1
|
Zhou S, Wang M, Chen R, Yu W, Li M, Meng S, Zhang Z, Xia C, Zhao H, Liu L. ROOT INITIATION DEFECTIVE 1 regulates seed germination through transcription rather than alternative splicing in a temperature-dependent manner. PLANT MOLECULAR BIOLOGY 2025; 115:58. [PMID: 40240680 DOI: 10.1007/s11103-025-01587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
Timely seed germination is a crucial process for plant survival and subsequent propagation, which is significantly impacted by high temperatures. ROOT INITIATION DEFECTIVE 1 (RID1), an Arabidopsis DEAH/RHA RNA helicase, has been previously reported to modulate the cellular specification of mature female gametophyte and callus initiation from hypocotyl explants through proper alternative splicing. However, the role of RID1 in the regulation of seed germination remains largely unexplored. Here, we identified that mutations in RID1 delayed seed germination more severely at 28℃ compared to 22℃. Notably, we found that the rid1-1 mutation did not significantly alter genome-wide alternative splicing patterns during seed germination compared to the wild type. Further evidences demonstrated that RID1 regulates seed germination via the abscisic acid (ABA) pathway by physically and genetically interacting with the SKIP-associated transcriptional complex. These results suggest that RID1 regulates seed germination in response to ambient temperature at the transcriptional level rather than through alternative splicing regulation. This study provides novel insights into the mechanisms underlying the regulation of seed germination.
Collapse
Affiliation(s)
- Shuaishuai Zhou
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Miaomiao Wang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Ruoyi Chen
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Wengeng Yu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Mengmeng Li
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Siwen Meng
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Ziru Zhang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Congcong Xia
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Hongtao Zhao
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Lei Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai'an, 223300, China.
| |
Collapse
|
2
|
Liu L, Li K, Zhou X, Fang C. Integrative Analysis of Metabolome and Transcriptome Reveals the Role of Strigolactones in Wounding-Induced Rice Metabolic Re-Programming. Metabolites 2022; 12:789. [PMID: 36144193 PMCID: PMC9501228 DOI: 10.3390/metabo12090789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Plants have evolved mechanisms to adapt to wounding, a threat occurring separately or concomitantly with other stresses. During the last decades, many efforts have been made to elucidate the wounding signaling transduction. However, we know little about the metabolic re-programming under wounding, let alone whether and how strigolactones (SLs) participate in this progress. Here, we reported a metabolomic and transcriptomic analysis of SLs synthetic and signal mutants in rice before and after wounding. A series of metabolites differentially responded to wounding in the SLs mutants and wild-type rice, among which flavones were enriched. Besides, the SLs mutants accumulated more jasmonic acid (JA) and jasmonyl isoleucine (JA-lle) than the wild-type rice after wounding, suggesting an interplay of SLs and JAs during responding to wounding. Further transcriptome data showed that cell wall, ethylene, and flavones pathways might be affected by wounding and SLs. In addition, we identified candidate genes regulated by SLs and responding to wounding. In conclusion, our work provides new insights into wounding-induced metabolic re-programming and the SLs' function.
Collapse
Affiliation(s)
- Ling Liu
- Sanya Nanfan Research Institute of Hainan University Hainan, Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Kang Li
- Sanya Nanfan Research Institute of Hainan University Hainan, Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Xiujuan Zhou
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Chuanying Fang
- Sanya Nanfan Research Institute of Hainan University Hainan, Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| |
Collapse
|
3
|
Manggabarani AM, Hashiguchi T, Hashiguchi M, Hayashi A, Kikuchi M, Mustamin Y, Bamba M, Kodama K, Tanabata T, Isobe S, Tanaka H, Akashi R, Nakaya A, Sato S. Construction of prediction models for growth traits of soybean cultivars based on phenotyping in diverse genotype and environment combinations. DNA Res 2022; 29:6653298. [PMID: 35916715 PMCID: PMC9358015 DOI: 10.1093/dnares/dsac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
As soybean cultivars are adapted to a relatively narrow range of latitude, the effects of climate changes are estimated to be severe. To address this issue, it is important to improve our understanding of the effects of climate change by applying the simulation model including both genetic and environmental factors with their interactions (G×E). To achieve this goal, we conducted the field experiments for soybean core collections using multiple sowing times in multi-latitudinal fields. Sowing time shifts altered the flowering time (FT) and growth phenotypes, and resulted in increasing the combinations of genotypes and environments. Genome-wide association studies for the obtained phenotypes revealed the effects of field and sowing time to the significance of detected alleles, indicating the presence of G×E. By using accumulated phenotypic and environmental data in 2018 and 2019, we constructed multiple regression models for FT and growth pattern. Applicability of the constructed models was evaluated by the field experiments in 2020 including a novel field, and high correlation between the predicted and measured values was observed, suggesting the robustness of the models. The models presented here would allow us to predict the phenotype of the core collections in a given environment.
