1
|
Li X, Xu D, Zhang L, Zhao L. ENDOGLUCANASE SlCEL2 and EXPANSIN SlEXP1 synergistically affect cellulose degrading and tomato fruit softening. BMC PLANT BIOLOGY 2025; 25:704. [PMID: 40419969 DOI: 10.1186/s12870-025-06749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025]
Abstract
Delayed fruit softening in tomato (Solanum lycopersicum) is highly desirable for extending shelf life, facilitating long-distance transportation, and reducing post-harvest losses caused by mechanical damage. Fruit softening is a natural ripening process characterized by the increased expression of genes involved in cell wall modification, leading to the breakdown of cell wall polysaccharides and the gradual disintegration of cellular structure. The yft1 mutant (yellow-fruited tomato 1, originally designated n3122) exhibits inhibited ethylene production, preventing normal ripening and resulting in firmer fruit. Concurrently, yft1 shows significant downregulation of several genes associated with cell wall degradation, including endoglucanase SlCEL2 and EXPANSIN SlEXP1. Both genes exhibit similar expression patterns, peaking during ripening, suggesting their importance in fruit softening. To investigate this further, RNAi silencing lines targeting SlCEL2 and SlEXP1 were generated. The double mutant, slcel2 slexp1, displayed increased firmness at the red ripe stage (54 days post-anthesis, dpa), whereas the single mutants showed similar softening to the wild-type M82. Anatomical analysis at 54 dpa revealed enhanced cell wall structure, slightly increased cuticle thickness, and significantly higher pericarp cellulose content in slcel2 slexp1 compared to M82, slcel2, and slexp1. Furthermore, this study found that SlEXP1 expression was significantly upregulated in slcel2 fruit, compared to M82 (wild type), at 54 dpa. This suggests a compensatory transcriptional regulation between these two genes in tomato fruit, potentially aimed at maintaining normal softening during ripening. These findings demonstrate that SlCEL2 and SlEXP1 act synergistically in cellulose degradation during tomato ripening, and promoting fruit softening.
Collapse
Affiliation(s)
- Xueou Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dawei Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
2
|
Xu Y, Wang H, Shi H. Genome-wide identification and molecular characterization of the MAPK family members in sand pear (Pyrus pyrifolia). BMC Genomics 2025; 26:485. [PMID: 40375131 PMCID: PMC12079992 DOI: 10.1186/s12864-025-11672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/05/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND 'Whangkeumbae', a highly regarded variety of sand pear, is celebrated in the market for its distinctive and superior flavor. However, the rapid production of ethylene after harvest significantly shortens its shelf life, becoming a major limiting factor for enhancing its commercial value. Mitogen-activated protein kinases (MAPKs) are a highly conserved family of transferases in eukaryotes. Although the importance of this family has been extensively studied in other plants, the precise composition and functional mechanisms of MAPK members in sand pear remain elusive. A genome-wide identification and molecular characterization of the MAPK gene family were conducted in Pyrus pyrifolia. This comprehensive analysis aimed to elucidate the genomic distribution, evolutionary relationships, and potential biological roles of MAPK genes in fruit senescence. RESULTS Four PpMAPKs were identified from our transcriptome data of sand pear, and 22 PpMAPK proteins were identified from the sand pear genome. Specifically, the transcriptomic PpMAPK3-L (GenBank accession number: PP992971), PpMAPK7-L (GenBank accession number: PP992972), PpMAPK10-L (GenBank accession number: PP992973), and PpMAPK16-L (GenBank accession number: PP992974) exhibited sequence homology values of 99.19%, 100%, 94.51%, and 95.75%, respectively, with their corresponding genomic counterparts (EVM0007944.1, EVM0004426.1, EVM0023771.1, EVM0027166.1). These findings indicate that the integrated analysis of transcriptomic and genomic data provides critical genetic insights into the MAPK genes in sand pear, culminating in the identification of a total of 25 PpMAPK genes in this species. Further phylogenetic analysis classified these genes into four subfamilies (A, B, C, and D), with subfamilies A and B each comprising six members, subfamily C with four members, and subfamily D with nine members. The potential functional differences among the gene members of each subfamily provide valuable clues for future research into MAPK signaling pathways. Further analysis by qRT-PCR revealed that the expression of four PpMAPK genes was positively correlated with fruit senescence in Pyrus pyrifolia. Additionally, interaction analysis revealed a significant interaction between PpMAPK3-L and PpbZIP2, which coordinatively regulate the senescence traits of fruits in sand pear through their joint influence during the senescence process. CONCLUSION The results of this study suggest that PpMAPK3-L, PpMAPK7-L, PpMAPK10-L, and PpMAPK16-L are likely to play pivotal roles in the maturation and senescence of sand pear fruit. Specifically, the interaction between PpMAPK3-L and PpbZIP2 could play a key role in the regulation of fruit senescence, indicating that the MAPK signaling pathway may modulate the fruit's physiological state through interactions with transcription factors. This finding offers significant insights for further investigation into the functions of MAPK genes in the maturation and senescence of sand pear fruit and provides a new direction for investigating biotechnological approaches for delaying senescence and prolonging shelf life.
Collapse
Affiliation(s)
- Yue Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Huiying Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Haiyan Shi
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| |
Collapse
|
3
|
Lim Y, Seo MG, Lee J, Hong S, An JT, Jeong HY, Choi HI, Hong WJ, Lee C, Park SJ, Kwon CT. Optimizing plant size for vertical farming by editing stem length regulators. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40344448 DOI: 10.1111/pbi.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/06/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025]
Abstract
Vertical farming offers the advantage of providing a stable environment for plant cultivation, shielding them from adverse conditions such as climate change. For fruit-harvesting plants like tomato, vertical farming necessitates the optimization of plant growth and architecture. The gibberellin 3-oxidase (GA3ox) genes encode gibberellin 3-oxidases responsible for activating GA within the pathway and modulating stem length. Among the five SlGA3ox genes, we targeted the coding regions of three SlGA3ox genes (named SlGA3ox3, SlGA3ox4 and SlGA3ox5) using multiplex CRISPR genome editing. The slga3ox4 single mutants exhibited a slight reduction in primary shoot length, leading to a smaller stature. In contrast, the slga3ox3 and slga3ox5 single mutants showed subtle phenotypic changes. Notably, the slga3ox3 slga3ox4 double mutants developed a more compact shoot architecture with minor physiological differences, potentially making them suitable for vertical farming applications. We observed a correlation between total yield and plant size across all genotypes through multiple yield trials. Observations from vertical farm cultivation revealed that slga3ox3 slga3ox4 plants possess a markedly compact plant size, offering potential benefits for space-efficient cultivation. Our research suggests that targeted manipulation of hormone biosynthetic genes can effectively tailor plant architecture for vertical farming.
Collapse
Affiliation(s)
- Yoonseo Lim
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Myeong-Gyun Seo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Jiwoo Lee
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Seungpyo Hong
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Jeong-Tak An
- Department of Smart Farm Science, Kyung Hee University, Yongin, Korea
| | - Ho-Young Jeong
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Woo-Jong Hong
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
- Department of Smart Farm Science, Kyung Hee University, Yongin, Korea
| | - Chanhui Lee
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, Korea
| | - Soon Ju Park
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Choon-Tak Kwon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
- Department of Smart Farm Science, Kyung Hee University, Yongin, Korea
| |
Collapse
|
4
|
Yuan Y, Huang Z, Wang Y, Deng L, Wang T, Cao D, Liao L, Xiong B, Tu M, Wang Z, Wang J. Variety Effect on Peelability and Mechanisms of Action of Late-Ripening Citrus Fruits. PLANTS (BASEL, SWITZERLAND) 2025; 14:1349. [PMID: 40364378 PMCID: PMC12073583 DOI: 10.3390/plants14091349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Peelability, a crucial commercial trait for fresh-eating citrus, has received limited research attention regarding its underlying mechanisms. This study investigated three late-maturing citrus cultivars, namely 'Qingjian' (QJ), 'Mingrijian' (MRJ), and 'Chunjian' (CJ), analyzing their peelability development using texture analysis and exploring the physiological and biochemical factors influencing peeling difficulty. The results showed that peelability improved with fruit maturation, reaching its peak at full ripeness, with the following order of peeling difficulty: QJ (hardest) > MRJ (intermediate) > CJ (easiest). At full maturity, QJ (the most difficult to peel) exhibited more regularly shaped peel cells with fewer intercellular spaces, lower intracellular organic matter accumulation, and higher levels of cell wall polysaccharides, calcium (Ca), and abscisic acid (ABA). These characteristics may be linked to the lower relative expression of soluble sugar (TS)-related genes (CCR4A, SPP1) and the titratable acid (TA)-related gene (CsCit1), as well as the higher relative expression of ABA biosynthesis genes (NCED1, NCED2). Correlation analyses demonstrated that citrus peel firmness and adhesion strength are significantly associated with multiple growth and developmental characteristics, including fruit morphometric parameters, peel cellular architecture, intracellular organic compound content, cell wall polysaccharide levels and related degradative enzyme activities, calcium concentrations, and endogenous phytohormone profiles. These findings provide valuable insights for studying peelability mechanisms and improving fruit quality in citrus breeding.
Collapse
Affiliation(s)
- Ya Yuan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (Z.H.); (Y.W.); (L.D.); (T.W.); (D.C.); (L.L.); (B.X.)
| | - Ziyi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (Z.H.); (Y.W.); (L.D.); (T.W.); (D.C.); (L.L.); (B.X.)
| | - Yihong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (Z.H.); (Y.W.); (L.D.); (T.W.); (D.C.); (L.L.); (B.X.)
| | - Lijun Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (Z.H.); (Y.W.); (L.D.); (T.W.); (D.C.); (L.L.); (B.X.)
| | - Tie Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (Z.H.); (Y.W.); (L.D.); (T.W.); (D.C.); (L.L.); (B.X.)
| | - Defa Cao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (Z.H.); (Y.W.); (L.D.); (T.W.); (D.C.); (L.L.); (B.X.)
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (Z.H.); (Y.W.); (L.D.); (T.W.); (D.C.); (L.L.); (B.X.)
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (Z.H.); (Y.W.); (L.D.); (T.W.); (D.C.); (L.L.); (B.X.)
| | - Meiyan Tu
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China;
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (Z.H.); (Y.W.); (L.D.); (T.W.); (D.C.); (L.L.); (B.X.)
| | - Jun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (Z.H.); (Y.W.); (L.D.); (T.W.); (D.C.); (L.L.); (B.X.)
| |
Collapse
|
5
|
Liu T, Qu J, Fang Y, Yang H, Lai W, Pan L, Liu JH. Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:582-595. [PMID: 39601632 DOI: 10.1111/jipb.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/29/2024]
Abstract
Polyamines (PAs) are nitrogenous and polycationic compounds containing more than two amine residues. Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes. The PA balance, which may be affected by many environmental factors, is finely maintained by the pathways of PA biosynthesis and degradation (catabolism). In this review, the advances in PA transport and distribution and their roles in plants were summarized and discussed. In addition, the interplay between PAs and phytohormones, NO, and H2O2 were detailed during plant growth, senescence, fruit repining, as well as response to biotic and abiotic stresses. Moreover, it was elucidated how environmental signals such as light, temperature, and humidity modulate PA accumulation during plant development. Notably, PA has been shown to exert a potential role in shaping the domestication of rice. The present review comprehensively summarizes these latest advances, highlighting the importance of PAs as endogenous signaling molecules in plants, and as well proposes future perspectives on PA research.
