 in TKS inhibited leaf development, promoted root growth, and simultaneously increased NR production. RNA-seq and qRT-PCR analysis revealed that the TkSRPP/REF genes exhibit varying degrees of upregulation compared to the wild type, upregulating the TkREF1 gene by 3.7-fold, suggesting that TkMYC2 regulates the synthesis of NR by modulating the TkSRPP/REF genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Yan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.W.); (G.D.); (F.L.); (H.X.); (X.L.)
| |
Collapse
|
4
|
Yuan K, He Q, Hu Y, Feng C, Wang X, Liu H, Wang Z. Integrated physiology, transcriptome and proteome analyses highlight the potential roles of multiple hormone-mediated signaling pathways involved in tapping panel dryness in rubber tree. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112011. [PMID: 38311252 DOI: 10.1016/j.plantsci.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Currently, one of the most serious threats to rubber tree is the tapping panel dryness (TPD) that greatly restricts natural rubber production. Over-tapping or excessive ethephon stimulation is regarded as the main cause of TPD occurrence. Although extensive studies have been carried out, the molecular mechanism underlying TPD remains puzzled. An attempt was made to compare the levels of endogenous hormones and the profiles of transcriptome and proteome between healthy and TPD trees. Results showed that most of endogenous hormones such as jasmonic acid (JA), 1-aminocyclopropanecarboxylic acid (ACC), indole-3-acetic acid (IAA), trans-zeatin (tZ) and salicylic acid (SA) in the barks were significantly altered in TPD-affected rubber trees. Accordingly, multiple hormone-mediated signaling pathways were changed. In total, 731 differentially expressed genes (DEGs) and 671 differentially expressed proteins (DEPs) were identified, of which 80 DEGs were identified as putative transcription factors (TFs). Further analysis revealed that 12 DEGs and five DEPs regulated plant hormone synthesis, and that 16 DEGs and six DEPs were involved in plant hormone signal transduction pathway. Nine DEGs and four DEPs participated in rubber biosynthesis and most DEGs and all the four DEPs were repressed in TPD trees. All these results highlight the potential roles of endogenous hormones, signaling pathways mediated by these hormones and rubber biosynthesis pathway in the defense response of rubber trees to TPD. The present study extends our understanding of the nature and mechanism underlying TPD and provides some candidate genes and proteins related to TPD for further research in the future.
Collapse
Affiliation(s)
- Kun Yuan
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qiguang He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yiyu Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Chengtian Feng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xihao Wang
- College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Hui Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| | - Zhenhui Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| |
Collapse
|
5
|
Herculano RD, Mussagy CU, Guerra NB, Sant'Ana Pegorin Brasil G, Floriano JF, Burd BS, Su Y, da Silva Sasaki JC, Marques PAC, Scontri M, Miranda MCR, Ferreira ES, Primo FL, Fernandes MA, He S, Forster S, Ma C, de Lima Lopes Filho PE, Dos Santos LS, Silva GR, Crotti AEM, de Barros NR, Li B, de Mendonça RJ. Recent advances and perspectives on natural latex serum and its fractions for biomedical applications. BIOMATERIALS ADVANCES 2024; 157:213739. [PMID: 38154400 DOI: 10.1016/j.bioadv.2023.213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Advances and the discovery of new biomaterials have opened new frontiers in regenerative medicine. These biomaterials play a key role in current medicine by improving the life quality or even saving the lives of millions of people. Since the 2000s, Natural Rubber Latex (NRL) has been employed as wound dressings, mechanical barrier for Guided Bone Regeneration (GBR), matrix for drug delivery, and grafting. NRL is a natural polymer that can stimulate cell proliferation, neoangiogenesis, and extracellular matrix (ECM) formation. Furthermore, it is well established that proteins and other biologically active molecules present in the Natural Latex Serum (NLS) are responsible for the biological properties of NRL. NLS can be obtained from NRL by three main methods, namely (i) Centrifugation (fractionation of NRL in distinct fractions), (ii) Coagulation and sedimentation (coagulating NRL to separate the NLS from rubber particles), and (iii) Alternative extraction process (elution from NRL membrane). In this review, the chemical composition, physicochemical properties, toxicity, and other biological information such as osteogenesis, vasculogenesis, adhesion, proliferation, antimicrobial behavior, and antitumoral activity of NLS, as well as some of its medical instruments and devices are discussed. The progress in NLS applications in the biomedical field, more specifically in cell cultures, alternative animals, regular animals, and clinical trials are also discussed. An overview of the challenges and future directions of the applications of NLS and its derivatives in tissue engineering for hard and soft tissue regeneration is also given.
Collapse
Affiliation(s)
- Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA.
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | | | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Juliana Ferreira Floriano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; School of Science, São Paulo State University (UNESP), 17033-360 Bauru, SP, Brazil
| | - Betina Sayeg Burd
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Yanjin Su
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Josana Carla da Silva Sasaki
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Paulo Augusto Chagas Marques
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13560-970 Sao Carlos, SP, Brazil
| | - Mateus Scontri
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Matheus Carlos Romeiro Miranda
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, 275, 09972-270 Diadema, SP, Brazil
| | - Ernando Silva Ferreira
- State University of Feira de Santana (UEFS), Department of Physics, s/n Transnordestina Highway, 44036-900 Feira de Santana, BA, Brazil
| | - Fernando Lucas Primo
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara 14800-903, São Paulo, Brazil
| | - Mariza Aires Fernandes
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara 14800-903, São Paulo, Brazil
| | - Siqi He
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Samuel Forster
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Changyu Ma
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | | | - Lindomar Soares Dos Santos
- Department of Physics, Faculty of Philosophy, Sciences and Languages at Ribeirão Preto, Universidade de São Paulo University (USP), 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Glaucio Ribeiro Silva
- Federal Institute of Education, Science, and Technology of Minas Gerais, s/n São Luiz Gonzaga Street, 35577-010 Formiga, Minas Gerais, Brazil
| | - Antônio Eduardo Miller Crotti
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Bingbing Li
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Wadeesirisak K, Castano S, Vaysse L, Bonfils F, Peruch F, Rattanaporn K, Liengprayoon S, Lecomte S, Bottier C. Interactions of REF1 and SRPP1 rubber particle proteins from Hevea brasiliensis with synthetic phospholipids: Effect of charge and size of lipid headgroup. Biochem Biophys Res Commun 2023; 679:205-214. [PMID: 37708579 DOI: 10.1016/j.bbrc.2023.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
According to the fatty acid and headgroup compositions of the phospholipids (PL) from Hevea brasiliensis latex, three synthetic PL were selected (i.e. POPA: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and POPG: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) to investigate the effect of PL headgroup on the interactions with two major proteins of Hevea latex, i.e. Rubber Elongation Factor (REF1) and Small Rubber Particle Protein (SRPP1). Protein/lipid interactions were screened using two models (lipid vesicles in solution or lipid monolayers at air/liquid interface). Calcein leakage, surface pressure, ellipsometry, microscopy and spectroscopy revealed that both REF1 and SRPP1 displayed stronger interactions with anionic POPA and POPG, as compared to zwitterionic POPC. A particular behavior of REF1 was observed when interacting with POPA monolayers (i.e. aggregation + modification of secondary structure from α-helices to β-sheets, characteristic of its amyloid aggregated form), which might be involved in the irreversible coagulation mechanism of Hevea rubber particles.
Collapse
Affiliation(s)
- Kanthida Wadeesirisak
- Institute of Food Research and Product Development, Kasetsart University, 10900, Bangkok, Thailand
| | - Sabine Castano
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, F-33600, Pessac, France
| | - Laurent Vaysse
- CIRAD, UPR BioWooEB, F-34398, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Frédéric Bonfils
- CIRAD, UPR BioWooEB, F-34398, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Frédéric Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 10900, Bangkok, Thailand
| | - Siriluck Liengprayoon
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, 10900, Bangkok, Thailand
| | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, F-33600, Pessac, France.
| | - Céline Bottier
- CIRAD, UPR BioWooEB, F-34398, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France.
| |
Collapse
|
7
|
Bouchnak I, Coulon D, Salis V, D’Andréa S, Bréhélin C. Lipid droplets are versatile organelles involved in plant development and plant response to environmental changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1193905. [PMID: 37426978 PMCID: PMC10327486 DOI: 10.3389/fpls.2023.1193905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Since decades plant lipid droplets (LDs) are described as storage organelles accumulated in seeds to provide energy for seedling growth after germination. Indeed, LDs are the site of accumulation for neutral lipids, predominantly triacylglycerols (TAGs), one of the most energy-dense molecules, and sterol esters. Such organelles are present in the whole plant kingdom, from microalgae to perennial trees, and can probably be found in all plant tissues. Several studies over the past decade have revealed that LDs are not merely simple energy storage compartments, but also dynamic structures involved in diverse cellular processes like membrane remodeling, regulation of energy homeostasis and stress responses. In this review, we aim to highlight the functions of LDs in plant development and response to environmental changes. In particular, we tackle the fate and roles of LDs during the plant post-stress recovery phase.