Collapse
Affiliation(s)
| | - Takuyu Hashiguchi
- Faculty of Agriculture, University of Miyazaki , Miyazaki 889-2192, Japan
| | | | - Atsushi Hayashi
- Kazusa DNA Research Institute , Kisarazu, Chiba 292-0818, Japan
| | - Masataka Kikuchi
- Graduate School of Medicine, Osaka University , Suita, Osaka 565-0871, Japan
| | - Yusdar Mustamin
- Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi 980-8577, Japan
| | - Masaru Bamba
- Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi 980-8577, Japan
| | - Kunihiro Kodama
- Kazusa DNA Research Institute , Kisarazu, Chiba 292-0818, Japan
| | | | - Sachiko Isobe
- Kazusa DNA Research Institute , Kisarazu, Chiba 292-0818, Japan
| | - Hidenori Tanaka
- Faculty of Agriculture, University of Miyazaki , Miyazaki 889-2192, Japan
| | - Ryo Akashi
- Faculty of Agriculture, University of Miyazaki , Miyazaki 889-2192, Japan
| | - Akihiro Nakaya
- Graduate School of Medicine, Osaka University , Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa, Chiba 277-0882, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
4
|
Dikaya V, El Arbi N, Rojas-Murcia N, Nardeli SM, Goretti D, Schmid M. Insights into the role of alternative splicing in plant temperature response. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab234. [PMID: 34105719 DOI: 10.1093/jxb/erab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 05/21/2023]
Abstract
Alternative splicing occurs in all eukaryotic organisms. Since the first description of multiexon genes and the splicing machinery, the field has expanded rapidly, especially in animals and yeast. However, our knowledge about splicing in plants is still quite fragmented. Though eukaryotes show some similarity in the composition and dynamics of the splicing machinery, observations of unique plant traits are only starting to emerge. For instance, plant alternative splicing is closely linked to their ability to perceive various environmental stimuli. Due to their sessile lifestyle, temperature is a central source of information allowing plants to adjust their development to match current growth conditions. Hence, seasonal temperature fluctuations and day-night cycles can strongly influence plant morphology across developmental stages. Here we discuss the available data about temperature-dependent alternative splicing in plants. Given its fragmented state it is not always possible to fit specific observations into a coherent picture, yet it is sufficient to estimate the complexity of this field and the need of further research. Better understanding of alternative splicing as a part of plant temperature response and adaptation may also prove to be a powerful tool for both, fundamental and applied sciences.