Collapse
Affiliation(s)
- Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenting Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Luyi Pan
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
6
|
Chi Z, Wang L, Hu Q, Yi G, Wang S, Guo Q, Jing D, Liang G, Xia Y. The MADS-Box Transcription Factor EjAGL18 Negatively Regulates Malic Acid Content in Loquat by Repressing EjtDT1. Int J Mol Sci 2025; 26:530. [PMID: 39859247 PMCID: PMC11765138 DOI: 10.3390/ijms26020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Malic acid is the major organic acid in loquat fruit, contributing to the sourness of fruit and affecting fruit flavor. However, the transcriptional regulation of malic acid in loquat is not well understood. Here, we discovered a MADS-box transcription factor (TF), EjAGL18, that regulated malic acid accumulation in loquat. EjAGL18 is a nucleus-localized TF without transcriptional activity. The expression of EjAGL18 increased during fruit ripening, opposite to the accumulation pattern of malic acid in loquat. The transient overexpression of EjAGL18 in loquat fruit downregulated malic acid accumulation and the transcriptional level of the tonoplast dicarboxylate transporter EjtDT1. Conversely, silencing EjAGL18 in loquat fruit upregulated the malic acid content and EjtDT1 expression level. Dual-luciferase assays and yeast one-hybrid experiments further confirmed that EjAGL18 could bind to the promoter of EjtDT1 and repress its transcriptions. Furthermore, the transient overexpression of EjtDT1 in loquat fruit increased the malic acid content. These results revealed that EjAGL18 negatively regulates malic acid content by repressing EjtDT1 in loquat. This study broadens the understanding of the MADS-box TF's regulatory mechanisms in malic acid and provides new insights into fruit flavor improvement in loquat.
Collapse
Affiliation(s)
- Zhuoheng Chi
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Luwei Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qiankun Hu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guangquan Yi
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Shuming Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Danlong Jing
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yan Xia
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Jiang T, Song Y, Chang L, Huang Q, He W, Liu H. Sustainable active packaging developed using starch-based foam incorporating 1-Methylcyclopropene@α-Cyclodextrin. Carbohydr Polym 2025; 347:122696. [PMID: 39486937 DOI: 10.1016/j.carbpol.2024.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 11/04/2024]
Abstract
The preservation of fruit freshness during long-distance transportation frequently faces significant challenges, especially a high risk of spoilage. 1-Methylcyclopropene (1-MCP), an effective ethylene inhibitor, is widely used to slow down fruit ripening and maintain freshness. However, achieving a controllable release of 1-MCP is challenging, and traditional carrier materials such as paper, chitosan films, and microcapsules have proven unsatisfactory. Here, we introduced an innovative sustainable packaging featuring a "sandwich" structure based on starch-based foam sheets. The hydrophilic properties and porous structure of the foam ensure the controllable and slow release of 1-MCP. Additionally, its mechanical durability provides a cushioning role to minimize physical damage to fruits during transport process. This method achieves a significant reduction in ethylene production and respiration rates by up to 60.49 % and 57.50 % respectively, leading to an extension of the shelf life of climacteric fruits by 5-10 days. The novel active packaging not only effectively prolongs the shelf life and improves the quality of fruit but is also economical and environmentally friendly due to its biodegradable starch-based composition.
Collapse
Affiliation(s)
- Tianyu Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Yuqing Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Knowledge City, Guangzhou 510663, China
| | - Limeng Chang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanlin He
- Center for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Knowledge City, Guangzhou 510663, China.
| |
Collapse
|
8
|
Wei TL, Wan YT, Liu HN, Pei MS, He GQ, Guo DL. CHH hypermethylation contributes to the early ripening of grapes revealed by DNA methylome landscape of 'Kyoho' and its bud mutant. HORTICULTURE RESEARCH 2025; 12:uhae285. [PMID: 39866961 PMCID: PMC11764089 DOI: 10.1093/hr/uhae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/02/2024] [Indexed: 01/28/2025]
Abstract
DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages. Our results revealed that transposons (TEs) and gene flanking regions exhibited high levels of methylation, particularly in 'Fengzao', attributed to CHH site methylation. Interestingly, the methylation patterns in these two cultivars showed distinct dynamics during berry development. While methylation levels of genes and TEs increased gradually in 'Kyoho' throughout berry development, 'Fengzao' did not display consistent changes. Notably, 'Fengzao' exhibited higher methylation levels in promoters compared to 'Kyoho', suggesting that hypermethylation of promoters may contribute to its early ripening phenotype. Integration of methylome and transcriptome data highlighted differentially methylated genes (DMGs) and expressed genes (DEGs) associated with secondary metabolite biosynthesis, with 38 genes identified as potential candidates involved in grape berry development. Furthermore, the study identified a jasmonate-induced oxygenase gene (JOX1) as a negative regulator of ripening in Arabidopsis and grapes, indicating that hypermethylation of JOX1 may play a role in the early ripening of 'Fengzao'. Overall, our findings provide insights into the distinct DNA methylation patterns during grape berry development, shedding light on the epigenetic regulatory mechanisms underlying the early-ripening bud mutant.
Collapse
Affiliation(s)
- Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Yu-Tong Wan
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| |
Collapse
|
9
|
Li C, Cui J, Lu X, Shi M, Xu J, Yu W. Function of DNA methylation in fruits: A review. Int J Biol Macromol 2024; 282:137086. [PMID: 39500431 DOI: 10.1016/j.ijbiomac.2024.137086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/14/2024]
Abstract
Advances in the detection and mapping of DNA methylation redefine our understanding of the modifications as epigenetic regulation. In plants, the most prevalent DNA methylation plays crucial and dynamic roles in a wide variety of processes, such as stress responses, seedlings growth, fruit ripening and so on. Here, we discuss firstly the changes of DNA methylation (CG, CHG, and CHH) dynamic in plants. Second, we review the latest research progress on DNA methylation in the pigment accumulation of fruits including apple, grape, pear, kiwifruit, sweet orange, peach, cucumber, and tomato. Thirdly, the roles of DNA methylation in fruit development and ripening also are summarized. Moreover, DNA methylation is also associates with disease resistance, and flavor and nutritional quality in fruits. Lastly, we also provide some perspectives on future research of the unknown DNA methylation in fruits.
Collapse
Affiliation(s)
- Changxia Li
- College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Jing Cui
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Meimei Shi
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
10
|
Su Q, Yang H, Li X, Zhong Y, Feng Y, Li H, Tahir MM, Zhao Z. Upregulation of PECTATE LYASE5 by a NAC transcription factor promotes fruit softening in apple. PLANT PHYSIOLOGY 2024; 196:1887-1907. [PMID: 39158080 DOI: 10.1093/plphys/kiae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
Flesh firmness is a critical breeding trait that determines consumer selection, shelf life, and transportation. The genetic basis controlling firmness in apple (Malus × domestica Borkh.) remains to be fully elucidated. We aimed to decipher genetic variance for firmness at harvest and develop potential molecular markers for marker-assisted breeding. Maturity firmness for 439 F1 hybrids from a cross of "Cripps Pink" and "Fuji" was determined in 2016 and 2017. The phenotype segregated extensively, with a Gaussian distribution. In a combined bulked segregant analysis (BSA) and RNA-sequencing analysis, 84 differentially expressed genes were screened from the 10 quantitative trait loci regions. Interestingly, next-generation re-sequencing analysis revealed a Harbinger-like transposon element insertion upstream of the candidate gene PECTATE LYASE5 (MdPL5); the genotype was associated with flesh firmness at harvest. The presence of this transposon repressed MdPL5 expression and was closely linked to the extra-hard phenotype. MdPL5 was demonstrated to promote softening in apples and tomatoes. Subsequently, using the MdPL5 promoter as bait, MdNAC1-L was identified as a transcription activator that positively regulates ripening and softening in the developing fruit. We also demonstrated that MdNAC1-L could induce the up-regulation of MdPL5, MdPG1, and the ethylene-related genes MdACS1 and MdACO1. Our findings provide insight into TE-related genetic variation and the PL-mediated regulatory network for the firmness of apple fruit.
Collapse
Affiliation(s)
- Qiufang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijuan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianglu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanwen Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifeng Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongfei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, shaanxi 712100, China
| |
Collapse
|
11
|
Huang Y, Zhu C, Hu Y, Yan S, Luo Z, Zou Y, Wu W, Zeng J. Integrated hormone and transcriptome profiles provide insight into the pericarp differential development mechanism between Mandarin 'Shatangju' and 'Chunhongtangju'. FRONTIERS IN PLANT SCIENCE 2024; 15:1461316. [PMID: 39450074 PMCID: PMC11499144 DOI: 10.3389/fpls.2024.1461316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Introduction Citrus reticulata cv. 'Chunhongtangju' was mutated from Mandarin 'Shatangju', which has been identified as a new citrus variety. Mandarin 'Chunhongtangju' fruits were late-ripening for about two months than Mandarin 'Shatangju'. Methods To understand the pericarp differential development mechanism in Mandarin 'Shatangju' (CK) and 'Chunhongtangju' (LM), hormones and transcriptome profiles of pericarps were performed in different development stages: Young fruit stage (CK1/LM1), Expansion and Turning color stage (CK2), Expansion stage (LM2), Turning color stage (LM3), and Maturity stage (CK3/LM4). Results In this study, the development of LM was significantly slower, and the maturity was significantly delayed. At the same stage, most hormones in Mandarin 'Chunhongtangju' pericarps were higher than that in 'Shatangju' such as gibberellin A24, cis(+)-12-oxophytodienoic acid, and L-phenylalanine. The deficiency of hormones in late-maturing pericarps was mainly manifested in ABA, 12-OHJA, MeSAG, and ABA-GE. Differences in transcriptome profiles between the two citrus varieties are primarily observed in energy metabolism, signal transduction such as MAPK signaling pathway and plant hormone signaling, and biosynthesis of secondary metabolites. After analyzing the hormones and transcriptome data, we found that the top genes and hormones, such as Cs_ont_5g020040 (transcription elongation factor, TFIIS), Cs_ont_7g021670 (BAG family molecular chaperone regulator 5, BAG5), Cs_ont_2g025760 (40S ribosomal protein S27, Rps27), 5-deoxystrigol, salicylic acid 2-O-β-glucosid, and gibberellin A24, contributed significantly to gene transcription and hormone synthesis. Discussion This study suggests that the variances of pericarp development between the two varieties are linked to variations in the transcription levels of genes associated with energy and secondary metabolism, signal transduction related genes. These findings expand our understanding of the complex transcriptional and hormonal regulatory hierarchy during pericarp development.
Collapse
Affiliation(s)
- Yongjing Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Congyi Zhu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Yibo Hu
- Deqing County Agricultural Technology Promotion Center, Zhaoqing, China
| | - Sanjiao Yan
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Zhimin Luo
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Yanping Zou
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Wen Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Jiwu Zeng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| |
Collapse
|
12
|
Zhang S, Wu S, Jia Z, Zhang J, Li Y, Ma X, Fan B, Wang P, Gao Y, Ye Z, Wang W. Exploring the influence of a single-nucleotide mutation in EIN4 on tomato fruit firmness diversity through fruit pericarp microstructure. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2379-2394. [PMID: 38623687 PMCID: PMC11331787 DOI: 10.1111/pbi.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/04/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Tomato (Solanum lycopersicum) stands as one of the most valuable vegetable crops globally, and fruit firmness significantly impacts storage and transportation. To identify genes governing tomato firmness, we scrutinized the firmness of 266 accessions from core collections. Our study pinpointed an ethylene receptor gene, SlEIN4, located on chromosome 4 through a genome-wide association study (GWAS) of fruit firmness in the 266 tomato core accessions. A single-nucleotide polymorphism (SNP) (A → G) of SlEIN4 distinguished lower (AA) and higher (GG) fruit firmness genotypes. Through experiments, we observed that overexpression of SlEIN4AA significantly delayed tomato fruit ripening and dramatically reduced fruit firmness at the red ripe stage compared with the control. Conversely, gene editing of SlEIN4AA with CRISPR/Cas9 notably accelerated fruit ripening and significantly increased fruit firmness at the red ripe stage compared with the control. Further investigations revealed that fruit firmness is associated with alterations in the microstructure of the fruit pericarp. Additionally, SlEIN4AA positively regulates pectinase activity. The transient transformation assay verified that the SNP (A → G) on SlEIN4 caused different genetic effects, as overexpression of SlEIN4GG increased fruit firmness. Moreover, SlEIN4 exerts a negative regulatory role in tomato ripening by impacting ethylene evolution through the abundant expression of ethylene pathway regulatory genes. This study presents the first evidence of the role of ethylene receptor genes in regulating fruit firmness. These significant findings will facilitate the effective utilization of firmness and ripening traits in tomato improvement, offering promising opportunities for enhancing tomato storage and transportation capabilities.