Collapse
Affiliation(s)
- Imen Bouchnak
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Denis Coulon
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Vincent Salis
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sabine D’Andréa
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Claire Bréhélin
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| |
Collapse
|
8
|
Nie Z, Kang G, Yan D, Qin H, Yang L, Zeng R. Downregulation of HbFPS1 affects rubber biosynthesis of Hevea brasiliensis suffering from tapping panel dryness. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:504-520. [PMID: 36524729 PMCID: PMC10107253 DOI: 10.1111/tpj.16063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Tapping panel dryness (TPD) is a century-old problem that has plagued the natural rubber production of Hevea brasiliensis. TPD may result from self-protective mechanisms of H. brasiliensis in response to stresses such as excessive hormone stimulation and mechanical wounding (bark tapping). It has been hypothesized that TPD impairs rubber biosynthesis; however, the underlying mechanisms remain poorly understood. In the present study, we firstly verified that TPD-affected rubber trees exhibited lower rubber biosynthesis activity and greater rubber molecular weight compared to healthy rubber trees. We then demonstrated that HbFPS1, a key gene of rubber biosynthesis, and its expression products were downregulated in the latex of TPD-affected rubber trees, as revealed by transcriptome sequencing and iTRAQ-based proteome analysis. We further discovered that the farnesyl diphosphate synthase HbFPS1 could be recruited to small rubber particles by HbSRPP1 through protein-protein interactions to catalyze farnesyl diphosphate (FPP) synthesis and facilitate rubber biosynthesis initiation. FPP content in the latex of TPD-affected rubber trees was significantly decreased with the downregulation of HbFPS1, ultimately resulting in abnormal development of rubber particles, decreased rubber biosynthesis activity, and increased rubber molecular weight. Upstream regulator assays indicated that a novel regulator, MYB2-like, may be an important regulator of downregulation of HbFPS1 in the latex of TPD-affected rubber trees. Our findings not only provide new directions for studying the molecular events involved in rubber biosynthesis and TPD syndrome and contribute to rubber management strategies, but also broaden our knowledge of plant isoprenoid metabolism and its regulatory networks.
Collapse
Affiliation(s)
- Zhiyi Nie
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber treesMinistry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
- Key Laboratory of Materials Engineering for High Performance Natural Rubber, Hainnan ProvinceChinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
| | - Guijuan Kang
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber treesMinistry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
- Key Laboratory of Materials Engineering for High Performance Natural Rubber, Hainnan ProvinceChinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
| | - Dong Yan
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber treesMinistry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
| | - Huaide Qin
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber treesMinistry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
- Key Laboratory of Materials Engineering for High Performance Natural Rubber, Hainnan ProvinceChinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
| | - Lifu Yang
- Institute of Scientific and Technical InformationChinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
| | - Rizhong Zeng
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber treesMinistry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
- Key Laboratory of Materials Engineering for High Performance Natural Rubber, Hainnan ProvinceChinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
| |
Collapse
|
9
|
Dong G, Fan M, Wang H, Leng Y, Sun J, Huang J, Zhang H, Yan J. Functional Characterization of TkSRPP Promoter in Response to Hormones and Wounding Stress in Transgenic Tobacco. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020252. [PMID: 36678964 PMCID: PMC9866153 DOI: 10.3390/plants12020252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/31/2022] [Indexed: 05/14/2023]
Abstract
Taraxacum kok-saghyz is a model species for studying natural rubber biosynthesis because its root can produce high-quality rubber. Small rubber particle protein (SRPP), a stress-related gene to multiple stress responses, involves in natural rubber biosynthesis. To investigate the transcriptional regulation of the TkSRPP promoter, the full-length promoter PR0 (2188 bp) and its four deletion derivatives, PR1 (1592 bp), PR2 (1274 bp), PR3 (934 bp), and PR4 (450 bp), were fused to β-glucuronidase (GUS) reporter gene and transformed into tobacco. The GUS tissue staining showed that the five promoters distinctly regulated GUS expression utilizing transient transformation of tobacco. The GUS activity driven by a PR0 promoter was detected in transgenic tobacco leaves, stem and roots, suggesting that the TkSRPP promoter was not tissue-specific. Deletion analyses in transgenic tobacco have demonstrated that the PR3 from -934 bp to -450 bp core region responded strongly to the hormones, methyl jasmonate (MeJA), abscisic acid (ABA), and salicylic acid (SA), and also to injury induction. The TkSRPP gene was highly expressed under hormones and wound-induced conditions. This study reveals the regulation pattern of the SRPP promoter, and provides valuable information for studying natural rubber biosynthesis under hormones and wounding stress.
Collapse
Affiliation(s)
- Gaoquan Dong
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Mengwei Fan
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hainan Wang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yadong Leng
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Junting Sun
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jun Huang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hao Zhang
- Institute of Gardening and Greening, Xinjiang Academy of Forestry Sciences, Urumqi 830000, China
- Correspondence: (H.Z.); (J.Y.)
| | - Jie Yan
- College of Life Sciences, Shihezi University, Shihezi 832003, China
- Correspondence: (H.Z.); (J.Y.)
| |
Collapse
|
10
|
Sadeghi M, Malekzadeh M, Taghvaei-Ganjali S, Motiee F. Correlations between natural rubber protein content and rapid predictions of rheological properties, compression set and hardness of rubber compound. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Dai L, Yang H, Zhao X, Wang L. Identification of cis conformation natural rubber and proteins in Ficus altissima Blume latex. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:376-384. [PMID: 34404008 DOI: 10.1016/j.plaphy.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Ficus altissima Blume, a horticultural plant in tropical and warm subtropical regions, can produce natural rubber with comparable molecular weight to the Hevea brasiliensis rubber. The F. altissima latex has an acidic pH (about 4.89). The rubber particle size distribution is a unimodal profile, and the peak frequency is at a size of 4.5 μm. The natural rubber of F. altissima was determined to be a cis conformation via 13C NMR. The Mp (molecular weight of the peak maxima) of the deproteinized F. altissima rubber was 9.34 × 105 Da. LC-MS was used to identify the proteins of rubber particles and serum. The most abundant protein of the creamy rubber particle layer is an acid phosphatase, while the most abundant proteins of serum were an (R)-mandelonitrilelyase and a polygalacturonase inhibitor. Pharmaceutical proteins (ficins) or enzymes related to the biosynthesis of natural medicines (a cannabidiolic acid synthase and two lupeol synthase) were identified in F. altissima latex. The data of this study may be helpful for research on the functions of latex in latex-borne plants and the biosynthesis mechanism of natural rubber.
Collapse
Affiliation(s)
- Longjun Dai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, PR China; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Haikou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China.
| | - Hong Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, PR China; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Haikou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China.
| | - Xizhu Zhao
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, PR China; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Haikou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China.
| | - Lifeng Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, PR China; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Haikou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China.
| |
Collapse
|
12
|
Xin S, Hua Y, Li J, Dai X, Yang X, Udayabhanu J, Huang H, Huang T. Comparative analysis of latex transcriptomes reveals the potential mechanisms underlying rubber molecular weight variations between the Hevea brasiliensis clones RRIM600 and Reyan7-33-97. BMC PLANT BIOLOGY 2021; 21:244. [PMID: 34051757 PMCID: PMC8164328 DOI: 10.1186/s12870-021-03022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The processabilities and mechanical properties of natural rubber depend greatly on its molecular weight (MW) and molecular weight distribution (MWD). However, the mechanisms underlying the regulation of molecular weight during rubber biosynthesis remain unclear. RESULTS In the present study, we determined the MW and particle size of latex from 1-year-old virgin trees and 30-year-old regularly tapped trees of the Hevea clones Reyan7-33-97 and RRIM600. The results showed that both the MW and the particle size of latex varied between these two clones and increased with tree age. Latex from RRIM600 trees had a smaller average particle size than that from Reyan7-33-97 trees of the same age. In 1-year-old trees, the Reyan7-33-97 latex displayed a slightly higher MW than that of RRIM600, whereas in 30-year-old trees, the RRIM600 latex had a significantly higher MW than the Reyan7-33-97 latex. Comparative analysis of the transcriptome profiles indicated that the average rubber particle size is negatively correlated with the expression levels of rubber particle associated proteins, and that the high-MW traits of latex are closely correlated with the enhanced expression of isopentenyl pyrophosphate (IPP) monomer-generating pathway genes and downstream allylic diphosphate (APP) initiator-consuming non-rubber pathways. By bioinformatics analysis, we further identified a group of transcription factors that potentially regulate the biosynthesis of IPP. CONCLUSIONS Altogether, our results revealed the potential regulatory mechanisms involving gene expression variations in IPP-generating pathways and the non-rubber isoprenoid pathways, which affect the ratios and contents of IPP and APP initiators, resulting in significant rubber MW variations among same-aged trees of the Hevea clones Reyan7-33-97 and RRIM600. Our findings provide a better understanding of rubber biosynthesis and lay the foundation for genetic improvement of rubber quality in H. brasiliensis.
