1
|
Rabuma T, Sanan-Mishra N. Artificial miRNAs and target-mimics as potential tools for crop improvement. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:67-91. [PMID: 39901962 PMCID: PMC11787108 DOI: 10.1007/s12298-025-01550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025]
Abstract
MicroRNAs (miRNAs) are endogenous, small molecules that negatively regulate gene expression to control the normal development and stress response in plants. They mediate epigenetic changes and regulate gene expression at both transcriptional and post-transcriptional levels. Synthetic biology approaches have been utilized to design efficient artificial miRNAs (amiRNAs) or target-mimics to regulate specific gene expression for understanding the biological function of genes and crop improvement. The amiRNA based gene silencing is an effective technique to "turn off" gene expression, while miRNA target-mimics or decoys are used for efficiently down regulating miRNAs and "turn on" gene expression. In this context, the development of endogenous target-mimics (eTMs) and short tandem target mimics (STTMs) represent promising biotechnological tools for enhancing crop traits like stress tolerance and disease resistance. Through this review, we present the recent developments in understanding plant miRNA biogenesis, which is utilized for the efficient design and development of amiRNAs. This is important to incorporate the artificially synthesized miRNAs as internal components and utilizing miRNA biogenesis pathways for the programming of synthetic circuits to improve crop tolerance to various abiotic and biotic stress factors. The review also examines the recent developments in the use of miRNA target-mimics or decoys for efficiently down regulating miRNAs for trait improvement. A perspective analysis and challenges on the use of amiRNAs and STTM as potent tools to engineer useful traits in plants have also been presented.
Collapse
Affiliation(s)
- Tilahun Rabuma
- Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
2
|
Chen Z, Liu Y, Wang Q, Fei J, Liu X, Zhang C, Yin Y. miRNA Sequencing Analysis in Maize Roots Treated with Neutral and Alkaline Salts. Curr Issues Mol Biol 2024; 46:8874-8889. [PMID: 39194741 DOI: 10.3390/cimb46080524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Soil salinization/alkalization is a complex environmental factor that includes not only neutral salt NaCl but also other components like Na2CO3. miRNAs, as small molecules that regulate gene expression post-transcriptionally, are involved in plant responses to abiotic stress. In this study, maize seedling roots were treated for 5 h with 100 mM NaCl, 50 mM Na2CO3, and H2O, respectively. Sequencing analysis of differentially expressed miRNAs under these conditions revealed that the Na2CO3 treatment group had the most differentially expressed miRNAs. Cluster analysis indicated their main involvement in the regulation of ion transport, binding, metabolism, and phenylpropanoid and flavonoid biosynthesis pathways. The unique differentially expressed miRNAs in the NaCl treatment group were related to the sulfur metabolism pathway. This indicates a significant difference in the response patterns of maize to different treatment groups. This study provides theoretical evidence and genetic resources for further analysis of the molecular mechanisms behind maize's salt-alkali tolerance.
Collapse
Affiliation(s)
- Ziqi Chen
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Yang Liu
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Qi Wang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Jianbo Fei
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Chuang Zhang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| |
Collapse
|
3
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Saxena S, Das A, Kaila T, Ramakrishna G, Sharma S, Gaikwad K. Genomic survey of high-throughput RNA-Seq data implicates involvement of long intergenic non-coding RNAs (lincRNAs) in cytoplasmic male-sterility and fertility restoration in pigeon pea. Genes Genomics 2023; 45:783-811. [PMID: 37115379 DOI: 10.1007/s13258-023-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 04/29/2023]
Abstract
BACKGROUND Long-intergenic non-coding RNAs (lincRNAs) originate from intergenic regions and have no coding potential. LincRNAs have emerged as key players in the regulation of various biological processes in plant development. Cytoplasmic male-sterility (CMS) in association with restorer-of-fertility (Rf) systems makes it a highly reliable tool for exploring heterosis for producing commercial hybrid seeds. To date, there have been no reports of lincRNAs during pollen development in CMS and fertility restorer lines in pigeon pea. OBJECTIVE Identification of lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines. METHODS We employed a computational approach to identify lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines using RNA-Seq data. RESULTS We predicted a total of 2145 potential lincRNAs of which 966 were observed to be differentially expressed between the sterile and fertile pollen. We identified, 927 cis-regulated and 383 trans-regulated target genes of the lincRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the target genes revealed that these genes were specifically enriched in pathways like pollen and pollen tube development, oxidative phosphorylation, etc. We detected 23 lincRNAs that were co-expressed with 17 pollen-related genes with known functions. Fifty-nine lincRNAs were predicted to be endogenous target mimics (eTMs) for 25 miRNAs, and found to be associated with pollen development. The, lincRNA regulatory networks revealed that different lincRNA-miRNA-mRNA networks might be associated with CMS and fertility restoration. CONCLUSION Thus, this study provides valuable information by highlighting the functions of lincRNAs as regulators during pollen development in pigeon pea and utilization in hybrid seed production.