Collapse
Affiliation(s)
- Shiwen Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Shengqing Wu
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Zhiqi Jia
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Ying Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Xingyun Ma
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Bingli Fan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Panqiao Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Yanna Gao
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
13
|
Albornoz K, Zhou J, Zakharov F, Grove J, Wang M, Beckles DM. Ectopic overexpression of ShCBF1 and SlCBF1 in tomato suggests an alternative view of fruit responses to chilling stress postharvest. FRONTIERS IN PLANT SCIENCE 2024; 15:1429321. [PMID: 39161954 PMCID: PMC11331401 DOI: 10.3389/fpls.2024.1429321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
Postharvest chilling injury (PCI) is a physiological disorder that often impairs tomato fruit ripening; this reduces fruit quality and shelf-life, and even accelerates spoilage at low temperatures. The CBF gene family confers cold tolerance in Arabidopsis thaliana, and constitutive overexpression of CBF in tomato increases vegetative chilling tolerance, in part by retarding growth, but, whether CBF increases PCI tolerance in fruit is unknown. We hypothesized that CBF1 overexpression (OE) would be induced in the cold and increase resistance to PCI. We induced high levels of CBF1 in fruit undergoing postharvest chilling by cloning it from S. lycopersicum and S. habrochaites, using the stress-inducible RD29A promoter. Harvested fruit were cold-stored (2.5°C) for up to three weeks, then rewarmed at 20°C for three days. Transgene upregulation was triggered during cold storage from 8.6- to 28.6-fold in SlCBF1-OE, and between 3.1- to 8.3-fold in ShCBF1-OE fruit, but developmental abnormalities in the absence of cold induction were visible. Remarkably, transgenic fruit displayed worsening of PCI symptoms, i.e., failure to ripen after rewarming, comparatively higher susceptibility to decay relative to wild-type (WT) fruit, lower total soluble solids, and the accumulation of volatile compounds responsible for off-odors. These symptoms correlated with CBF1 overexpression levels. Transcriptomic analysis revealed that the ripening and biotic and abiotic stress responses were altered in the cold-stored transgenic fruit. Seedlings grown from 'chilled' and 'non-chilled' WT fruit, in addition to 'non-chilled' transgenic fruit were also exposed to 0°C to test their photosynthetic response to chilling injury. Chilled WT seedlings adjusted their photosynthetic rates to reduce oxidative damage; 'non-chilled' WT seedlings did not. Photosynthetic parameters between transgenic seedlings were similar at 0°C, but SlCBF1-OE showed more severe photoinhibition than ShCBF1-OE, mirroring phenotypic observations. These results suggest that 1) CBF1 overexpression accelerated fruit deterioration in response to cold storage, and 2) Chilling acclimation in fructus can increase chilling tolerance in seedling progeny of WT tomato.
Collapse
Affiliation(s)
| | | | | | | | | | - Diane M. Beckles
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| |
Collapse
|
14
|
Sun Z, Guo X, Kumar RMS, Huang C, Xie Y, Li M, Li J. Transcriptomic and metabolomic analyses reveal the importance of ethylene networks in mulberry fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112084. [PMID: 38614360 DOI: 10.1016/j.plantsci.2024.112084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Mulberry (Morus alba L.) is a climacteric and highly perishable fruit. Ethylene has been considered to be an important trigger of fruit ripening process. However, the role of ethylene in the mulberry fruit ripening process remains unclear. In this study, we performed a comprehensive analysis of metabolomic and transcriptomic data of mulberry fruit and the physiological changes accompanying the fruit ripening process. Our study revealed that changes in the accumulation of specific metabolites at different stages of fruit development and ripening were closely correlated to transcriptional changes as well as underlying physiological changes and the development of taste biomolecules. The ripening of mulberry fruits was highly associated with the production of endogenous ethylene, and further application of exogenous ethylene assisted the ripening process. Transcriptomic analysis revealed that differential expression of diverse ripening-related genes was involved in sugar metabolism, anthocyanin biosynthesis, and cell wall modification pathways. Network analysis of transcriptomics and metabolomics data revealed that many transcription factors and ripening-related genes were involved, among which ethylene-responsive transcription factor 3 (MaERF3) plays a crucial role in the ripening process. The role of MaERF3 in ripening was experimentally proven in a transient overexpression assay in apples. Our study indicates that ethylene plays a vital role in modulating mulberry fruit ripening. The results provide a basis for guiding the genetic manipulation of mulberry fruits towards sustainable agricultural practices and improve post-harvest management, potentially enhancing the quality and shelf life of mulberry fruits for sustainable agriculture and forestry.
Collapse
Affiliation(s)
- Zhichao Sun
- Sericultural Research Insitute, Chengde Medical University, Chengde 067000, China; State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xinmiao Guo
- Chengde College of Applied Technology, Chengde 067000, China.
| | - R M Saravana Kumar
- Department of Biotechnology, Saveetha School of Engineering, Saveetha University, Chennai, Tamil Nadu 602105, India.
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.
| | - Yan Xie
- Sericultural Research Insitute, Chengde Medical University, Chengde 067000, China.
| | - Meng Li
- Sericultural Research Insitute, Chengde Medical University, Chengde 067000, China.
| | - Jisheng Li
- Sericultural Research Insitute, Chengde Medical University, Chengde 067000, China.
| |
Collapse
|
15
|
Hu J, Wang J, Muhammad T, Yang T, Li N, Yang H, Yu Q, Wang B. Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato ( Solanum lycopersicum). Int J Mol Sci 2024; 25:6493. [PMID: 38928199 PMCID: PMC11204166 DOI: 10.3390/ijms25126493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Tomato fruit ripening is accompanied by carotenoid accumulation and color changes. To elucidate the regulatory mechanisms underlying carotenoid synthesis during fruit ripening, a combined transcriptomic and metabolomic analysis was conducted on red-fruited tomato (WP190) and orange-fruited tomato (ZH108). A total of twenty-nine (29) different carotenoid compounds were identified in tomato fruits at six different stages. The abundance of the majority of the carotenoids was enhanced significantly with fruit ripening, with higher levels of lycopene; (E/Z)-lycopene; and α-, β- and γ-carotenoids detected in the fruits of WP190 at 50 and 60 days post anthesis (DPA). Transcriptome analysis revealed that the fruits of two varieties exhibited the highest number of differentially expressed genes (DEGs) at 50 DPA, and a module of co-expressed genes related to the fruit carotenoid content was established by WGCNA. qRT-PCR analysis validated the transcriptome result with a significantly elevated transcript level of lycopene biosynthesis genes (including SlPSY2, SlZCIS, SlPDS, SlZDS and SlCRTSO2) observed in WP190 at 50 DPA in comparison to ZH108. In addition, during the ripening process, the expression of ethylene biosynthesis (SlACSs and SlACOs) and signaling (SlEIN3 and SlERF1) genes was also increased, and these mechanisms may regulate carotenoid accumulation and fruit ripening in tomato. Differential expression of several key genes in the fruit of two tomato varieties at different stages regulates the accumulation of carotenoids and leads to differences in color between the two varieties of tomato. The results of this study provide a comprehensive understanding of carotenoid accumulation and ethylene biosynthesis and signal transduction pathway regulatory mechanisms during tomato fruit development.
Collapse
Affiliation(s)
- Jiahui Hu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Haitao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Qinghui Yu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Baike Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| |
Collapse
|
16
|
Ghosh A, Hasanuzzaman M, Fujita M, Adak MK. Carbon dioxide sensitization delays the postharvest ripening and fatty acids composition of Capsicum fruit by regulating ethylene biosynthesis, malic acid and reactive oxygen species metabolism. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:985-1002. [PMID: 38974358 PMCID: PMC11222363 DOI: 10.1007/s12298-024-01471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Present study would be significant in the sustenance of quality characters for postharvest storage of Capsicum fruit with CO2-sensitization in biocompatible manner. The present experiment describes effects of CO2 sensitization on delaying postharvest ripening through physiological attributes in Capsicum fruit. The experiment was conducted with acidified bicarbonate-derived CO2 exposure for 2 h on Capsicum fruit, kept under white light at 25 °C through 7 days postharvest storage. Initially, fruits responded well to CO2 as recorded sustenance of greenness and integrity of fruit coat resolved through scanning electron micrograph. Loss of water and accumulation of total soluble solids were marginally increased on CO2-sensitized fruit as compared to non-sensitized (control) fruit. The ethylene metabolism biosynthetic genes like CaACC synthase, CaACC oxidase were downregulated on CO2-sensitization. Accompanying ethylene metabolism cellular respiration was downregulated on CO2 induction as compared to control through 7 days of storage. Fruit coat photosynthesis decarboxylating reaction by NADP malic enzyme was upregulated to maintain the reduced carbon accumulation as recorded on 7 days of storage under the same condition. CO2-sensitization effectively reduced the lipid peroxides as oxidative stress products on ripening throughout the storage. Anti-oxidation reaction essentially downregulates the ROS-induced damages of biomolecules that otherwise are highly required for food preservation during postharvest storage. Thus, the major finding is that CO2-sensitization maintains a higher ratio of unsaturated to saturated fatty acids in fruit coat during storage. Tissue-specific downregulation of ROS also maintained the nuclear stability under CO2 exposure. These findings provide basic as well as applied insights for sustaining Capsicum fruit quality with CO2 exposure under postharvest storage. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01471-4.
Collapse
Affiliation(s)
- Arijit Ghosh
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, Nadia, West Bengal 741235 India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
| | - M. K. Adak
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, Nadia, West Bengal 741235 India
| |
Collapse
|
17
|
Gao Y, Regad F, Li Z, Pirrello J, Bouzayen M, Van Der Rest B. Class I TCP in fruit development: much more than growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1411341. [PMID: 38863555 PMCID: PMC11165105 DOI: 10.3389/fpls.2024.1411341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Fruit development can be viewed as the succession of three main steps consisting of the fruit initiation, growth and ripening. These processes are orchestrated by different factors, notably the successful fertilization of flowers, the environmental conditions and the hormones whose action is coordinated by a large variety of transcription factors. Among the different transcription factor families, TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR (TCP) family has received little attention in the frame of fruit biology despite its large effects on several developmental processes and its action as modulator of different hormonal pathways. In this respect, the comprehension of TCP functions in fruit development remains an incomplete puzzle that needs to be assembled. Building on the abundance of genomic and transcriptomic data, this review aims at collecting available TCP expression data to allow their integration in the light of the different functional genetic studies reported so far. This reveals that several Class I TCP genes, already known for their involvement in the cell proliferation and growth, display significant expression levels in developing fruit, although clear evidence supporting their functional significance in this process remains scarce. The extensive expression data compiled in our study provide convincing elements that shed light on the specific involvement of Class I TCP genes in fruit ripening, once these reproductive organs acquire their mature size. They also emphasize their putative role in the control of specific biological processes such as fruit metabolism and hormonal dialogue.
Collapse
Affiliation(s)
- Yushuo Gao
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Farid Regad
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Benoît Van Der Rest
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| |
Collapse
|
18
|
Mohorović P, Geldhof B, Holsteens K, Rinia M, Daems S, Reijnders T, Ceusters J, Van den Ende W, Van de Poel B. Ethylene inhibits photosynthesis via temporally distinct responses in tomato plants. PLANT PHYSIOLOGY 2024; 195:762-784. [PMID: 38146839 DOI: 10.1093/plphys/kiad685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023]
Abstract
Ethylene is a volatile plant hormone that regulates many developmental processes and responses toward (a)biotic stress. Studies have shown that high levels of ethylene repress vegetative growth in many important crops, including tomato (Solanum lycopersicum), possibly by inhibiting photosynthesis. We investigated the temporal effects of ethylene on young tomato plants using an automated ethylene gassing system to monitor the physiological, biochemical, and molecular responses through time course RNA-seq of a photosynthetically active source leaf. We found that ethylene evokes a dose-dependent inhibition of photosynthesis, which can be characterized by 3 temporally distinct phases. The earliest ethylene responses that marked the first phase and occurred a few hours after the start of the treatment were leaf epinasty and a decline in stomatal conductance, which led to lower light perception and CO2 uptake, respectively, resulting in a rapid decline of soluble sugar levels (glucose, fructose). The second phase of the ethylene effect was marked by low carbohydrate availability, which modulated plant energy metabolism to adapt by using alternative substrates (lipids and proteins) to fuel the TCA cycle. Long-term continuous exposure to ethylene led to the third phase, characterized by starch and chlorophyll breakdown, which further inhibited photosynthesis, leading to premature leaf senescence. To reveal early (3 h) ethylene-dependent regulators of photosynthesis, we performed a ChIP-seq experiment using anti-ETHYLENE INSENSITIVE 3-like 1 (EIL1) antibodies and found several candidate transcriptional regulators. Collectively, our study revealed a temporal sequence of events that led to the inhibition of photosynthesis by ethylene and identified potential transcriptional regulators responsible for this regulation.