Collapse
Affiliation(s)
- Shichao Xin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Yuwei Hua
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Ji Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Xuemei Dai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Xianfeng Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Jinu Udayabhanu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Huasun Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China.
| | - Tiandai Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China.
| |
Collapse
|
13
|
Habib MAH, Ismail MN. Hevea brasiliensis latex proteomics: a review of analytical methods and the way forward. JOURNAL OF PLANT RESEARCH 2021; 134:43-53. [PMID: 33108557 DOI: 10.1007/s10265-020-01231-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Natural rubber or latex from the Hevea brasiliensis is an important commodity in various economic sectors in today's modern society. Proteins have been detected in latex since the early twentieth century, and they are known to regulate various biological pathways within the H. brasiliensis trees such as the natural rubber biosynthesis, defence against pathogens, wound healing, and stress tolerance. However, the exact mechanisms of the pathways are still not clear. Proteomic analyses on latex have found various proteins and revealed how they fit into the mechanisms of the biological pathways. In the past three decades, there has been rapid latex protein identification due to the improvement of latex protein extraction methods, as well as the emergence of two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). In this manuscript, we reviewed the methods of latex protein extraction that keeps on improving over the past three decades as well as the results of numerous latex protein identification and quantitation.
Collapse
Affiliation(s)
- Mohd Afiq Hazlami Habib
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11800, Pulau Pinang, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11800, Pulau Pinang, Malaysia.
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia (USM), 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
14
|
Identification and Characterization of Glycoproteins and Their Responsive Patterns upon Ethylene Stimulation in the Rubber Latex. Int J Mol Sci 2020; 21:ijms21155282. [PMID: 32722428 PMCID: PMC7432319 DOI: 10.3390/ijms21155282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Natural rubber is an important industrial material, which is obtained from the only commercially cultivated rubber tree, Hevea brasiliensis. In rubber latex production, ethylene has been extensively used as a stimulant. Recent research showed that post-translational modifications (PTMs) of latex proteins, such as phosphorylation, glycosylation and ubiquitination, are crucial in natural rubber biosynthesis. In this study, comparative proteomics was performed to identify the glycosylated proteins in rubber latex treated with ethylene for different days. Combined with Pro-Q Glycoprotein gel staining and mass spectrometry techniques, we provided the first visual profiling of glycoproteomics of rubber latex and finally identified 144 glycosylated protein species, including 65 differentially accumulated proteins (DAPs) after treating with ethylene for three and/or five days. Gene Ontology (GO) functional annotation showed that these ethylene-responsive glycoproteins are mainly involved in cell parts, membrane components and metabolism. Pathway analysis demonstrated that these glycosylated rubber latex proteins are mainly involved in carbohydrate metabolism, energy metabolism, degradation function and cellular processes in rubber latex metabolism. Protein-protein interaction analysis revealed that these DAPs are mainly centered on acetyl-CoA acetyltransferase and hydroxymethylglutaryl-CoA synthase (HMGS) in the mevalonate pathway for natural rubber biosynthesis. In our glycoproteomics, three protein isoforms of HMGS2 were identified from rubber latex, and only one HMGS2 isoform was sharply increased in rubber latex by ethylene treatment for five days. Furthermore, the HbHMGS2 gene was over-expressed in a model rubber-producing grass Taraxacum Kok-saghyz and rubber content in the roots of transgenic rubber grass was significantly increased over that in the wild type plant, indicating HMGS2 is the key component for natural rubber production.
Collapse
|
15
|
Abstract
Natural rubber (NR), principally comprising cis-1,4-polyisoprene, is an industrially important natural hydrocarbon polymer because of its unique physical properties, which render it suitable for manufacturing items such as tires. Presently, industrial NR production depends solely on latex obtained from the Pará rubber tree, Hevea brasiliensis. In latex, NR is enclosed in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The similarity of the basic carbon skeleton structure between NR and dolichols and polyprenols, which are found in most organisms, suggests that the NR biosynthetic pathway is related to the polyisoprenoid biosynthetic pathway and that rubber transferase, which is the key enzyme in NR biosynthesis, belongs to the cis-prenyltransferase family. Here, we review recent progress in the elucidation of molecular mechanisms underlying NR biosynthesis through the identification of the enzymes that are responsible for the formation of the NR backbone structure.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan;
| | - Seiji Takahashi
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan;
| |
Collapse
|
16
|
Cherian S, Ryu SB, Cornish K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2041-2061. [PMID: 31150158 PMCID: PMC6790360 DOI: 10.1111/pbi.13181] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 05/26/2023]
Abstract
Natural rubber (NR) is a nonfungible and valuable biopolymer, used to manufacture ~50 000 rubber products, including tires and medical gloves. Current production of NR is derived entirely from the para rubber tree (Hevea brasiliensis). The increasing demand for NR, coupled with limitations and vulnerability of H. brasiliensis production systems, has induced increasing interest among scientists and companies in potential alternative NR crops. Genetic/metabolic pathway engineering approaches, to generate NR-enriched genotypes of alternative NR plants, are of great importance. However, although our knowledge of rubber biochemistry has significantly advanced, our current understanding of NR biosynthesis, the biosynthetic machinery and the molecular mechanisms involved remains incomplete. Two spatially separated metabolic pathways provide precursors for NR biosynthesis in plants and their genes and enzymes/complexes are quite well understood. In contrast, understanding of the proteins and genes involved in the final step(s)-the synthesis of the high molecular weight rubber polymer itself-is only now beginning to emerge. In this review, we provide a critical evaluation of recent research developments in NR biosynthesis, in vitro reconstitution, and the genetic and metabolic pathway engineering advances intended to improve NR content in plants, including H. brasiliensis, two other prospective alternative rubber crops, namely the rubber dandelion and guayule, and model species, such as lettuce. We describe a new model of the rubber transferase complex, which integrates these developments. In addition, we highlight the current challenges in NR biosynthesis research and future perspectives on metabolic pathway engineering of NR to speed alternative rubber crop commercial development.
Collapse
Affiliation(s)
- Sam Cherian
- Plant Systems Engineering Research CentreKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeonKorea
- Research & Development CenterDRB Holding Co. LTDBusanKorea
| | - Stephen Beungtae Ryu
- Plant Systems Engineering Research CentreKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeonKorea
- Department of Biosystems and BioengineeringKRIBB School of BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Katrina Cornish
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
- Department of Food, Agricultural and Biological EngineeringThe Ohio State UniversityWoosterOHUSA
| |
Collapse
|
17
|
Proteomic Landscape Has Revealed Small Rubber Particles Are Crucial Rubber Biosynthetic Machines for Ethylene-Stimulation in Natural Rubber Production. Int J Mol Sci 2019; 20:ijms20205082. [PMID: 31614967 PMCID: PMC6829444 DOI: 10.3390/ijms20205082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
Rubber particles are a specific organelle for natural rubber biosynthesis (NRB) and storage. Ethylene can significantly improve rubber latex production by increasing the generation of small rubber particles (SRPs), regulating protein accumulation, and activating many enzyme activities. We conducted a quantitative proteomics study of different SRPs upon ethylene stimulation by differential in-gel electrophoresis (DIGE) and using isobaric tags for relative and absolute quantification (iTRAQ) methods. In DIGE, 79 differentially accumulated proteins (DAPs) were determined as ethylene responsive proteins. Our results show that the abundance of many NRB-related proteins has been sharply induced upon ethylene stimulation. Among them, 23 proteins were identified as rubber elongation factor (REF) and small rubber particle protein (SRPP) family members, including 16 REF and 7 SRPP isoforms. Then, 138 unique phosphorylated peptides, containing 129 phosphorylated amino acids from the 64 REF/SRPP family members, were identified, and most serine and threonine were phosphorylated. Furthermore, we identified 226 DAPs from more than 2000 SRP proteins by iTRAQ. Integrative analysis revealed that almost all NRB-related proteins can be detected in SRPs, and many proteins are positively responsive to ethylene stimulation. These results indicate that ethylene may stimulate latex production by regulating the accumulation of some key proteins. The phosphorylation modification of REF and SRPP isoforms might be crucial for NRB, and SRP may act as a complex natural rubber biosynthetic machine.
Collapse
|
18
|
Xie Q, Ding G, Zhu L, Yu L, Yuan B, Gao X, Wang D, Sun Y, Liu Y, Li H, Wang X. Proteomic Landscape of the Mature Roots in a Rubber-Producing Grass Taraxacum Kok-saghyz. Int J Mol Sci 2019; 20:ijms20102596. [PMID: 31137823 PMCID: PMC6566844 DOI: 10.3390/ijms20102596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022] Open
Abstract
The rubber grass Taraxacum kok-saghyz (TKS) contains large amounts of natural rubber (cis-1,4-polyisoprene) in its enlarged roots and it is an alternative crop source of natural rubber. Natural rubber biosynthesis (NRB) and storage in the mature roots of TKS is a cascade process involving many genes, proteins and their cofactors. The TKS genome has just been annotated and many NRB-related genes have been determined. However, there is limited knowledge about the protein regulation mechanism for NRB in TKS roots. We identified 371 protein species from the mature roots of TKS by combining two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). Meanwhile, a large-scale shotgun analysis of proteins in TKS roots at the enlargement stage was performed, and 3545 individual proteins were determined. Subsequently, all identified proteins from 2-DE gel and shotgun MS in TKS roots were subject to gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and most proteins were involved in carbon metabolic process with catalytic activity in membrane-bounded organelles, followed by proteins with binding ability, transportation and phenylpropanoid biosynthesis activities. Fifty-eight NRB-related proteins, including eight small rubber particle protein (SRPP) and two rubber elongation factor(REF) members, were identified from the TKS roots, and these proteins were involved in both mevalonate acid (MVA) and methylerythritol phosphate (MEP) pathways. To our best knowledge, it is the first high-resolution draft proteome map of the mature TKS roots. Our proteomics of TKS roots revealed both MVA and MEP pathways are important for NRB, and SRPP might be more important than REF for NRB in TKS roots. These findings would not only deepen our understanding of the TKS root proteome, but also provide new evidence on the roles of these NRB-related proteins in the mature TKS roots.