Collapse
Affiliation(s)
- Varvara Dikaya
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nabila El Arbi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nelson Rojas-Murcia
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sarah Muniz Nardeli
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Daniela Goretti
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Zheng M, Yang T, Zhu C, Fu Y, Hsu YF. Arabidopsis GSM1 is involved in ABI4-regulated ABA signaling under high-glucose condition in early seedling growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110183. [PMID: 31481206 DOI: 10.1016/j.plantsci.2019.110183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 05/21/2023]
Abstract
In plants, sugar acts as an essential signaling molecule that modulates various aspects of metabolism, growth and development, which are also controlled by phytohormones. However, the molecular mechanism of cross-talk between sugar and phytohormones still remains to be elucidated. We have identified gsm1 (glucose-hypersensitive mutant 1) as a mutant with impaired cotyledon development that shows sensitivity to exogenous abscisic acid (ABA). The addition of fluridone can reverse the glucose (Glc) inhibitory effect in gsm1, implying that endogenous ABA is involved in the Glc response of gsm1. In 4.5% Glc, the expression of Glc-induced ABA-responsive genes in gsm1-1 was nearly two times higher than that in the wild type. Compared to gsm1-1, the gsm1-1 abi4-1 double mutant exhibited reduced sensitivity to Glc and ABA, which was similar to the Glc and ABA insensitive phenotype of abi4-1, suggesting that ABI4 is epistatic to GSM1. In the treatment with 4.5% Glc, the GSM1 transcript level was greatly increased in abi4-1 by almost 4-fold of that in the wild type. These data suggest that GSM1 plays an important role in the ABI4-regulated Glc-ABA signaling cascade during Arabidopsis early seedling growth.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Tingting Yang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Chunyan Zhu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yufan Fu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yi-Feng Hsu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Wang X, Yang M, Ren D, Terzaghi W, Deng XW, He G. Cis-regulated alternative splicing divergence and its potential contribution to environmental responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:555-570. [PMID: 30375060 DOI: 10.1111/tpj.14142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 05/14/2023]
Abstract
Alternative splicing (AS) plays key roles in plant development and the responses of plants to environmental changes. However, the mechanisms underlying AS divergence (differential expression of transcript isoforms resulting from AS) in plant accessions and its contribution to responses to environmental stimuli remain unclear. In this study, we investigated genome-wide variation of AS in Arabidopsis thaliana accessions Col-0, Bur-0, C24, Kro-0 and Ler-1, as well as their F1 hybrids, and characterized the regulatory mechanisms for AS divergence by RNA sequencing. We found that most of the divergent AS events in Arabidopsis accessions were cis-regulated by sequence variation, including those in core splice site and splicing motifs. Many genes that differed in AS between Col-0 and Bur-0 were involved in stimulus responses. Further genome-wide association analyses of 22 environmental variables showed that single nucleotide polymorphisms influencing known splice site strength were also associated with environmental stress responses. These results demonstrate that cis-variation in genomic sequences among Arabidopsis accessions was the dominant contributor to AS divergence, and it may contribute to differences in environmental responses among Arabidopsis accessions.
Collapse
Affiliation(s)
- Xuncheng Wang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Mei Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Diqiu Ren
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Xing-Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Guangming He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Zhu DZ, Zhao XF, Liu CZ, Ma FF, Wang F, Gao XQ, Zhang XS. Interaction between RNA helicase ROOT INITIATION DEFECTIVE 1 and GAMETOPHYTIC FACTOR 1 is involved in female gametophyte development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5757-5768. [PMID: 27683728 PMCID: PMC5066494 DOI: 10.1093/jxb/erw341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
ROOT INITIATION DEFECTIVE 1 (RID1) is an Arabidopsis DEAH/RHA RNA helicase. It functions in hypocotyl de-differentiation, de novo meristem formation, and cell specification of the mature female gametophyte (FG). However, it is unclear how RID1 regulates FG development. In this study, we observed that mutations to RID1 disrupted the developmental synchrony and retarded the progression of FG development. RID1 exhibited RNA helicase activity, with a preference for unwinding double-stranded RNA in the 3' to 5' direction. Furthermore, we found that RID1 interacts with GAMETOPHYTIC FACTOR 1 (GFA1), which is an integral protein of the spliceosome component U5 small nuclear ribonucleoprotein (snRNP) particle. Substitution of specific RID1 amino acids (Y266F and T267I) inhibited the interaction with GFA1. In addition, the mutated RID1 could not complement the seed-abortion phenotype of the rid1 mutant. The rid1 and gfa1 mutants exhibited similar abnormalities in pre-mRNA splicing and down-regulated expression of some genes involved in FG development. Our results suggest that an interaction between RID1 and the U5 snRNP complex regulates essential pre-mRNA splicing of the genes required for FG development. This study provides new information regarding the mechanism underlying the FG developmental process.
Collapse
Affiliation(s)
- Dong Zi Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xue Fang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Chang Zhen Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Fang Fang Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xin-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|