Collapse
Affiliation(s)
- Petar Mohorović
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Marilien Rinia
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Stijn Daems
- Research Group for Sustainable Plant Production and Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Timmy Reijnders
- Molecular Biotechnology of Plants and Microorganisms Lab, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Johan Ceusters
- Research Group for Sustainable Plant Production and Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Wim Van den Ende
- Molecular Biotechnology of Plants and Microorganisms Lab, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
19
|
Foresti C, Orduña L, Matus JT, Vandelle E, Danzi D, Bellon O, Tornielli GB, Amato A, Zenoni S. NAC61 regulates late- and post-ripening osmotic, oxidative, and biotic stress responses in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2330-2350. [PMID: 38159048 PMCID: PMC11016852 DOI: 10.1093/jxb/erad507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
During late- and post-ripening stages, grape berry undergoes profound biochemical and physiological changes whose molecular control is poorly understood. Here, we report the role of NAC61, a grapevine NAC transcription factor, in regulating different processes involved in berry ripening progression. NAC61 is highly expressed during post-harvest berry dehydration and its expression pattern is closely related to sugar concentration. The ectopic expression of NAC61 in Nicotiana benthamiana leaves resulted in low stomatal conductance, high leaf temperature, tissue collapse and a higher relative water content. Transcriptome analysis of grapevine leaves transiently overexpressing NAC61 and DNA affinity purification and sequencing analyses allowed us to narrow down a list of NAC61-regulated genes. Direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, the Botrytis cinerea susceptibility gene WRKY52, and NAC61 itself was validated. We also demonstrate that NAC61 interacts with NAC60, a proposed master regulator of grapevine organ maturation, in the activation of MYB14 and NAC61 expression. Overall, our findings establish NAC61 as a key player in a regulatory network that governs stilbenoid metabolism and osmotic, oxidative, and biotic stress responses that are the hallmark of late- and post-ripening grape stages.
Collapse
Affiliation(s)
- Chiara Foresti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Davide Danzi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Oscar Bellon
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Alessandra Amato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Jiang G, Li Z, Ding X, Zhou Y, Lai H, Jiang Y, Duan X. WUSCHEL-related homeobox transcription factor SlWOX13 regulates tomato fruit ripening. PLANT PHYSIOLOGY 2024; 194:2322-2337. [PMID: 37995308 DOI: 10.1093/plphys/kiad623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established importance of WUSCHEL-related homeobox (WOX) TFs in plant development, the involvement of WOX and its underlying mechanism in the regulation of fruit ripening remain unclear. Here, we demonstrate that SlWOX13 regulates fruit ripening in tomato (Solanum lycopersicum). Overexpression of SlWOX13 accelerates fruit ripening, whereas loss-of-function mutation in SlWOX13 delays this process. Moreover, ethylene synthesis and carotenoid accumulation are significantly inhibited in slwox13 mutant fruit but accelerated in SlWOX13 transgenic fruit. Integrated analyses of RNA-seq and chromatin immunoprecipitation (ChIP)-seq identified 422 direct targets of SlWOX13, of which 243 genes are negatively regulated and 179 are positively regulated by SlWOX13. Electrophoretic mobility shift assay, RT-qPCR, dual-luciferase reporter assay, and ChIP-qPCR analyses demonstrated that SlWOX13 directly activates the expression of several genes involved in ethylene synthesis and signaling and carotenoid biosynthesis. Furthermore, SlWOX13 modulates tomato fruit ripening through key ripening-related TFs, such as RIPENING INHIBITOR (RIN), NON-RIPENING (NOR), and NAM, ATAF1, 2, and CUC2 4 (NAC4). Consequently, these effects promote fruit ripening. Taken together, these results demonstrate that SlWOX13 positively regulates tomato fruit ripening via both ethylene synthesis and signaling and by transcriptional regulation of key ripening-related TFs.
Collapse
Affiliation(s)
- Guoxiang Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Li
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Ding
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Yijie Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Hongmei Lai
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewu Duan
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Hadish JA, Hargarten HL, Zhang H, Mattheis JP, Honaas LA, Ficklin SP. Towards identification of postharvest fruit quality transcriptomic markers in Malus domestica. PLoS One 2024; 19:e0297015. [PMID: 38446822 PMCID: PMC10917293 DOI: 10.1371/journal.pone.0297015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/27/2023] [Indexed: 03/08/2024] Open
Abstract
Gene expression is highly impacted by the environment and can be reflective of past events that affected developmental processes. It is therefore expected that gene expression can serve as a signal of a current or future phenotypic traits. In this paper we identify sets of genes, which we call Prognostic Transcriptomic Biomarkers (PTBs), that can predict firmness in Malus domestica (apple) fruits. In apples, all individuals of a cultivar are clones, and differences in fruit quality are due to the environment. The apples transcriptome responds to these differences in environment, which makes PTBs an attractive predictor of future fruit quality. PTBs have the potential to enhance supply chain efficiency, reduce crop loss, and provide higher and more consistent quality for consumers. However, several questions must be addressed. In this paper we answer the question of which of two common modeling approaches, Random Forest or ElasticNet, outperforms the other. We answer if PTBs with few genes are efficient at predicting traits. This is important because we need few genes to perform qPCR, and we answer the question if qPCR is a cost-effective assay as input for PTBs modeled using high-throughput RNA-seq. To do this, we conducted a pilot study using fruit texture in the 'Gala' variety of apples across several postharvest storage regiments. Fruit texture in 'Gala' apples is highly controllable by post-harvest treatments and is therefore a good candidate to explore the use of PTBs. We find that the RandomForest model is more consistent than an ElasticNet model and is predictive of firmness (r2 = 0.78) with as few as 15 genes. We also show that qPCR is reasonably consistent with RNA-seq in a follow up experiment. Results are promising for PTBs, yet more work is needed to ensure that PTBs are robust across various environmental conditions and storage treatments.
Collapse
Affiliation(s)
- John A. Hadish
- Molecular Plant Science Department, Washington State University, Pullman, Washington, United States of America
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | - Heidi L. Hargarten
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits Research, Wenatchee, Washington, United States of America
| | - Huiting Zhang
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | - James P. Mattheis
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits Research, Wenatchee, Washington, United States of America
| | - Loren A. Honaas
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits Research, Wenatchee, Washington, United States of America
| | - Stephen P. Ficklin
- Molecular Plant Science Department, Washington State University, Pullman, Washington, United States of America
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
22
|
Yu Y, Peng J, Jia Y, Guan Q, Xiao G, Li C, Shen S, Li K. Chemical characterization-function relationship of pectins from persimmon fruit within different ripeness. Food Chem 2024; 435:137645. [PMID: 37806203 DOI: 10.1016/j.foodchem.2023.137645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
This study investigated the structural and functional characteristics of two different molecular weight persimmon pectin extracted from unripe persimmon (PP-1) and ripe persimmon (PP-2). The molecular weight was determined as 117.8 kDa and 61.3 kDa for PP-1 and PP-2, which consisting of glucose, rhamnose, mannose, galactose, and xylose. AFM results indicated PP-1 with many linear chains, and short chains in while short chains, branching points, and heterogeneous clumps were found in PP-2.Emulsion characterization and storage stability experiments revealed that PP-1 with more stable emulsifying properties than PP-2 and commercial citrus pectin. In vitro fermentation of PP-1 and PP-2 by gut microbiota indicated that PP-1 and PP-2 groups were higher than inulin group in total SCFAs production after 48 h of fermentation. This study provided useful information for high value utilization of persimmon pectin.
Collapse
Affiliation(s)
- Ying Yu
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Jinming Peng
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qingyun Guan
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Gengsheng Xiao
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunmei Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanshan Shen
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China.
| | - Kaikai Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Ma L, Zheng Y, Zhou Z, Deng Z, Tan J, Bai C, Fu A, Wang Q, Zuo J. Dissection of mRNA ac 4C acetylation modifications in AC and Nr fruits: insights into the regulation of fruit ripening by ethylene. MOLECULAR HORTICULTURE 2024; 4:5. [PMID: 38369544 PMCID: PMC10875755 DOI: 10.1186/s43897-024-00082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
N4-acetylcytidine (ac4C) modification of mRNA has been shown to be present in plant RNAs, but its regulatory function in plant remains largely unexplored. In this study, we investigated the differentially expressed mRNAs, lncRNAs and acetylation modifications of mRNAs in tomato fruits from both genotypes. By comparing wild-type (AC) tomato and the ethylene receptor-mutant (Nr) tomato from mature green (MG) to six days after the breaker (Br6) stage, we identified differences in numerous key genes related to fruit ripening and observed the corresponding lncRNAs positively regulated the target genes expression. At the post-transcriptional level, the acetylation level decreased and increased in AC and Nr tomatoes from MG to Br6 stage, respectively. The integrated analysis of RNA-seq and ac4C-seq data revealed the potential positive role of acetylation modification in regulating gene expression. Furthermore, we found differential acetylation modifications of certain transcripts (ACO, ETR, ERF, PG, CesA, β-Gal, GAD, AMY, and SUS) in AC and Nr fruits which may explain the differences in ethylene production, fruit texture, and flavor during their ripening processes. The present study provides new insights into the molecular mechanisms by which acetylation modification differentially regulates the ripening process of wild-type and mutant tomato fruits deficient in ethylene signaling.
Collapse
Affiliation(s)
- Lili Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Zhongjing Zhou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhiping Deng
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinjuan Tan
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chunmei Bai
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Anzhen Fu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Qing Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
| |
Collapse
|
24
|
Wang M, Wu Y, Zhan W, Wang H, Chen M, Li T, Bai T, Jiao J, Song C, Song S, Feng J, Zheng X. The apple transcription factor MdZF-HD11 regulates fruit softening by promoting Mdβ-GAL18 expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:819-836. [PMID: 37936320 DOI: 10.1093/jxb/erad441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Fruit ripening and the associated softening are major determinants of fruit quality and post-harvest shelf life. Although the mechanisms underlying fruit softening have been intensively studied, there are limited reports on the regulation of fruit softening in apples (Malus domestica). Here, we identified a zinc finger homeodomain transcription factor MdZF-HD11that trans-activates the promoter of Mdβ-GAL18, which encodes a pectin-degradation enzyme associated with cell wall metabolism. Both MdZF-HD11 and Mdβ-GAL18 genes were up-regulated by exogenous ethylene treatment and repressed by 1-methylcyclopropene treatment. Further experiments revealed that MdZF-HD11 binds directly to the Mdβ-GAL18 promoter and up-regulates its transcription. Moreover, using transgenic apple fruit calli, we found that overexpression of Mdβ-GAL18 or MdZF-HD11 significantly enhanced β-galactosidase activity, and overexpression of MdZF-HD11 induced the expression of Mdβ-GAL18. We also discovered that transient overexpression of Mdβ-GAL18 or MdZF-HD11 in 'Golden Delicious' apple significantly increased the release of ethylene, reduced fruit firmness, promoted the transformation of skin color from green to yellow, and accelerated ripening and softening of the fruit. Finally, the overexpression of MdZF-HD11 in tomato also promoted fruit softening. Collectively, these results indicate that ethylene-induced MdZF-HD11 interacts with Mdβ-GAL18 to promote the post-harvest softening of apple.