Collapse
Affiliation(s)
- Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| | - Guohua Ding
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| | - Liping Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| | - Li Yu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| | - Boxuan Yuan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| | - Xuan Gao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China.
| | - Yong Sun
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China.
| | - Yang Liu
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Xuchu Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| |
Collapse
|
19
|
Men X, Wang F, Chen GQ, Zhang HB, Xian M. Biosynthesis of Natural Rubber: Current State and Perspectives. Int J Mol Sci 2018; 20:E50. [PMID: 30583567 PMCID: PMC6337083 DOI: 10.3390/ijms20010050] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Natural rubber is a kind of indispensable biopolymers with great use and strategic importance in human society. However, its production relies almost exclusively on rubber-producing plants Hevea brasiliensis, which have high requirements for growth conditions, and the mechanism of natural rubber biosynthesis remains largely unknown. In the past two decades, details of the rubber chain polymerization and proteins involved in natural rubber biosynthesis have been investigated intensively. Meanwhile, omics and other advanced biotechnologies bring new insight into rubber production and development of new rubber-producing plants. This review summarizes the achievements of the past two decades in understanding the biosynthesis of natural rubber, especially the massive information obtained from the omics analyses. Possibilities of natural rubber biosynthesis in vitro or in genetically engineered microorganisms are also discussed.
Collapse
Affiliation(s)
- Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guo-Qiang Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Hai-Bo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| |
Collapse
|
20
|
Wu C, Lan L, Li Y, Nie Z, Zeng R. The relationship between latex metabolism gene expression with rubber yield and related traits in Hevea brasiliensis. BMC Genomics 2018; 19:897. [PMID: 30526485 PMCID: PMC6288877 DOI: 10.1186/s12864-018-5242-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 11/12/2018] [Indexed: 11/20/2022] Open
Abstract
Background Expression patterns of many laticifer-specific gens are closely correlative with rubber yield of Hevea brasiliensis (para rubber tree). To unveil the mechanisms underlying the rubber yield, transcript levels of nine major latex metabolism-related genes, i.e., HMG-CoA synthase (HMGS), HMG-CoA reductase (HMGR), diphosphomevalonate decarboxylase (PMD), farnesyl diphosphate synthase (FPS), cis-prenyltransferase (CPT), rubber elongation factor (REF), small rubber particle protein (SRPP), dihydroxyacid dehydratase (DHAD) and actin depolymerizing factor (ADF), were dertermined, and the relationship between rubber yield with their expression levels was analysed. Results Except HbHMGR1, HbPMD and HbDHAD, most of these genes were predominantly expressed in latex, and bark tapping markedly elevated the transcript abundance of the analyzed genes, with the 7th tapping producing the greatest expression levels. Both ethephon (ETH) and methyl jasmonate (MeJA) stimulation greatly induced the expression levels of the examined genes, at least at one time point, except HbDHAD, which was unresponsive to MeJA. The genes’ expression levels, as well as the rubber yields and two yield characteristics differed significantly among the different genotypes examined. Additionally, the latex and dry rubber yields increased gradually but the dry rubber content did not. Rubber yields and/or yield characteristics were significantly positively correlated with HbCPT, HbFPS, HbHMGS, HbHMGR1 and HbDHAD expression levels, negatively correlated with that of HbREF, but not significantly correlated with HbPMD, HbSRPP and HbADF expression levels. In addition, during rubber production, significantly positive correlations existed between the expression level of HbPMD and the levels of HbREF and HbHMGR1, between HbSRPP and the levels of HbHMGS and HbHMGR1, and between HbADF and HbFPS. Conclusions The up-regulation of these genes might be related to the latex production of rubber trees under the stress of bark tapping and latex metabolism. The various correlations among the genes implied that there are differences in their synergic interactions. Thus, these nine genes might be related to rubber yield and yield-related traits in H. brasiliensis, and this work increases our understanding of their complex functions and how they are expressed in both high-and medium-yield rubber tree varieties and low-yield wild rubber tree germplasm. Electronic supplementary material The online version of this article (10.1186/s12864-018-5242-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuntai Wu
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, 571737, People's Republic of China
| | - Li Lan
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, 571737, People's Republic of China.,College of Agriculture, Hainan University, Haikou, 570228, China
| | - Yu Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, 571737, People's Republic of China
| | - Zhiyi Nie
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, 571737, People's Republic of China
| | - Rizhong Zeng
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, 571737, People's Republic of China.
| |
Collapse
|
21
|
Gao L, Sun Y, Wu M, Wang D, Wei J, Wu B, Wang G, Wu W, Jin X, Wang X, He P. Physiological and Proteomic Analyses of Molybdenum- and Ethylene-Responsive Mechanisms in Rubber Latex. FRONTIERS IN PLANT SCIENCE 2018; 9:621. [PMID: 29868077 PMCID: PMC5962772 DOI: 10.3389/fpls.2018.00621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient in many plants. In the rubber tree Hevea brasiliensis, Mo application can reduce the shrinkage of the tapping line, decrease tapping panel dryness, and finally increase rubber latex yield. After combined Mo with ethylene (Eth), these effects become more obvious. However, the molecular mechanism remains unclear. Here, we compared the changed patterns of physiological parameters and protein accumulation in rubber latex after treated with Mo and/or Eth. Our results demonstrated that both Eth and Mo can improve the contents of thiol, sucrose, and dry yield in rubber latex. However, lutoid bursting is significantly inhibited by Mo. Comparative proteomics identified 169 differentially expressed proteins, including 114 unique proteins, which are mainly involved in posttranslational modification, carbohydrate metabolism, and energy production. The abundances of several proteins involved in rubber particle aggregation are decreased upon Mo stimulation, while many enzymes related to natural rubber biosynthesis are increased. Comparison of the accumulation patterns of 25 proteins revealed that a large portion of proteins have different changed patterns with their gene expression levels. Activity assays of six enzymes revealed that Mo stimulation can increase latex yield by improving the activity of some Mo-responsive enzymes. These results not only deepen our understanding of the rubber latex proteome but also provide new insights into the molecular mechanism of Mo-stimulated rubber latex yield.