Collapse
Affiliation(s)
- Miaomiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yao Wu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Wenduo Zhan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Hao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Ming Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Tongxin Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jian Jiao
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shangwei Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
25
|
Wang L, Jin N, Xie Y, Zhu W, Yang Y, Wang J, Lei Y, Liu W, Wang S, Jin L, Yu J, Lyu J. Improvements in the Appearance and Nutritional Quality of Tomato Fruits Resulting from Foliar Spraying with Silicon. Foods 2024; 13:223. [PMID: 38254524 PMCID: PMC10814949 DOI: 10.3390/foods13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Research on silicon (Si), an element considered beneficial for plant growth, has focused on abiotic and biotic stress mitigation. However, the effect of Si on tomato fruit quality under normal growth conditions remains unclear. This study investigated the effects of applying different levels of Si (0 mmol·L-1 [CK], 0.6 mmol·L-1 [T1], 1.2 mmol·L-1 [T2], and 1.8 mmol·L-1 [T3]) in foliar sprays on tomato fruit quality cultivated in substrates, and the most beneficial Si level was found. Compared to CK, exogenous Si treatments had a positive influence on the appearance and nutritional quality of tomato fruits at the mature green, breaker, and red ripening stages. Of these, T2 treatment significantly increased peel firmness and single-fruit weight in tomato fruits. The contents of soluble sugars, soluble solids, soluble proteins, and vitamin C were significantly higher, and the nitrate content was significantly lower in the T2 treatment than in the CK treatment. Cluster analysis showed that T2 produced results that were significantly different from those of the CK, T1, and T3 treatments. During the red ripening stage, the a* values of fruits in the T2 treatment tomato were significantly higher than those in the other three treatments. Moreover, the lycopene and lutein contents of the T2 treatment increased by 12.90% and 17.14%, respectively, compared to CK. T2 treatment significantly upregulated the relative gene expression levels of the phytoene desaturase gene (PDS), the lycopene ε-cyclase gene (LCY-E), and the zeaxanthin cyclooxygenase gene (ZEP) in the carotenoid key genes. The total amino acid content in tomato fruits in the T2 treatment was also significantly higher than that of CK. In summary, foliar spraying of 1.2 mmol·L-1 exogenous Si was effective in improving the appearance and nutritional quality of tomato fruits under normal growth conditions. This study provides new approaches to further elucidate the application of exogenous silicon to improve tomato fruit quality under normal conditions.
Collapse
Affiliation(s)
- Li Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Ning Jin
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Yandong Xie
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| | - Wen Zhu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Ye Yang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Jiaying Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Yongzhong Lei
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Wenkai Liu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| | - Li Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| | - Jihua Yu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| | - Jian Lyu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| |
Collapse
|
26
|
Zenoni S, Savoi S, Busatto N, Tornielli GB, Costa F. Molecular regulation of apple and grape ripening: exploring common and distinct transcriptional aspects of representative climacteric and non-climacteric fruits. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6207-6223. [PMID: 37591311 PMCID: PMC10627160 DOI: 10.1093/jxb/erad324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Fleshy fruits of angiosperms are organs specialized for promoting seed dispersal by attracting herbivores and enticing them to consume the organ and the seeds it contains. Ripening can be broadly defined as the processes serving as a plant strategy to make the fleshy fruit appealing to animals, consisting of a coordinated series of changes in color, texture, aroma, and flavor that result from an intricate interplay of genetically and epigenetically programmed events. The ripening of fruits can be categorized into two types: climacteric, which is characterized by a rapid increase in respiration rate typically accompanied by a burst of ethylene production, and non-climacteric, in which this pronounced peak in respiration is absent. Here we review current knowledge of transcriptomic changes taking place in apple (Malus × domestica, climacteric) and grapevine (Vitis vinifera, non-climacteric) fruit during ripening, with the aim of highlighting specific and common hormonal and molecular events governing the process in the two species. With this perspective, we found that specific NAC transcription factor members participate in ripening initiation in grape and are involved in restoring normal physiological ripening progression in impaired fruit ripening in apple. These elements suggest the existence of a common regulatory mechanism operated by NAC transcription factors and auxin in the two species.
Collapse
Affiliation(s)
- Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Stefania Savoi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Nicola Busatto
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 39098 San Michele all’Adige (Trento), Italy
| | | | - Fabrizio Costa
- Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, 39098 San Michele all’Adige (Trento), Italy
| |
Collapse
|
27
|
Liu H, Zhang X, Li J, Zhang G, Fang H, Li Y. Transcriptome analysis reveals the mechanism of different fruit appearance between apricot (Armeniaca vulgaris Lam.) and its seedling. Mol Biol Rep 2023; 50:7995-8003. [PMID: 37540452 DOI: 10.1007/s11033-023-08631-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Apricot fruit has great economic value. In the process of apricot breeding using traditional breeding methods, we obtained a larger seedling (named Us) from the original variety (named U). And Us fruit is larger than U, taste better. Therefore, revealing its mechanism is very important for Apricot breeding. METHODS In this study, de novo assembly and transcriptome sequencing (RNA-Seq) was used to screen the differently expressed genes (DEGs) between U and Us at three development stages, including young fruits stage, mid-ripening stage and mature fruit stage. RESULTS The results showed that there were 6,753 DEGs at different sampling time. "Cellulose synthase (UDP-forming) activity" and "cellulose synthase activity" were the key GO terms enriched in GO, of which CESA and CSL family played a key role. "Photosynthesis-antenna proteins" and "Plant hormone signal transduction" were the candidate pathways and lhca, lhcb, Aux/IAA and SAUR were the main regulators. CONCLUSION The auxin signaling pathway was active in Us, of which Aux/IAAs and SAUR were the key fruit size regulators. The low level of lhca and lhcb in Us could reveal the low demand for exogenous carbon, but they increased at mature stage, which might be due to the role of aux, who was keeping the fruit growing. Aux and photosynthesis maight be the main causes of appearance formation of Us fruits. Interestingly, the higher expression of CESA and CSL proved that Us entered the hardening process earlier than U. The advanced developmental progress might also be due to the role of Aux.
Collapse
Affiliation(s)
- Huiyan Liu
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiangjun Zhang
- School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Jianshe Li
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
- Ningxia Facility Horticulture Engineering Technology Center, Yinchuan, 750021, China
- Technological Innovation Center of Horticulture (Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Guangdi Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China.
- Ningxia Facility Horticulture Engineering Technology Center, Yinchuan, 750021, China.
- Technological Innovation Center of Horticulture (Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021, China.
| | - Haitian Fang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Yu Li
- Technological Innovation Center of Horticulture (Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| |
Collapse
|
28
|
Ming Y, Jiang L, Ji D. Epigenetic regulation in tomato fruit ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1269090. [PMID: 37780524 PMCID: PMC10539587 DOI: 10.3389/fpls.2023.1269090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Fruit ripening is a crucial stage in quality development, influenced by a diverse array of internal and external factors. Among these factors, epigenetic regulation holds significant importance and has garnered substantial research attention in recent years. Here, this review aims to discuss the breakthrough in epigenetic regulation of tomato (Solanum lycopersicum) fruit ripening, including DNA methylation, N6-Methyladenosine mRNA modification, histone demethylation/deacetylation, and non-coding RNA. Through this brief review, we seek to enhance our understanding of the regulatory mechanisms governing tomato fruit ripening, while providing fresh insights for the precise modulation of these mechanisms.
Collapse
Affiliation(s)
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
29
|
Wu C, Deng W, Shan W, Liu X, Zhu L, Cai D, Wei W, Yang Y, Chen J, Lu W, Kuang J. Banana MKK1 modulates fruit ripening via the MKK1-MPK6-3/11-4-bZIP21 module. Cell Rep 2023; 42:112832. [PMID: 37498740 DOI: 10.1016/j.celrep.2023.112832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade consisting of MKKK, MKK, and MPK plays an indispensable role in various plant physiological processes. Previously, we showed that phosphorylation of MabZIP21 by MaMPK6-3 is involved in banana fruit ripening, but the regulatory mechanism by which MKK controls banana fruit ripening remains unclear. Here, ripening-induced MaMKK1 from banana fruit is characterized, and transiently overexpressing and silencing of MaMKK1 in banana fruit accelerates and inhibits fruit ripening, respectively, possibly by influencing phosphorylation and activity of MPK. MaMKK1 interacts with and phosphorylates MaMPK6-3 and MaMPK11-4 mainly at the pTEpY residues, resulting in MPK activation. MaMPK11-4 phosphorylates MabZIP21 to elevate its transcriptional activation ability. Transgenic tomato fruit expressing MabZIP21 ripen quickly with a concomitant increase in MabZIP21 phosphorylation. Additionally, MabZIP21 activates MaMPK11-4 and MaMKK1 transcription to form a regulatory feedback loop. Collectively, here we report a regulatory pathway of the MaMPK6-3/11-4-MabZIP21 module in controlling banana fruit ripening.
Collapse
Affiliation(s)
- Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lisha Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Di Giacomo M, Vega TA, Cambiaso V, Picardi LA, Rodríguez GR, Pereira da Costa JH. An Integrative Transcriptomics and Proteomics Approach to Identify Putative Genes Underlying Fruit Ripening in Tomato near Isogenic Lines with Long Shelf Life. PLANTS (BASEL, SWITZERLAND) 2023; 12:2812. [PMID: 37570966 PMCID: PMC10421356 DOI: 10.3390/plants12152812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
The elucidation of the ripening pathways of climacteric fruits helps to reduce postharvest losses and improve fruit quality. Here, we report an integrative study on tomato ripening for two near-isogenic lines (NIL115 and NIL080) with Solanum pimpinellifolium LA0722 introgressions. A comprehensive analysis using phenotyping, molecular, transcript, and protein data were performed. Both NILs show improved fruit firmness and NIL115 also has longer shelf life compared to the cultivated parent. NIL115 differentially expressed a transcript from the APETALA2 ethylene response transcription factor family (AP2/ERF) with a potential role in fruit ripening. E4, another ERF, showed an upregulated expression in NIL115 as well as in the wild parent, and it was located physically close to a wild introgression. Other proteins whose expression levels changed significantly during ripening were identified, including an ethylene biosynthetic enzyme (ACO3) and a pectate lyase (PL) in NIL115, and an alpha-1,4 glucan phosphorylase (Pho1a) in NIL080. In this study, we provide insights into the effects of several genes underlying tomato ripening with potential impact on fruit shelf life. Data integration contributed to unraveling ripening-related genes, providing opportunities for assisted breeding.
Collapse
Affiliation(s)
- Melisa Di Giacomo
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
| | - Tatiana Alejandra Vega
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
| | - Vladimir Cambiaso
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| | - Liliana Amelia Picardi
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| | - Gustavo Rubén Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| | - Javier Hernán Pereira da Costa
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| |
Collapse
|
31
|
Gao G, Yang F, Wang C, Duan X, Li M, Ma Y, Wang F, Qi H. The transcription factor CmERFI-2 represses CmMYB44 expression to increase sucrose levels in oriental melon fruit. PLANT PHYSIOLOGY 2023; 192:1378-1395. [PMID: 36938625 PMCID: PMC10231561 DOI: 10.1093/plphys/kiad155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
Soluble sugar accumulation in fruit ripening determines fleshy fruit quality. However, the molecular mechanism for this process is not yet understood. Here, we showed a transcriptional repressor, CmMYB44 regulates sucrose accumulation and ethylene synthesis in oriental melon (Cucumis. melo var. makuwa Makino) fruit. Overexpressing CmMYB44 suppressed sucrose accumulation and ethylene production. Furthermore, CmMYB44 repressed the transcriptional activation of CmSPS1 (sucrose phosphate synthase 1) and CmACO1 (ACC oxidase 1), two key genes in sucrose and ethylene accumulation, respectively. During the later stages of fruit ripening, the repressive effect of CmMYB44 on CmSPS1 and CmACO1 could be released by overexpressing CmERFI-2 (ethylene response factor I-2) and exogenous ethylene in "HS" fruit (high sucrose accumulation fruit). CmERFI-2 acted upstream of CmMYB44 as a repressor by directly binding the CmMYB44 promoter region, indirectly stimulating the expression level of CmSPS1 and CmACO1. Taken together, we provided a molecular regulatory pathway mediated by CmMYB44, which determines the degree of sucrose and ethylene accumulation in oriental melon fruit and sheds light on transcriptional responses triggered by ethylene sensing that enable the process of fruit ripening.
Collapse
Affiliation(s)
- Ge Gao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Fan Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Cheng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Xiaoyu Duan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Meng Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
32
|
Bai M, Tong P, Luo Q, Shang N, Huang H, Huai B, Wu H. CgPG21 is involved in the degradation of the cell wall during the secretory cavity formation in Citrus grandis 'Tomentosa' fruits. PLANT CELL REPORTS 2023:10.1007/s00299-023-03032-7. [PMID: 37219583 DOI: 10.1007/s00299-023-03032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
MAIN CONCLUSION CgPG21 is mainly located in the cell wall, participates in the intercellular layer degradation of the cell wall during the formation of secretory cavity in the intercellular space-forming and lumen-expanding stages. The secretory cavity is a common structure in Citrus plants and is the main site for synthesis and accumulation of medicinal ingredients. The secretory cavity is formed in lysogenesis, when epithelial cells enter a process of programmed cell death. Pectinases are known to be involved in degradation of the cell wall during the cytolysis of secretory cavity cells, but the changes in cell structure, the dynamic characteristics of cell wall polysaccharides and the related genes regulating cell wall degradation are unclear. In this study, electron microscopy and cell wall polysaccharide-labeling techniques were used to study the main characteristics of cell wall degradation of the secreting cavity of Citrus grandis 'Tomentosa' fruits. At the same time, the full CDS length of the pectinase gene CgPG21 was cloned, encoding a protein composed of 480 amino acids. CgPG21 is mainly located in the cell wall, participates in the degradation of the intercellular layer of the cell wall during the development of the secretory cavity, and plays an important role in the formation of the secretory cavity in the intercellular space-forming and lumen-expanding stages. With the development of secretory cavity, the cell wall polysaccharides of epithelial cells gradually degrade. CgPG21 is mainly involved in the intercellular layer degradation.
Collapse
Affiliation(s)
- Mei Bai
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Panpan Tong
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Luo
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Shang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hailan Huang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Huai
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Wu
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
33
|
D'Ambrosio C, Stigliani AL, Rambla JL, Frusciante S, Diretto G, Enfissi EMA, Granell A, Fraser PD, Giorio G. A xanthophyll-derived apocarotenoid regulates carotenogenesis in tomato chromoplasts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111575. [PMID: 36572066 DOI: 10.1016/j.plantsci.2022.111575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Carotenoids possess important biological functions that make them essential components of the human diet. β-Carotene and some other carotenoids have vitamin A activity while lutein and zeaxanthin, typically referred to as the macular pigments, are involved in good vision and in delaying the onset of age-related eye diseases. In order to create a zeaxanthin-producing tomato fruit, two transgenic lines, one with a high β-carotene cyclase activity and the other with a high β-carotene hydroxylase activity, have been genetically crossed. Ripe fruits from the resulting progeny contained significant levels of violaxanthin, antheraxanthin, and xanthophyll esters. However, their zeaxanthin content was not as high as expected, and the total level of carotenoids was only 25% of the carotenoids found in ripe fruits of the comparator line. Targeted transcript analysis and apocarotenoids determinations indicated that transcriptional regulation of the pathway or degradation of synthesized carotenoids were not responsible for the low carotenoid content of hybrid fruits which instead appeared to result from a substantial reduction of carotenoid biosynthesis. Notably, the content of an unidentified hydroxylated cyclic (C13) apocarotenoid was 13 times higher in the hybrid fruits than in the control fruits. Furthermore, a GC-MS-based metabolite profiling demonstrated a perturbation of carotenogenesis in ripening hybrid fruits compatible with a block of the pathway. Moreover, carotenoid profiling on leaf, fruit, and petal samples from a set of experimental lines carrying the hp3 mutation, in combination with the two transgenes, indicated that the carotenoid biosynthesis in petal and fruit chromoplasts could be regulated. Altogether the data were consistent with the hypothesis of the regulation of the carotenoid pathway in tomato chromoplasts through a mechanism of feedback inhibition mediated by a xanthophyll-derived apocarotenoid. This chromoplast-specific post-transcriptional mechanism was disclosed in transgenic fruits of HU hybrid owing to the abnormal production of zeaxanthin and antheraxanthin, the more probable precursors of the apocarotenoid signal. A model describing the regulation of carotenoid pathway in tomato chromoplasts is presented.
Collapse
Affiliation(s)
- Caterina D'Ambrosio
- Centro Ricerche Metapontum Agrobios, Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura (ALSIA), Metaponto, MT, Italy
| | - Adriana Lucia Stigliani
- Centro Ricerche Metapontum Agrobios, Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura (ALSIA), Metaponto, MT, Italy
| | - José L Rambla
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46022 Valencia, Spain; Universitat Jaume I., Departamento de Biología, Bioquímica y Ciencias Naturales, Avda Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Sarah Frusciante
- Italian National Agency for New Technologies Energy and Sustainable Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies Energy and Sustainable Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Eugenia M A Enfissi
- School of Biological Sciences, Royal Holloway University of London (RHUL), Egham, Surrey, UK
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London (RHUL), Egham, Surrey, UK
| | - Giovanni Giorio
- Centro Ricerche Metapontum Agrobios, Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura (ALSIA), Metaponto, MT, Italy.
| |
Collapse
|
34
|
Hu C, Gao X, Dou K, Zhu C, Zhou Y, Hu Z. Physiological and Metabolic Changes in Tamarillo ( Solanum betaceum) during Fruit Ripening. Molecules 2023; 28:molecules28041800. [PMID: 36838788 PMCID: PMC9966127 DOI: 10.3390/molecules28041800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Physiological and metabolic profiles in tamarillo were investigated to reveal the molecular changes during fruit maturation. The firmness, ethylene production, soluble sugar contents, and metabolomic analysis were determined in tamarillo fruit at different maturity stages. The firmness of tamarillo fruit gradually decreased during fruit ripening with increasing fructose and glucose accumulation. The rapid increase in ethylene production was found in mature fruit. Based on the untargeted metabolomic analysis, we found that amino acids, phospholipids, monosaccharides, and vitamin-related metabolites were identified as being changed during ripening. The contents of malic acid and citric acid were significantly decreased in mature fruits. Metabolites involved in phenylpropanoid biosynthesis, phenylalanine metabolism, caffeine metabolism, monoterpenoid biosynthesis, and thiamine metabolism pathways showed high abundance in mature fruits. However, we also found that most of the mature-enhanced metabolites showed reduced abundance in over-mature fruits. These results reveal the molecular profiles during tamarillo fruit maturing and suggest tamarillos have potential benefits with high nutrition and health function.
Collapse
Affiliation(s)
- Chaoyi Hu
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Xinhao Gao
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Kaiwei Dou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Zhou
- Hainan Institute, Zhejiang University, Sanya 572000, China
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhangjian Hu
- Hainan Institute, Zhejiang University, Sanya 572000, China
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
35
|
The Ubiquitin-26S Proteasome Pathway and Its Role in the Ripening of Fleshy Fruits. Int J Mol Sci 2023; 24:ijms24032750. [PMID: 36769071 PMCID: PMC9917055 DOI: 10.3390/ijms24032750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The 26S proteasome is an ATP-dependent proteolytic complex in eukaryotes, which is mainly responsible for the degradation of damaged and misfolded proteins and some regulatory proteins in cells, and it is essential to maintain the balance of protein levels in the cell. The ubiquitin-26S proteasome pathway, which targets a wide range of protein substrates in plants, is an important post-translational regulatory mechanism involved in various stages of plant growth and development and in the maturation process of fleshy fruits. Fleshy fruit ripening is a complex biological process, which is the sum of a series of physiological and biochemical reactions, including the biosynthesis and signal transduction of ripening related hormones, pigment metabolism, fruit texture changes and the formation of nutritional quality. This paper reviews the structure of the 26S proteasome and the mechanism of the ubiquitin-26S proteasome pathway, and it summarizes the function of this pathway in the ripening process of fleshy fruits.
Collapse
|
36
|
D'Incà E, Foresti C, Orduña L, Amato A, Vandelle E, Santiago A, Botton A, Cazzaniga S, Bertini E, Pezzotti M, Giovannoni J, Vrebalov J, Matus JT, Tornielli GB, Zenoni S. The transcription factor VviNAC60 regulates senescence- and ripening-related processes in grapevine. PLANT PHYSIOLOGY 2023:kiad050. [PMID: 36718552 DOI: 10.1093/plphys/kiad050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/03/2022] [Accepted: 12/11/2022] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis vinifera L.) is one of the most widely cultivated fruit crops because the winemaking industry has huge economic relevance worldwide. Uncovering the molecular mechanisms controlling the developmental progression of plant organs will prove essential for maintaining high-quality grapes, expressly in the context of climate change, which impairs the ripening process. Through a deep inspection of transcriptomic data, we identified VviNAC60, a member of the NAC transcription factor family, as a putative regulator of grapevine organ maturation. We explored VviNAC60 binding landscapes through DNA affinity purification followed by sequencing and compared bound genes with transcriptomics datasets from grapevine plants stably and transiently overexpressing VviNAC60 to define a set of high-confidence targets. Among these, we identified key molecular markers associated with organ senescence and fruit ripening. Physiological, metabolic, and promoter activation analyses showed that VviNAC60 induces chlorophyll degradation and anthocyanin accumulation through the up-regulation of STAY-GREEN PROTEIN 1 (VviSGR1) and VviMYBA1, respectively, with the latter being up-regulated through a VviNAC60-VviNAC03 regulatory complex. Despite sharing a closer phylogenetic relationship with senescence-related homologues to the NAC transcription factor AtNAP, VviNAC60 complemented the non-ripening(nor) mutant phenotype in tomato (Solanum lycopersicum), suggesting a dual role as an orchestrator of both ripening- and senescence-related processes. Our data support VviNAC60 as a regulator of processes initiated in the grapevine vegetative- to mature-phase organ transition and therefore as a potential target for enhancing the environmental resilience of grapevine by fine-tuning the duration of the vegetative phase.
Collapse
Affiliation(s)
- Erica D'Incà
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Chiara Foresti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Alessandra Amato
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Alessandro Botton
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Italy
| | - Stefano Cazzaniga
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Edoardo Bertini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - James Giovannoni
- USDA-ARS Robert W. Holley Center and Boyce Thompson Institute for Plant Research, Tower Road, Cornell Campus, Ithaca, NY 14853, USA
| | - Julia Vrebalov
- USDA-ARS Robert W. Holley Center and Boyce Thompson Institute for Plant Research, Tower Road, Cornell Campus, Ithaca, NY 14853, USA
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | | | - Sara Zenoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| |
Collapse
|
37
|
Qi X, Dong Y, Liu C, Song L, Chen L, Li M. The PavNAC56 transcription factor positively regulates fruit ripening and softening in sweet cherry (Prunus avium). PHYSIOLOGIA PLANTARUM 2022; 174:e13834. [PMID: 36437693 DOI: 10.1111/ppl.13834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
The rapid softening of sweet cherry fruits during ripening results in the deterioration of fruit quality. However, few genes related to sweet cherry fruit ripening and softening have been identified, and the molecular regulatory mechanisms underlying this process are poorly understood. Here, we identified and functionally characterized PavNAC56, a NAC transcription factor that positively regulates sweet cherry fruit ripening and softening. Gene expression analyses showed that PavNAC56 was specifically and abundantly expressed in the fruit, and its transcript levels increased in response to abscisic acid (ABA). A subcellular localization analysis revealed that PavNAC56 is a nucleus-localized protein. Virus-induced gene silencing of PavNAC56 inhibited fruit ripening, enhanced fruit firmness, decreased the contents of ABA, anthocyanins, and soluble solids, and down-regulated several fruit ripening-related genes. Yeast one-hybrid and dual-luciferase assays showed that PavNAC56 directly binds to the promoters of several genes related to cell wall metabolism (PavPG2, PavEXPA4, PavPL18, and PavCEL8) and activates their expression. Overall, our findings show that PavNAC56 plays an indispensable role in controlling the ripening and softening of sweet cherry fruit and provides new insights into the regulatory mechanisms by which NAC transcription factors affect nonclimacteric fruit ripening and softening.