Collapse
Affiliation(s)
- Le Gao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, China
| | - Yong Sun
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, China
| | - Min Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiashao Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bingsun Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guihua Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenguan Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiang Jin
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, China
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xuchu Wang
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, China
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Peng He
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, China
| |
Collapse
|
22
|
Wang D, Sun Y, Chang L, Tong Z, Xie Q, Jin X, Zhu L, He P, Li H, Wang X. Subcellular proteome profiles of different latex fractions revealed washed solutions from rubber particles contain crucial enzymes for natural rubber biosynthesis. J Proteomics 2018; 182:53-64. [PMID: 29729991 DOI: 10.1016/j.jprot.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 01/20/2023]
Abstract
Rubber particle (RP) is a specific organelle for natural rubber biosynthesis (NRB) and storage in rubber tree Hevea brasiliensis. NRB is processed by RP membrane-localized proteins, which were traditionally purified by repeated washing. However, we noticed many proteins in the discarded washing solutions (WS) from RP. Here, we compared the proteome profiles of WS, C-serum (CS) and RP by 2-DE, and identified 233 abundant proteins from WS by mass spectrometry. Many spots on 2-DE gels were identified as different protein species. We further performed shotgun analysis of CS, WS and RP and identified 1837, 1799 and 1020 unique proteins, respectively. Together with 2-DE, we finally identified 1825 proteins from WS, 246 were WS-specific. These WS-specific proteins were annotated in Gene Ontology, indicating most abundant pathways are organic substance metabolic process, protein degradation, primary metabolic process, and energy metabolism. Protein-protein interaction analysis revealed these WS-specific proteins are mainly involved in ribosomal metabolism, proteasome system, vacuolar protein sorting and endocytosis. Label free and Western blotting revealed many WS-specific proteins and protein complexes are crucial for NRB initiation. These findings not only deepen our understanding of WS proteome, but also provide new evidences on the roles of RP membrane proteins in NRB. SIGNIFICANCE Natural rubber is stored in rubber particle from the rubber tree. Rubber particles were traditionally purified by repeated washing, but many proteins were identified from the washing solutions (WS). We obtained the first visualization proteome profiles with 1825 proteins from WS, including 246 WS-specific ones. These WS proteins contain almost all enzymes for polyisoprene initiation and may play important roles in rubber biosynthesis.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan 571158, China
| | - Yong Sun
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Quanliang Xie
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiang Jin
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan 571158, China
| | - Liping Zhu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Peng He
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan 571158, China; College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
23
|
Kajiura H, Suzuki N, Mouri H, Watanabe N, Nakazawa Y. Elucidation of rubber biosynthesis and accumulation in the rubber producing shrub, guayule (Parthenium argentatum Gray). PLANTA 2018; 247:513-526. [PMID: 29116401 DOI: 10.1007/s00425-017-2804-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/27/2017] [Indexed: 05/24/2023]
Abstract
Guayule biosynthesizes and accumulates rubber particles predominantly in epithelial cells in the parenchyma tissue, and this biosynthesis and accumulation is accompanied by remodeling of the roles of epithelial cells. The mechanism underlying the biosynthesis and accumulation of large quantities of rubber particles and resin in the parenchyma tissue of the stem bark of guayule (Parthenium argentatum Gray) remained unanswered up to now. Here, we focused on rubber particle biosynthesis and accumulation in guayule and performed histochemical analyses using a lipophilic fluorescent dye specific for lipids and spectral confocal laser scanning microscopy. Unmixing images were constructed based on specific spectra of cis-polyisoprene and resin and showed that guayule accumulates a large amount of resin in the resin canals in parenchyma tissue and in pith. Interestingly, the fluorescence signals of rubber were predominantly detected in a specific single layer of epithelial cells around the resin canals. These epithelial cells accumulated large rubber particles and essentially no resin. Immunoblotting and immunostaining of guayule homologue of small rubber particle proteins (GHS), which contributes to the biosynthesis of rubber in guayule, showed that GHS is one of several small rubber particle proteins and is localized around rubber particles in epithelial cells. De novo sequencing of the rubber particle proteins showed the presence of all known organelle proteins, suggesting that epithelial cells biosynthesize rubber particles, followed by remodeling of the cells for the accumulation of rubber particles with subsequent decomposition of the organelles. These results indicate that epithelial cells around resin canals are bifunctional cells dedicated to the biosynthesis and accumulation of rubber particles.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Nobuaki Suzuki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Mouri
- Bridgestone Corporation, 3-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8531, Japan
| | - Norie Watanabe
- Bridgestone Corporation, 3-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8531, Japan
| | - Yoshihisa Nakazawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
24
|
Nie Z, Wang Y, Wu C, Li Y, Kang G, Qin H, Zeng R. Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree). BMC Genomics 2018; 19:5. [PMID: 29295704 PMCID: PMC5751871 DOI: 10.1186/s12864-017-4419-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Background Acyl-CoA-binding proteins (ACBPs) are mainly involved in acyl-CoA ester binding and trafficking in eukaryotic cells, and their various functions have been characterized in model plants, such as Arabidopsis thaliana (A. thaliana), Oryza sativa (rice), and other plant species. In the present study, genome-wide mining and expression analysis of ACBP genes was performed on Hevea brasiliensis (the para rubber tree), the most important latex-producing crop in the world. Results Six members of the H. brasiliensis ACBP family genes, designated HbACBP1-HbACBP6, were identified from the H. brasiliensis genome. They can be categorized into four classes with different amino acid sequences and domain structures based on the categorization of their A. thaliana counterparts. Phylogenetic analysis shows that the HbACBPs were clustered with those of other closely related species, such as Manihot esculenta, Ricinus communis, and Jatropha carcas, but were further from those of A. thaliana, a distantly related species. Expression analysis demonstrated that the HbACBP1 and HbACBP2 genes are more prominently expressed in H. brasiliensis latex, and their expression can be significantly enhanced by bark tapping (a mechanical wound) and jasmonic acid stimulation, whereas HbACBP3-HbACBP6 had almost the same expression patterns with relatively high levels in mature leaves and male flowers, but a markedly low abundance in the latex. HbACBP1 and HbACBP2 may have crucial roles in lipid and latex metabolism in laticifers, so their subcellular location was further investigated and the results indicated that HbACBP1 is a cytosol protein, whereas HbACBP2 is an endoplasmic reticulum-associated ACBP. Conclusions In this study, the H. brasiliensis ACBP family genes were identified. Phylogenetic analyses of the HbABCPs indicate that there is a high conservation and evolutionary relationship between ACBPs in land plants. The HbACBPs are organ/tissue-specifically expressed and have different expression patterns in response to stimulation by bark tapping or ethrel/jasmonic acid. HbACBP1 and HbACBP2 are two important latex ACBPs that might be involved in the lipid and latex metabolism. The results may provide valuable information for further investigations into the biological functions of HbACBPs during latex metabolism and stress responses in H. brasiliensis. Electronic supplementary material The online version of this article (10.1186/s12864-017-4419-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiyi Nie
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Yihang Wang
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China.,College of Agriculture, Hainan University, Haikou, 570228, China
| | - Chuntai Wu
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Yu Li
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Guijuan Kang
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Huaide Qin
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Rizhong Zeng
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China.
| |
Collapse
|
25
|
Yamashita S, Mizuno M, Hayashi H, Yamaguchi H, Miyagi-Inoue Y, Fushihara K, Koyama T, Nakayama T, Takahashi S. Purification and characterization of small and large rubber particles from Hevea brasiliensis. Biosci Biotechnol Biochem 2017; 82:1011-1020. [PMID: 29191089 DOI: 10.1080/09168451.2017.1401913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Natural rubber (NR) is synthesized by the rubber transferase (RTase) on rubber particles (RPs) in latex. Due to the heterogeneity of the RPs in latex, it is difficult to precisely characterize the RTase activity. In this study, we separated the RPs of Hevea brasiliensis with different particle size distributions, via stepwise centrifugations. Analyses of protein compositions and size distributions of NR in the RPs suggest that RPs in Hevea latex can be categorized into two distinct subclasses, the larger RPs (termed 1kRP, 2kRP, and 8kRP) and the smaller RPs (termed 20kRP and 50kRP). Precise enzymatic assays using the RPs revealed that 50kRP showed the highest RTase activity, whereas the larger RPs, which had been regarded to have quite low activity, also exhibited a comparable activity to the smaller RPs. Immunological detections of cis-prenyltransferases in the RPs showed that the abundance of these enzymes correlates with the extent of RTase activity.
Collapse
Affiliation(s)
- Satoshi Yamashita
- a Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Sendai , Japan.,b Department of Material Chemistry, Graduate School of Natural Science and Technology , Kanazawa University , Kanazawa , Japan
| | - Makie Mizuno
- a Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Sendai , Japan
| | - Hidehiko Hayashi
- a Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Sendai , Japan
| | | | | | | | - Tanetoshi Koyama
- d Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , Sendai , Japan
| | - Toru Nakayama
- a Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Sendai , Japan
| | - Seiji Takahashi
- a Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Sendai , Japan
| |
Collapse
|
26
|
Brown D, Feeney M, Ahmadi M, Lonoce C, Sajari R, Di Cola A, Frigerio L. Subcellular localization and interactions among rubber particle proteins from Hevea brasiliensis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5045-5055. [PMID: 29036360 PMCID: PMC5853894 DOI: 10.1093/jxb/erx331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/14/2017] [Indexed: 05/21/2023]
Abstract
Natural rubber (polyisoprene) from the rubber tree Hevea brasiliensis is synthesized by specialized cells called laticifers. It is not clear how rubber particles arise, although one hypothesis is that they derive from the endoplasmic reticulum (ER) membrane. Here we cloned the genes encoding four key proteins found in association with rubber particles and studied their intracellular localization by transient expression in Nicotiana benthamiana leaves. We show that, while the cis-prenyltransferase (CPT), responsible for the synthesis of long polyisoprene chains, is a soluble, cytosolic protein, other rubber particle proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and Hevea rubber transferase 1-REF bridging protein (HRBP) are associated with the endoplasmic reticulum (ER). We also show that SRPP can recruit CPT to the ER and that interaction of CPT with HRBP leads to both proteins relocating to the plasma membrane. We discuss these results in the context of the biogenesis of rubber particles.
Collapse
Affiliation(s)
- Daniel Brown
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Mathin Ahmadi
- Tun Abdul Razak Research Centre, Brickendonbury, Hertford, UK
| | - Chiara Lonoce
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Roslinda Sajari
- Malaysian Rubber Board, Experiment Station, Sungai Buloh, Selangor DE, Malaysia
| | | | | |
Collapse
|
27
|
Chen R, Chen G, Huang J. Shot-gun proteome and transcriptome mapping of the jujube floral organ and identification of a pollen-specific S-locus F-box gene. PeerJ 2017; 5:e3588. [PMID: 28729959 PMCID: PMC5516771 DOI: 10.7717/peerj.3588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
The flower is a plant reproductive organ that forms part of the fruit produced as the flowering season ends. While the number and identity of proteins expressed in a jujube (Ziziphus jujuba Mill.) flower is currently unknown, integrative proteomic and transcriptomic analyses provide a systematic strategy of characterizing the floral biology of plants. We conducted a shotgun proteomic analysis on jujube flowers by using a filter-aided sample preparation tryptic digestion, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, transcriptomics analyses were performed on HiSeq2000 sequencers. In total, 7,853 proteins were identified accounting for nearly 30% of the ‘Junzao’ gene models (27,443). Genes identified in proteome generally showed higher RPKM (reads per kilobase per million mapped reads) values than undetected genes. Gene ontology categories showed that ribosomes and intracellular organelles were the most dominant classes and accounted for 17.0% and 14.0% of the proteome mass, respectively. The top-ranking proteins with iBAQ >1010 included non-specific lipid transfer proteins, histones, actin-related proteins, fructose-bisphosphate aldolase, Bet v I type allergens, etc. In addition, we identified one pollen-specificity S-locus F-box-like gene located on the same chromosome as the S-RNase gene. Both of these may activate the behaviour of gametophyte self-incompatibility in jujube. These results reflected the protein profile features of jujube flowers and contributes new information important to the jujube breeding system.
Collapse
Affiliation(s)
- Ruihong Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, China
| | - Guoliang Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, China
| | - Jian Huang
- College of Forestry, Northwest A & F University, Yangling, China
| |
Collapse
|
28
|
Habib MAH, Yuen GC, Othman F, Zainudin NN, Latiff AA, Ismail MN. Proteomics analysis of latex from Hevea brasiliensis (clone RRIM 600). Biochem Cell Biol 2017; 95:232-242. [DOI: 10.1139/bcb-2016-0144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The natural rubber latex extracted from the bark of Hevea brasiliensis plays various important roles in today’s modern society. Following ultracentrifugation, the latex can be separated into 3 layers: C-serum, lutoids, and rubber particles. Previous studies have shown that a large number of proteins are present in these 3 layers. However, a complete proteome for this important plant is still unavailable. Protein sequences have been recently translated from the completed draft genome database of H. brasiliensis, leading to the creation of annotated protein databases of the following H. brasiliensis biosynthetic pathways: photosynthesis, latex allergens, rubberwood formation, latex biosynthesis, and disease resistance. This research was conducted to identify the proteins contained within the latex by way of de novo sequencing from mass spectral data obtained from the 3 layers of the latex. Peptides from these proteins were fragmented using collision-induced dissociation, higher-energy collisional dissociation, and electron-transfer dissociation activation methods. A large percentage of proteins from the biosynthetic pathways (63% to 100%) were successfully identified. In addition, a total of 1839 unique proteins were identified from the whole translated draft genome database (AnnHBM).
Collapse
Affiliation(s)
- Mohd Afiq Hazlami Habib
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Gan Chee Yuen
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | | | - Nurul Nabilah Zainudin
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | | | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| |
Collapse
|
29
|
Wadeesirisak K, Castano S, Berthelot K, Vaysse L, Bonfils F, Peruch F, Rattanaporn K, Liengprayoon S, Lecomte S, Bottier C. Rubber particle proteins REF1 and SRPP1 interact differently with native lipids extracted from Hevea brasiliensis latex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:201-210. [DOI: 10.1016/j.bbamem.2016.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
|
30
|
Zhang Y, Leclercq J, Montoro P. Reactive oxygen species in Hevea brasiliensis latex and relevance to Tapping Panel Dryness. TREE PHYSIOLOGY 2017; 37:261-269. [PMID: 27903918 PMCID: PMC5928795 DOI: 10.1093/treephys/tpw106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/16/2016] [Accepted: 10/01/2016] [Indexed: 05/27/2023]
Abstract
Environmental stress can lead to oxidative stress resulting from an increase in reactive oxygen species (ROS) and involves redox adjustments. Natural rubber is synthesized in laticifers, which is a non-photosynthetic tissue particularly prone to oxidative stress. This paper reviews the current state of knowledge on the ROS production and ROS-scavenging systems in laticifers. These regulations have been the subject of intense research into a physiological syndrome, called Tapping Panel Dryness (TPD), affecting latex production in Hevea brasiliensis. In order to prevent TPD occurrence, monitoring thiol content appeared to be a crucial factor of latex diagnosis. Thiols, ascorbate and γ-tocotrienol are the major antioxidants in latex. They are involved in membrane protection from ROS and likely have an effect on the quality of raw rubber. Some transcription factors might play a role in the redox regulatory network in Hevea, in particular ethylene response factors, which have been the most intensively studied given the role of ethylene on rubber production. Current challenges for rubber research and development with regard to redox systems will involve improving antioxidant capacity using natural genetic variability.
Collapse
Affiliation(s)
- Yi Zhang
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | | | | |
Collapse
|
31
|
Yamashita S, Yamaguchi H, Waki T, Aoki Y, Mizuno M, Yanbe F, Ishii T, Funaki A, Tozawa Y, Miyagi-Inoue Y, Fushihara K, Nakayama T, Takahashi S. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis. eLife 2016; 5. [PMID: 27790974 PMCID: PMC5110245 DOI: 10.7554/elife.19022] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
Natural rubber (NR) is stored in latex as rubber particles (RPs), rubber molecules surrounded by a lipid monolayer. Rubber transferase (RTase), the enzyme responsible for NR biosynthesis, is believed to be a member of the cis-prenyltransferase (cPT) family. However, none of the recombinant cPTs have shown RTase activity independently. We show that HRT1, a cPT from Heveabrasiliensis, exhibits distinct RTase activity in vitro only when it is introduced on detergent-washed HeveaRPs (WRPs) by a cell-free translation-coupled system. Using this system, a heterologous cPT from Lactucasativa also exhibited RTase activity, indicating proper introduction of cPT on RP is the key to reconstitute active RTase. RP proteomics and interaction network analyses revealed the formation of the protein complex consisting of HRT1, rubber elongation factor (REF) and HRT1-REF BRIDGING PROTEIN. The RTase activity enhancement observed for the complex assembled on WRPs indicates the HRT1-containing complex functions as the NR biosynthetic machinery. DOI:http://dx.doi.org/10.7554/eLife.19022.001
Collapse
Affiliation(s)
| | | | - Toshiyuki Waki
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yuichi Aoki
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Makie Mizuno
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Fumihiro Yanbe
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Tomoki Ishii
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ayuta Funaki
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | | | | - Toru Nakayama
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Seiji Takahashi
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
32
|
Yamashita S, Yamaguchi H, Waki T, Aoki Y, Mizuno M, Yanbe F, Ishii T, Funaki A, Tozawa Y, Miyagi-Inoue Y, Fushihara K, Nakayama T, Takahashi S. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis. eLife 2016; 5:e19022. [PMID: 27790974 DOI: 10.7554/elife.19022.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/25/2016] [Indexed: 05/24/2023] Open
Abstract
Natural rubber (NR) is stored in latex as rubber particles (RPs), rubber molecules surrounded by a lipid monolayer. Rubber transferase (RTase), the enzyme responsible for NR biosynthesis, is believed to be a member of the cis-prenyltransferase (cPT) family. However, none of the recombinant cPTs have shown RTase activity independently. We show that HRT1, a cPT from Heveabrasiliensis, exhibits distinct RTase activity in vitro only when it is introduced on detergent-washed HeveaRPs (WRPs) by a cell-free translation-coupled system. Using this system, a heterologous cPT from Lactucasativa also exhibited RTase activity, indicating proper introduction of cPT on RP is the key to reconstitute active RTase. RP proteomics and interaction network analyses revealed the formation of the protein complex consisting of HRT1, rubber elongation factor (REF) and HRT1-REF BRIDGING PROTEIN. The RTase activity enhancement observed for the complex assembled on WRPs indicates the HRT1-containing complex functions as the NR biosynthetic machinery.