Collapse
Affiliation(s)
- Xiliang Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuanxin Dong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Congli Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lulu Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
38
|
Chen T, Duan W. DNA methylation changes were involved in inhibiting ethylene signaling and delaying senescence of tomato fruit under low temperature. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Choi I, Ahn CS, Lee DH, Baek SA, Jung JW, Kim JK, Lee HS, Pai HS. Silencing of the Target of Rapamycin Complex Genes Stimulates Tomato Fruit Ripening. Mol Cells 2022; 45:660-672. [PMID: 35993163 PMCID: PMC9448650 DOI: 10.14348/molcells.2022.2025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
Abstract
The target of rapamycin complex (TORC) plays a key role in plant cell growth and survival by regulating the gene expression and metabolism according to environmental information. TORC activates transcription, mRNA translation, and anabolic processes under favorable conditions, thereby promoting plant growth and development. Tomato fruit ripening is a complex developmental process promoted by ethylene and specific transcription factors. TORC is known to modulate leaf senescence in tomato. In this study, we investigated the function of TORC in tomato fruit ripening using virus-induced gene silencing (VIGS) of the TORC genes, TOR, lethal with SEC13 protein 8 (LST8), and regulatory-associated protein of TOR (RAPTOR). Quantitative reverse transcription-polymerase chain reaction showed that the expression levels of tomato TORC genes were the highest in the orange stage during fruit development in Micro-Tom tomato. VIGS of these TORC genes using stage 2 tomato accelerated fruit ripening with premature orange/red coloring and decreased fruit growth, when control tobacco rattle virus 2 (TRV2)-myc fruits reached the mature green stage. TORC-deficient fruits showed early accumulation of carotenoid lycopene and reduced cellulose deposition in pericarp cell walls. The early ripening fruits had higher levels of transcripts related to fruit ripening transcription factors, ethylene biosynthesis, carotenoid synthesis, and cell wall modification. Finally, the early ripening phenotype in Micro-Tom tomato was reproduced in the commercial cultivar Moneymaker tomato by VIGS of the TORC genes. Collectively, these results demonstrate that TORC plays an important role in tomato fruit ripening by modulating the transcription of various ripening-related genes.
Collapse
Affiliation(s)
- Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Platform Technology Research Center, Corporate R&D, LG Chem/LG Science Park, Seoul 07796, Korea
| | - Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Seung-A Baek
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Jung Won Jung
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Ho-Seok Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
40
|
Nitric Oxide Acts as an Inhibitor of Postharvest Senescence in Horticultural Products. Int J Mol Sci 2022; 23:ijms231911512. [PMID: 36232825 PMCID: PMC9569437 DOI: 10.3390/ijms231911512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Horticultural products display fast senescence after harvest at ambient temperatures, resulting in decreased quality and shorter shelf life. As a gaseous signal molecule, nitric oxide (NO) has an important physiological effect on plants. Specifically, in the area of NO and its regulation of postharvest senescence, tremendous progress has been made. This review summarizes NO synthesis; the effect of NO in alleviating postharvest senescence; the mechanism of NO-alleviated senescence; and its interactions with other signaling molecules, such as ethylene (ETH), abscisic acid (ABA), melatonin (MT), hydrogen sulfide (H2S), hydrogen gas (H2), hydrogen peroxide (H2O2), and calcium ions (Ca2+). The aim of this review is to provide theoretical references for the application of NO in postharvest senescence in horticultural products.
Collapse
|
41
|
Increased ACS Enzyme Dosage Causes Initiation of Climacteric Ethylene Production in Tomato. Int J Mol Sci 2022; 23:ijms231810788. [PMID: 36142701 PMCID: PMC9501751 DOI: 10.3390/ijms231810788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Fruits of wild tomato species show different ethylene-dependent ripening characteristics, such as variations in fruit color and whether they exhibit a climacteric or nonclimacteric ripening transition. 1-Aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) are key enzymes in the ethylene biosynthetic pathway encoded by multigene families. Gene duplication is a primary driver of plant diversification and angiosperm evolution. Here, interspecific variations in the molecular regulation of ethylene biosynthesis and perception during fruit ripening in domesticated and wild tomatoes were investigated. Results showed that the activated ACS genes were increased in number in red-ripe tomato fruits than in green-ripe tomato fruits; therefore, elevated dosage of ACS enzyme promoted ripening ethylene production. Results showed that the expression of three ACS isogenes ACS1A, ACS2, and ACS4, which are involved in autocatalytic ethylene production, was higher in red-ripe tomato fruits than in green-ripe tomato fruits. Elevated ACS enzyme dosage promoted ethylene production, which corresponded to the climacteric response of red-ripe tomato fruits. The data suggest that autoinhibitory ethylene production is common to all tomato species, while autocatalytic ethylene production is specific to red-ripe species. The essential regulators Non-ripening (NOR) and Ripening-Inhibitor (RIN) have experienced gene activation and overlapped with increasing ACS enzyme dosage. These complex levels of transcript regulation link higher ethylene production with spatiotemporal modulation of gene expression in red-ripe tomato species. Taken together, this study shows that bursts in ethylene production that accompany fruit color changes in red-ripe tomatoes are likely to be an evolutionary adaptation for seed dispersal.
Collapse
|
42
|
Wang W, Fan D, Hao Q, Jia W. Signal transduction in non-climacteric fruit ripening. HORTICULTURE RESEARCH 2022; 9:uhac190. [PMID: 36329721 PMCID: PMC9622361 DOI: 10.1093/hr/uhac190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Fleshy fruit ripening involves changes in numerous cellular processes and metabolic pathways, resulting from the coordinated actions of diverse classes of structural and regulatory proteins. These include enzymes, transporters and complex signal transduction systems. Many aspects of the signaling machinery that orchestrates the ripening of climacteric fruits, such as tomato (Solanum lycopersicum), have been elucidated, but less is known about analogous processes in non-climacteric fruits. The latter include strawberry (Fragaria x ananassa) and grape (Vitis vinifera), both of which are used as non-climacteric fruit experimental model systems, although they originate from different organs: the grape berry is a true fruit derived from the ovary, while strawberry is an accessory fruit that is derived from the floral receptacle. In this article, we summarize insights into the signal transduction events involved in strawberry and grape berry ripening. We highlight the mechanisms underlying non-climacteric fruit ripening, the multiple primary signals and their integrated action, individual signaling components, pathways and their crosstalk, as well as the associated transcription factors and their signaling output.
Collapse
Affiliation(s)
| | | | - Qing Hao
- Corresponding authors: E-mail: ;
| | | |
Collapse
|
43
|
Vermote L, Verce M, Mozzi F, De Vuyst L, Weckx S. Microbiomes Associated With the Surfaces of Northern Argentinian Fruits Show a Wide Species Diversity. Front Microbiol 2022; 13:872281. [PMID: 35898900 PMCID: PMC9309516 DOI: 10.3389/fmicb.2022.872281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The fiber, vitamin, and antioxidant contents of fruits contribute to a balanced human diet. In countries such as Argentina, several tropical fruits are witnessing a high yield in the harvest season, with a resulting surplus. Fruit fermentation using autochthonous starter cultures can provide a solution for food waste. However, limited knowledge exists about the microbiota present on the surfaces of fruits and the preceding flowers. In the present exploratory study, the microbiomes associated with the surfaces of tropical fruits from Northern Argentina, such as white guava, passion fruit and papaya were investigated using a shotgun metagenomic sequencing approach. Hereto, one sample composed of 14 white guava fruits, two samples of passion fruits with each two to three fruits representing the almost ripe and ripe stage of maturity, four samples of papaya with each two to three fruits representing the unripe, almost ripe, and ripe stage of maturity were processed, as well as a sample of closed and a sample of open Japanese medlar flowers. A considerable heterogeneity was found in the composition of the fruits’ surface microbiota at the genus and species level. While bacteria dominated the microbiota of the fruits and flowers, a small number of the metagenomic sequence reads corresponded with yeasts and filamentous fungi. A minimal abundance of bacterial species critical in lactic acid and acetic acid fermentations was found. A considerable fraction of the metagenomic sequence reads from the fruits’ surface microbiomes remained unidentified, which suggested that intrinsic species are to be sequenced or discovered.
Collapse
Affiliation(s)
- Louise Vermote
- Faculty of Sciences and Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Faculty of Sciences and Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Fernanda Mozzi
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - Luc De Vuyst
- Faculty of Sciences and Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Faculty of Sciences and Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Stefan Weckx,
| |
Collapse
|
44
|
Fan D, Wang W, Hao Q, Jia W. Do Non-climacteric Fruits Share a Common Ripening Mechanism of Hormonal Regulation? FRONTIERS IN PLANT SCIENCE 2022; 13:923484. [PMID: 35755638 PMCID: PMC9218805 DOI: 10.3389/fpls.2022.923484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Fleshy fruits have been traditionally categorized into climacteric (CL) and non-climacteric (NC) groups. CL fruits share a common ripening mechanism of hormonal regulation, i.e., the ethylene regulation, whereas whether NC fruits share a common mechanism remains controversial. Abscisic acid (ABA) has been commonly thought to be a key regulator in NC fruit ripening; however, besides ABA, many other hormones have been increasingly suggested to play crucial roles in NC fruit ripening. NC fruits vary greatly in their organ origin, constitution, and structure. Development of different organs may be different in the pattern of hormonal regulation. It has been well demonstrated that the growth and development of strawberry, the model of NC fruits, is largely controlled by a hormonal communication between the achenes and receptacle; however, not all NC fruits contain achenes. Accordingly, it is particularly important to understand whether strawberry is indeed able to represent a universal mechanism for the hormonal regulation of NC fruit ripening. In this mini-review, we summarized the recent research advance on the hormone regulation of NC ripening in relation to fruit organ origination, constitution, and structure, whereby analyzing and discussing whether NC fruits may share a common mechanism of hormonal regulation.
Collapse
Affiliation(s)
- Dingyu Fan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wei Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Boualem A, Berthet S, Devani RS, Camps C, Fleurier S, Morin H, Troadec C, Giovinazzo N, Sari N, Dogimont C, Bendahmane A. Ethylene plays a dual role in sex determination and fruit shape in cucurbits. Curr Biol 2022; 32:2390-2401.e4. [PMID: 35525245 DOI: 10.1016/j.cub.2022.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Shapes of vegetables and fruits are the result of adaptive evolution and human selection. Modules controlling organ shape have been identified. However, little is known about signals coordinating organ development and shape. Here, we describe the characterization of a melon mutation rf1, leading to round fruit. Histological analysis of rf1 flower and fruits revealed fruit shape is determined at flower stage 8, after sex determination and before flower fertilization. Using positional cloning, we identified the causal gene as the monoecy sex determination gene CmACS7, and survey of melon germplasms showed strong association between fruit shape and sexual types. We show that CmACS7-mediated ethylene production in carpel primordia enhances cell expansion and represses cell division, leading to elongated fruit. Cell size is known to rise as a result of endoreduplication. At stage 8 and anthesis, we found no variation in ploidy levels between female and hermaphrodite flowers, ruling out endoreduplication as a factor in fruit shape determination. To pinpoint the gene networks controlling elongated versus round fruit phenotype, we analyzed the transcriptomes of laser capture microdissected carpels of wild-type and rf1 mutant. These high-resolution spatiotemporal gene expression dynamics revealed the implication of two regulatory modules. The first module implicates E2F-DP transcription factors, controlling cell elongation versus cell division. The second module implicates OVATE- and TRM5-related proteins, controlling cell division patterns. Our finding highlights the dual role of ethylene in the inhibition of the stamina development and the elongation of ovary and fruit in cucurbits.