Collapse
Affiliation(s)
| | | | - Toshiyuki Waki
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yuichi Aoki
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Makie Mizuno
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Fumihiro Yanbe
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Tomoki Ishii
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ayuta Funaki
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | | | | - Toru Nakayama
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Seiji Takahashi
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
33
|
Wang D, Sun Y, Tong Z, Yang Q, Chang L, Meng X, Wang L, Tian W, Wang X. A protein extraction method for low protein concentration solutions compatible with the proteomic analysis of rubber particles. Electrophoresis 2016; 37:2930-2939. [PMID: 27699805 DOI: 10.1002/elps.201600172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 06/13/2016] [Accepted: 08/15/2016] [Indexed: 01/26/2023]
Abstract
The extraction of high-purity proteins from the washing solution (WS) of rubber particles (also termed latex-producing organelles) from laticifer cells in rubber tree for proteomic analysis is challenging due to the low concentration of proteins in the WS. Recent studies have revealed that proteins in the WS might play crucial roles in natural rubber biosynthesis. To further examine the involvement of these proteins in natural rubber biosynthesis, we designed an efficiency method to extract high-purity WS proteins. We improved our current borax and phenol-based method by adding reextraction steps with phenol (REP) to improve the yield from low protein concentration samples. With this new method, we extracted WS proteins that were suitable for proteomics. Indeed, compared to the original borax and phenol-based method, the REP method improved both the quality and quantity of isolated proteins. By repeatedly extracting from low protein concentration solutions using the same small amount of phenol, the REP method yielded enough protein of sufficiently high-quality from starting samples containing less than 0.02 mg of proteins per milliliter. This method was successfully applied to extract the rubber particle proteins from the WS of natural rubber latex samples. The REP-extracted WS proteins were resolved by 2DE, and 28 proteins were positively identified by MS. This method has the potential to become widely used for the extraction of proteins from low protein concentration solutions for proteomic analysis.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan, P. R. China.,Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan, P. R. China.,Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Zheng Tong
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Qian Yang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Lili Chang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Xueru Meng
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Limin Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Weimin Tian
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan, P. R. China
| | - Xuchu Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan, P. R. China.,Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| |
Collapse
|
34
|
Highlights on Hevea brasiliensis (pro)hevein proteins. Biochimie 2016; 127:258-70. [DOI: 10.1016/j.biochi.2016.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
|
35
|
Berthelot K, Lecomte S, Coulary-Salin B, Bentaleb A, Peruch F. Hevea brasiliensis prohevein possesses a conserved C-terminal domain with amyloid-like properties in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:388-99. [DOI: 10.1016/j.bbapap.2016.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 11/30/2022]
|
36
|
Nie Z, Kang G, Duan C, Li Y, Dai L, Zeng R. Profiling Ethylene-Responsive Genes Expressed in the Latex of the Mature Virgin Rubber Trees Using cDNA Microarray. PLoS One 2016; 11:e0152039. [PMID: 26985821 PMCID: PMC4795647 DOI: 10.1371/journal.pone.0152039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
Ethylene is commonly used as a latex stimulant of Hevea brasiliensis by application of ethephon (chloro-2-ethylphosphonic acid); however, the molecular mechanism by which ethylene increases latex production is not clear. To better understand the effects of ethylene stimulation on the laticiferous cells of rubber trees, a latex expressed sequence tag (EST)-based complementary DNA microarray containing 2,973 unique genes (probes) was first developed and used to analyze the gene expression changes in the latex of the mature virgin rubber trees after ethephon treatment at three different time-points: 8, 24 and 48 h. Transcript levels of 163 genes were significantly altered with fold-change values ≥ 2 or ≤ –2 (q-value < 0.05) in ethephon-treated rubber trees compared with control trees. Of the 163 genes, 92 were up-regulated and 71 down-regulated. The microarray results were further confirmed using real-time quantitative reverse transcript-PCR for 20 selected genes. The 163 ethylene-responsive genes were involved in several biological processes including organic substance metabolism, cellular metabolism, primary metabolism, biosynthetic process, cellular response to stimulus and stress. The presented data suggest that the laticifer water circulation, production and scavenging of reactive oxygen species, sugar metabolism, and assembly and depolymerization of the latex actin cytoskeleton might play important roles in ethylene-induced increase of latex production. The results may provide useful insights into understanding the molecular mechanism underlying the effect of ethylene on latex metabolism of H. brasiliensis.
Collapse
Affiliation(s)
- Zhiyi Nie
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Guijuan Kang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Cuifang Duan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Yu Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Longjun Dai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Rizhong Zeng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| |
Collapse
|
37
|
Soltis DE, Misra BB, Shan S, Chen S, Soltis PS. Polyploidy and the proteome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:896-907. [PMID: 26993527 DOI: 10.1016/j.bbapap.2016.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/06/2016] [Accepted: 03/11/2016] [Indexed: 12/23/2022]
Abstract
Although major advances have been made during the past 20 years in our understanding of the genetic and genomic consequences of polyploidy, our knowledge of polyploidy and the proteome is in its infancy. One of our goals is to stimulate additional study, particularly broad-scale proteomic analyses of polyploids and their progenitors. Although it may be too early to generalize regarding the extent to which transcriptomic data are predictive of the proteome of polyploids, it is clear that the proteome does not always reflect the transcriptome. Despite limited data, important observations on the proteomes of polyploids are emerging. In some cases, proteomic profiles show qualitatively and/or quantitatively non-additive patterns, and proteomic novelty has been observed. Allopolyploids generally combine the parental contributions, but there is evidence of parental dominance of one contributing genome in some allopolyploids. Autopolyploids are typically qualitatively identical to but quantitatively different from their parents. There is also evidence of parental legacy at the proteomic level. Proteomes clearly provide insights into the consequences of genomic merger and doubling beyond what is obtained from genomic and/or transcriptomic data. Translating proteomic changes in polyploids to differences in morphology and physiology remains the holy grail of polyploidy--this daunting task of linking genotype to proteome to phenotype should emerge as a focus of polyploidy research in the next decade. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32608, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA.
| | - Biswapriya B Misra
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32608, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32608, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
38
|
Data in support of proteome analysis of gynophores and early swelling pods of peanut (Arachis hypogaea L.). Data Brief 2016; 5:1056-9. [PMID: 26793750 PMCID: PMC4689115 DOI: 10.1016/j.dib.2015.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/03/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022] Open
Abstract
Different from most of other plants, peanut (Arachis hypogaea L.) is a typical geocarpic species which flowering and forming pegs (gynophores) above the ground. Pegs penetrate into soil for embryo and pod development. To investigate the molecular mechanism of geocarpy feature of peanut, the proteome profiles of aerial grown gynophores (S1), subterranean unswollen gynophores (S2), and gynophores that had just started to swell into pods (S3) were analyzed by combining 1 DE with nano LC–MS/MS approaches. The proteomic data provided valuable information for understanding pod development of peanut. The data described here can be found in the PRIDE Archive using the reference number PXD002579-81. A more comprehensive analysis of this data may be obtained from the article in BMC Plant Biology (Zhao et al., 2015 [1]).
Collapse
|
39
|
Yang F, Yin Q. Comprehensive proteomic analysis of the wheat pathogenic fungus Zymoseptoria tritici. Proteomics 2015; 16:98-101. [PMID: 26435044 DOI: 10.1002/pmic.201500168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 01/08/2023]
Abstract
Zymoseptoria tritici causes Septoria tritici blotch disease of wheat. To obtain a comprehensive protein dataset of this fungal pathogen, proteomes of Z. tritici growing in nutrient-limiting and rich media and in vivo at a late stage of wheat infection were fractionated by 1D gel or strong cation exchange (SCX) chromatography and analyzed by LC-MS/MS. A total of 5731, 5376 and 3168 Z. tritici proteins were confidently identified from these conditions, respectively. Of these in vitro and in planta proteins, 9 and 11% were predicted to contain signal peptides, respectively. Functional classification analysis revealed the proteins were involved in the various cellular activities. Comparison of three distinct protein expression profiles demonstrates the elevated carbohydrate, lipid and secondary metabolisms, transport, protein processing and energy production specifically in the host environment, in contrast to the enhancement of signaling, defense, replication, transcription and cell division in vitro. The data provide useful targets towards a better understanding of the molecular basis of Z. tritici growth, development, stress response and pathogenicity.
Collapse
Affiliation(s)
- Fen Yang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Qi Yin
- BGI-Tech, BGI, Shenzhen P. R., China
| |
Collapse
|
40
|
Comparative proteome analysis of rubber latex serum from pathogenic fungi tolerant and susceptible rubber tree (Hevea brasiliensis). J Proteomics 2015; 131:82-92. [PMID: 26477389 DOI: 10.1016/j.jprot.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/18/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Many cultivated rubber trees (Hevea brasiliensis) are invaded by various Phytophthora species fungi, especially in tropical regions which result in crop yield losses. Comparative proteome analysis coupled with liquid chromatography electrospray/ionization (LC-ESI) mass spectrometry identification was employed to investigate the relative abundance of defense related proteins in Phytophthora sp. susceptible (RRIM600) and tolerant (BPM24) clones of rubber tree. Proteome maps of non-rubber constituent of these two model clones show similar protein counts, although some proteins show significant alterations in their abundance. Most of the differentially abundant proteins found in the serum of BPM24 illustrate the accumulation of defense related proteins that participate in plant defense mechanisms such as beta-1,3-glucanase, chitinase, and lectin. SDS-PAGE and 2-D Western blot analysis showed greater level of accumulation of beta-1,3-glucanase and chitinase in latex serum of BPM24 when compared to RRIM600. A functional study of these two enzymes showed that BPM24 serum had greater beta-1,3-glucanase and chitinase activities than that of RRIM600. These up-regulated proteins are constitutively expressed and would serve to protect the rubber tree BPM24 from any fungal invader. The information obtained from this work is valuable for understanding of defense mechanisms and plantation improvement of H. brasiliensis. BIOLOGICAL SIGNIFICANCE Non-rubber constituents (latex serum) have almost no value and are treated as waste in the rubber agricultural industry. However, the serum of natural rubber latex contains biochemical substances. The comparative proteomics analysis of latex serum between tolerant and susceptible clones reveals that the tolerant BPM24 clone contained a high abundance of several classes of fungal pathogen-responsive proteins, such as glucanase and chitinase. Moreover, other proteins identified highlighted the accumulation of defensive-associated proteins participating in plant fungal immunity. The isolation of beta-1,3-glucanase, chitinase, and lectin from latex serum should be further investigated and may provide a therapeutic application. This investigation will lead to possible use of latex serum as a great biotechnological resource due to the large quantity of serum produced and the biochemicals contained therein.
Collapse
|
41
|
Wang X, Wang D, Sun Y, Yang Q, Chang L, Wang L, Meng X, Huang Q, Jin X, Tong Z. Comprehensive Proteomics Analysis of Laticifer Latex Reveals New Insights into Ethylene Stimulation of Natural Rubber Production. Sci Rep 2015; 5:13778. [PMID: 26348427 PMCID: PMC4562231 DOI: 10.1038/srep13778] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 08/05/2015] [Indexed: 12/02/2022] Open
Abstract
Ethylene is a stimulant to increase natural rubber latex. After ethylene application, both fresh yield and dry matter of latex are substantially improved. Moreover, we found that ethylene improves the generation of small rubber particles. However, most genes involved in rubber biosynthesis are inhibited by exogenous ethylene. Therefore, we conducted a proteomics analysis of ethylene-stimulated rubber latex, and identified 287 abundant proteins as well as 143 ethylene responsive latex proteins (ERLPs) with mass spectrometry from the 2-DE and DIGE gels, respectively. In addition, more than 1,600 proteins, including 404 ERLPs, were identified by iTRAQ. Functional classification of ERLPs revealed that enzymes involved in post-translational modification, carbohydrate metabolism, hydrolase activity, and kinase activity were overrepresented. Some enzymes for rubber particle aggregation were inhibited to prolong latex flow, and thus finally improved latex production. Phosphoproteomics analysis identified 59 differential phosphoproteins; notably, specific isoforms of rubber elongation factor and small rubber particle protein that were phosphorylated mainly at serine residues. This post-translational modification and isoform-specific phosphorylation might be important for ethylene-stimulated latex production. These results not only deepen our understanding of the rubber latex proteome but also provide new insights into the use of ethylene to stimulate rubber latex production.
Collapse
Affiliation(s)
- Xuchu Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Qian Yang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Lili Chang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Limin Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Xueru Meng
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Qixing Huang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Xiang Jin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Zheng Tong
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| |
Collapse
|
42
|
Brasher MI, Surmacz L, Leong B, Pitcher J, Swiezewska E, Pichersky E, Akhtar TA. A two-component enzyme complex is required for dolichol biosynthesis in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:903-914. [PMID: 25899081 DOI: 10.1111/tpj.12859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 05/22/2023]
Abstract
Dolichol plays an indispensable role in the N-glycosylation of eukaryotic proteins. As proteins enter the secretory pathway they are decorated by a 'glycan', which is preassembled onto a membrane-anchored dolichol molecule embedded within the endoplasmic reticulum (ER). Genetic and biochemical evidence in yeast and animals indicate that a cis-prenyltransferase (CPT) is required for dolichol synthesis, but also point to other factor(s) that could be involved. In this study, RNAi-mediated suppression of one member of the tomato CPT family (SlCPT3) resulted in a ~60% decrease in dolichol content. We further show that the involvement of SlCPT3 in dolichol biosynthesis requires the participation of a distantly related partner protein, designated as CPT-binding protein (SlCPTBP), which is a close homolog of the human Nogo-B receptor. Yeast two-hybrid and co-immunoprecipitation assays demonstrate that SlCPT3 and its partner protein interact in vivo and that both SlCPT3 and SlCPTBP are required to complement the growth defects and dolichol deficiency of the yeast dolichol mutant, rer2∆. Co-expression of SlCPT3 and SlCPTBP in yeast and in E. coli confirmed that dolichol synthase activity strictly requires both proteins. Finally, organelle isolation and in vivo localization of fluorescent protein fusions showed that both SlCPT3 and SlCPTBP localize to the ER, the site of dolichol accumulation and synthesis in eukaryotes.
Collapse
Affiliation(s)
- Megan I Brasher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego Street, 02-106, Warsaw, Poland
| | - Bryan Leong
- Department of Molecular and Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jocelyn Pitcher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego Street, 02-106, Warsaw, Poland
| | - Eran Pichersky
- Department of Molecular and Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
43
|
Laibach N, Hillebrand A, Twyman RM, Prüfer D, Schulze Gronover C. Identification of a Taraxacum brevicorniculatum rubber elongation factor protein that is localized on rubber particles and promotes rubber biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:609-20. [PMID: 25809497 DOI: 10.1111/tpj.12836] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 05/22/2023]
Abstract
Two protein families required for rubber biosynthesis in Taraxacum brevicorniculatum have recently been characterized, namely the cis-prenyltransferases (TbCPTs) and the small rubber particle proteins (TbSRPPs). The latter were shown to be the most abundant proteins on rubber particles, where rubber biosynthesis takes place. Here we identified a protein designated T. brevicorniculatum rubber elongation factor (TbREF) by using mass spectrometry to analyze rubber particle proteins. TbREF is homologous to the TbSRPPs but has a molecular mass that is atypical for the family. The promoter was shown to be active in laticifers, and the protein itself was localized on the rubber particle surface. In TbREF-silenced plants generated by RNA interference, the rubber content was significantly reduced, correlating with lower TbCPT protein levels and less TbCPT activity in the latex. However, the molecular mass of the rubber was not affected by TbREF silencing. The colloidal stability of rubber particles isolated from TbREF-silenced plants was also unchanged. This was not surprising because TbREF depletion did not affect the abundance of TbSRPPs, which are required for rubber particle stability. Our findings suggest that TbREF is an important component of the rubber biosynthesis machinery in T. brevicorniculatum, and may play a role in rubber particle biogenesis and influence rubber production.
Collapse
Affiliation(s)
- Natalie Laibach
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schlossplatz 8, Münster, 48143, Germany
| | - Andrea Hillebrand
- Westphalian Wilhelms University of Münster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, Münster, 48143, Germany
| | | | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schlossplatz 8, Münster, 48143, Germany
- Westphalian Wilhelms University of Münster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, Münster, 48143, Germany
| | | |
Collapse
|
44
|
Zhiyi N, Guijuan K, Yu L, Longjun D, Rizhong Z. Whole-transcriptome survey of the putative ATP-binding cassette (ABC) transporter family genes in the latex-producing laticifers of Hevea brasiliensis. PLoS One 2015; 10:e0116857. [PMID: 25615936 PMCID: PMC4304824 DOI: 10.1371/journal.pone.0116857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
The ATP-binding cassette (ABC) proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree). A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 ‘full-size’, 21 ‘half-size’ and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress) stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis.
Collapse
Affiliation(s)
- Nie Zhiyi
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Kang Guijuan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Li Yu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Dai Longjun
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Zeng Rizhong
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
- * E-mail:
| |
Collapse
|
45
|
Berthelot K, Lecomte S, Estevez Y, Peruch F. Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): An overview on rubber particle proteins. Biochimie 2014; 106:1-9. [DOI: 10.1016/j.biochi.2014.07.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/05/2014] [Indexed: 11/28/2022]
|
46
|
Laibach N, Post J, Twyman RM, Gronover CS, Prüfer D. The characteristics and potential applications of structural lipid droplet proteins in plants. J Biotechnol 2014; 201:15-27. [PMID: 25160916 DOI: 10.1016/j.jbiotec.2014.08.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/07/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
Plant cytosolic lipid droplets are storage organelles that accumulate hydrophobic molecules. They are found in many tissues and their general structure includes an outer lipid monolayer with integral and associated proteins surrounding a hydrophobic core. Two distinct types can be distinguished, which we define here as oleosin-based lipid droplets (OLDs) and non-oleosin-based lipid droplets (NOLDs). OLDs are the best characterized lipid droplets in plants. They are primarily restricted to seeds and other germinative tissues, their surface is covered with oleosin-family proteins to maintain stability, they store triacylglycerols (TAGs) and they are used as a source of energy (and possibly signaling molecules) during the germination of seeds and pollen. Less is known about NOLDs. They are more abundant than OLDs and are distributed in many tissues, they accumulate not only TAGs but also other hydrophobic molecules such as natural rubber, and the structural proteins that stabilize them are unrelated to oleosins. In many species these proteins are members of the rubber elongation factor superfamily. NOLDs are not typically used for energy storage but instead accumulate hydrophobic compounds required for environmental interactions such as pathogen defense. There are many potential applications of NOLDs including the engineering of lipid production in plants and the generation of artificial oil bodies.
Collapse
Affiliation(s)
- Natalie Laibach
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143 Münster, Germany.
| | - Janina Post
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143 Münster, Germany.
| | | | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143 Münster, Germany.
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143 Münster, Germany; Westphalian Wilhelms-University of Münster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
47
|
Berthelot K, Lecomte S, Estevez Y, Zhendre V, Henry S, Thévenot J, Dufourc EJ, Alves ID, Peruch F. Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:287-99. [DOI: 10.1016/j.bbamem.2013.08.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 01/31/2023]
|