Collapse
Affiliation(s)
- Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Serge Berthet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Ravi Sureshbhai Devani
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Celine Camps
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Sebastien Fleurier
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Nathalie Giovinazzo
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Nebahat Sari
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Catherine Dogimont
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| |
Collapse
|
46
|
Jia M, Li X, Wang W, Li T, Dai Z, Chen Y, Zhang K, Zhu H, Mao W, Feng Q, Liu L, Yan J, Zhong S, Li B, Jia W. SnRK2 subfamily I protein kinases regulate ethylene biosynthesis by phosphorylating HB transcription factors to induce ACO1 expression in apple. THE NEW PHYTOLOGIST 2022; 234:1262-1277. [PMID: 35182082 PMCID: PMC9314909 DOI: 10.1111/nph.18040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 05/20/2023]
Abstract
Ethylene (ETH) controls climacteric fruit ripening and can be triggered by osmotic stress. However, the mechanism regulating ETH biosynthesis during fruit ripening and under osmotic stress is largely unknown in apple (Malus domestica). Here, we explored the roles of SnRK2 protein kinases in ETH biosynthesis related to fruit ripening and osmoregulation. We identified the substrates of MdSnRK2-I using phosphorylation analysis techniques. Finally, we identified the MdSnRK2-I-mediated signaling pathway for ETH biosynthesis related to fruit ripening and osmoregulation. The activity of two MdSnRK2-I members, MdSnRK2.4 and MdSnRK2.9, was significantly upregulated during ripening or following mannitol treatment. Overexpression of MdSnRK2-I increased ETH biosynthesis under normal and osmotic conditions in apple fruit. MdSnRK2-I phosphorylated the transcription factors MdHB1 and MdHB2 to enhance their protein stability and transcriptional activity on MdACO1. MdSnRK2-I also interacted with MdACS1 and increased its protein stability through two phosphorylation sites. The increased MdACO1 expression and MdACS1 protein stability resulted in higher ETH production in apple fruit. In addition, heterologous expression of MdSnRK2-I or manipulation of SlSnRK2-I expression in tomato (Solanum lycopersicum) fruit altered fruit ripening and ETH biosynthesis. We established that MdSnRK2-I functions in fruit ripening and osmoregulation, and identified the MdSnRK2-I-mediated signaling pathway controlling ETH biosynthesis.
Collapse
Affiliation(s)
- Meiru Jia
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Xingliang Li
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Wei Wang
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Tianyu Li
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Zhengrong Dai
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Yating Chen
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Kaikai Zhang
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Haocheng Zhu
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Wenwen Mao
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Qianqian Feng
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Liping Liu
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Jiaqi Yan
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Silin Zhong
- School of Life SciencesState Key Laboratory of AgrobiotechnologyChinese University of Hong KongEG12 Science Centre EastHong Kong999077China
| | - Bingbing Li
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Wensuo Jia
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| |
Collapse
|
47
|
Xu H, Watanabe Y, Ediger D, Yang X, Iritani D. Characteristics of Sunburn Browning Fruit and Rootstock-Dependent Damage-Free Yield of Ambrosia™ Apple after Sustained Summer Heat Events. PLANTS (BASEL, SWITZERLAND) 2022; 11:1201. [PMID: 35567202 PMCID: PMC9100062 DOI: 10.3390/plants11091201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
The 2021 summer heat waves experienced in the Pacific Northwest led to considerable fruit damage in many apple production zones. Sunburn browning (SB) was a particularly evident symptom. To understand the mechanism underlying the damage and to facilitate the early assessment of compromised fruit quality, we conducted a study on external characteristics and internal quality attributes of SB 'Ambrosia' apple (Malus domestica var. Ambrosia) and evaluated the fruit loss on five rootstocks. The cell integrity of the epidermal and hypodermal layers of fruit skins in the SB patch was compromised. Specifically, the number of chloroplasts and anthocyanin decreased in damaged cells, while autofluorescent stress-related compounds accumulated in dead cells. Consequently, the affected sun-exposed skin demonstrated a significant increase in differential absorbance between 670 nm and 720 nm, measured using a handheld apple DA meter, highlighting the potential of using this method as a non-destructive early indicator for sunburn damage. Sunburn browning eventually led to lower fruit weight, an increase in average dry matter content, soluble solids content, acidity, deteriorated weight retention, quicker loss of firmness, and accelerated ethylene emission during ripening. Significant inconsistency was found between the sun-exposed and shaded sides in SB apples regarding dry matter content, firmness, and tissue water potential, which implied preharvest water deficit in damaged tissues and the risk of quicker decline of postharvest quality. Geneva 935 (G.935), a large-dwarfing rootstock with more vigor and higher water transport capacity, led to a lower ratio of heat-damaged fruits and a higher yield of disorder-free fruits, suggesting rootstock selection as a long-term horticultural measure to mitigate summer heat stress.
Collapse
|
48
|
Do JH, Park SY, Park SH, Kim HM, Ma SH, Mai TD, Shim JS, Joung YH. Development of a Genome-Edited Tomato With High Ascorbate Content During Later Stage of Fruit Ripening Through Mutation of SlAPX4. FRONTIERS IN PLANT SCIENCE 2022; 13:836916. [PMID: 35498670 PMCID: PMC9039661 DOI: 10.3389/fpls.2022.836916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 06/12/2023]
Abstract
Ascorbate is an essential antioxidant substance for humans. Due to the lack of ascorbate biosynthetic enzyme, a human must intake ascorbate from the food source. Tomato is one of the most widely consumed fruits, thus elevation of ascorbate content in tomato fruits will improve their nutritional value. Here we characterized Solanum lycopersicum ASCORBATE PEROXIDASE 4 (SlAPX4) as a gene specifically induced during fruit ripening. In tomatoes, ascorbate accumulates in the yellow stage of fruits, then decreases during later stages of fruit ripening. To investigate whether SlAPX is involved in the decrease of ascorbate, the expression of SlAPXs was analyzed during fruit maturation. Among nine SlAPXs, SlAPX4 is the only gene whose expression was induced during fruit ripening. Mutation of SlAPX4 by the CRISPR/Cas9 system increased ascorbate content in ripened tomato fruits, while ascorbate content in leaves was not significantly changed by mutation of SlAPX4. Phenotype analysis revealed that mutation of SlAPX4 did not induce an adverse effect on the growth of tomato plants. Collectively, we suggest that SlAPX4 mediates a decrease of ascorbate content during the later stage of fruit ripening, and mutation of SlAPX4 can be used for the development of genome-edited tomatoes with elevated ascorbate content in fruits.
Collapse
|
49
|
Campos Alencar Oldoni F, Florencio C, Brait Bertazzo G, Aparecida Grizotto P, Bogusz Junior S, Lajarim Carneiro R, Alberto Colnago L, David Ferreira M. Fruit quality parameters and volatile compounds from 'Palmer' mangoes with internal breakdown. Food Chem 2022; 388:132902. [PMID: 35447579 DOI: 10.1016/j.foodchem.2022.132902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022]
Abstract
The internal breakdown (IB) is a premature and uneven mango pulp ripening physiological disorder that is noticed only when the fruit is sliced for consumption. Thus, there is a demand for analytical methods to detect IB in mangoes to avoid consumer dissatisfaction and reduce postharvest waste. In this work, physicochemical and volatile compounds were determined to evaluate the ability to predict pulp IB. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of the data show that color, firmness, and volatiles compounds are important to give some information about the physiological changes caused by IB. The volatile compounds methacrylic acid, ethyl ester, isopentyl ethanoate, limonene oxide, (E)-2-pentenal, tetradecane, and γ-elemene were identified as chemical markers of IB. Therefore, mango physical and chemical characteristics combined with PCA and PLS-DA were successfully employed for the identification of IB in mangoes, showing significant differences between healthy and IB fruits.
Collapse
Affiliation(s)
- Fernanda Campos Alencar Oldoni
- Department of Food and Nutrition, Sao Paulo State University (UNESP), Rod. Araraquara Jaú, Km 01 - s/n, 14800-903 Araraquara, SP, Brazil.
| | - Camila Florencio
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Instrumentation, XV de Novembro Street, 1452, 13560-970, Sao Carlos, SP, Brazil
| | - Giovana Brait Bertazzo
- Sao Carlos Institute of Chemistry (IQSC), University of Sao Paulo (USP), Trab. Sao Carlense Av., 400 - Arnold Schimidt Park, 13566-590, Sao Carlos, SP, Brazil
| | - Pamela Aparecida Grizotto
- Sao Carlos Institute of Chemistry (IQSC), University of Sao Paulo (USP), Trab. Sao Carlense Av., 400 - Arnold Schimidt Park, 13566-590, Sao Carlos, SP, Brazil
| | - Stanislau Bogusz Junior
- Sao Carlos Institute of Chemistry (IQSC), University of Sao Paulo (USP), Trab. Sao Carlense Av., 400 - Arnold Schimidt Park, 13566-590, Sao Carlos, SP, Brazil
| | - Renato Lajarim Carneiro
- Department of Chemistry, Federal University of Sao Carlos (UFSCar), Rod. Washington Luis, Km 235, 310, 13565-905 Sao Carlos, SP, Brazil
| | - Luiz Alberto Colnago
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Instrumentation, XV de Novembro Street, 1452, 13560-970, Sao Carlos, SP, Brazil
| | - Marcos David Ferreira
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Instrumentation, XV de Novembro Street, 1452, 13560-970, Sao Carlos, SP, Brazil
| |
Collapse
|
50
|
Du X, Liu H, Zhu Z, Liu S, Song Z, Xia L, Zhao J, Luan F, Liu S. Identification of Candidate Chromosome Region Related to Melon ( Cucumis melo L.) Fruit Surface Groove Trait Through Biparental Genetic Mapping and Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2022; 13:828287. [PMID: 35463445 PMCID: PMC9022103 DOI: 10.3389/fpls.2022.828287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The melon fruit surface groove (fsg) not only affects peel structure and causes stress-induced fruit cracking but also fits consumers' requirements in different regions. In this study, genetic inheritance analysis of three F2 populations derived from six parental lines revealed that the fsg trait is controlled by a simple recessive inherited gene. Through bulked segregant analysis sequencing (BSA-seq), the Cmfsg locus was detected in an 8.96 Mb interval on chromosome 11 and then initially mapped to a region of approximately 1.15 Mb. Further fine mapping with a large F2 population including 1,200 plants narrowed this region to 207 kb containing 11 genes. A genome-wide association study (GWAS) with 187 melon accessions also produced the same chromosome region for the Cmfsg locus. Due to the rare molecular markers and lack of mutations in the coding and promoter regions of the 11 candidate genes in the fine-mapped interval, we conducted in silico BSA to explore the natural melon panel to predict candidate genes for the Cmfsg locus. A 1.07 kb segment upstream of MELO3C019694.2 (annotated as the AGAMOUS MADS-box transcription factor) exhibited a correlation with the grooved and non-grooved accessions among the F2 individuals, and a natural panel consisted of 17 melon accessions. The expression level of MELO3C019694.2 in the pericarp was higher in grooved lines than in non-grooved lines and was specifically expressed in fruit compared with other tissues (female flower, male flower, root, and leaf). This work provides fundamental information for further research on melon fsg trait formation and molecular markers for melon breeding.
Collapse
Affiliation(s)
- Xin Du
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Horticulture and Landscape Architecture College, Northeast Agricultural University, Harbin, China
| | - Hongyu Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Horticulture and Landscape Architecture College, Northeast Agricultural University, Harbin, China
| | - Zicheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Horticulture and Landscape Architecture College, Northeast Agricultural University, Harbin, China
| | - Shusen Liu
- Shouguang Sanmu Seeding Co., Ltd., Shandong, China
| | | | - Lianqin Xia
- Shouguang Sanmu Seeding Co., Ltd., Shandong, China
| | - Jingchao Zhao
- Qinggang Ruixue Agriculture Co., Ltd., Heilongjiang, China
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Horticulture and Landscape Architecture College, Northeast Agricultural University, Harbin, China
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Horticulture and Landscape Architecture College, Northeast Agricultural University, Harbin, China
| |
Collapse
|