Collapse
Affiliation(s)
- Swati Saxena
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Antara Das
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
5
|
Tripathi AM, Singh R, Verma AK, Singh A, Mishra P, Dwivedi V, Narayan S, Gandhivel VHS, Shirke PA, Shivaprasad PV, Roy S. Indian Himalayan natural Arabidopsis thaliana accessions with abolished miR158 levels exhibit robust miR173-initiated trans-acting cascade silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:855-874. [PMID: 36883862 DOI: 10.1111/tpj.16175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023]
Abstract
Small RNAs (sRNAs) such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) are short 20-24-nucleotide non-coding RNAs. They are key regulators of gene expression in plants and other organisms. Several 22-nucleotide miRNAs trigger biogenesis cascades of trans-acting secondary siRNAs, which are involved in various developmental and stress responses. Here we show that Himalayan Arabidopsis thaliana accessions having natural mutations in the miR158 locus exhibit robust cascade silencing of the pentatricopeptide repeat (PPR)-like locus. Furthermore, we show that these cascade sRNAs trigger tertiary silencing of a gene involved in transpiration and stomatal opening. The natural deletions or insertions in MIR158 led to improper processing of miR158 precursors, thereby blocking synthesis of mature miR158. Reduced miR158 levels led to increased levels of its target, a pseudo-PPR gene that is targeted by tasiRNAs generated by the miR173 cascade in other accessions. Using sRNA datasets derived from Indian Himalayan accessions, as well as overexpression and knockout lines of miR158, we show that absence of miR158 led to buildup of pseudo-PPR-derived tertiary sRNAs. These tertiary sRNAs mediated robust silencing of a gene involved in stomatal closure in Himalayan accessions lacking miR158 expression. We functionally validated the tertiary phasiRNA that targets NHX2, which encodes a Na+ -K+ /H+ antiporter protein, thereby regulating transpiration and stomatal conductance. Overall, we report the role of the miRNA-TAS-siRNA-pseudogene-tertiary phasiRNA-NHX2 pathway in plant adaptation.
Collapse
Affiliation(s)
- Abhinandan Mani Tripathi
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajneesh Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwani Kumar Verma
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akanksha Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Parneeta Mishra
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Varun Dwivedi
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Shiv Narayan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Vivek Hari Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Pramod Arvind Shirke
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Sribash Roy
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Jiang L, Fu Y, Sun P, Tian X, Wang G. Identification of microRNA158 from Anthurium andraeanum and Its Function in Cold Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:3371. [PMID: 36501408 PMCID: PMC9735552 DOI: 10.3390/plants11233371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Anthurium andraeanum is a tropical flower with high ornamental and economic value. Cold stress is one of the major abiotic stresses affecting the quality and value of A. andraeanum; thus, improving the cold tolerance of this species is an important breeding objective. MicroRNAs (miRNAs) have a critical role in plant abiotic stress responses, but their specific molecular regulatory mechanisms are largely unknown, including those related to the cold stress response in A. andraeanum. Here, we identified and cloned the precursor of miR158 from A. andraeanum (Aa-miR158). Both Aa-miR158 and its target gene (c48247) had higher expression levels in strong leaves than in other tissues or organs. Further study revealed that the transcript level of Aa-miR158 was increased by cold stress. Heterologous overexpression of Aa-miR158 improved cold stress tolerance in Arabidopsis, which was associated with decreases in the malondialdehyde (MDA) concentration and relative electrical conductivity (REC) as well as increases in peroxidase (POD) and catalase (CAT) activity. Moreover, overexpressing Aa-miR158 significantly increased the expression of endogenous genes related to cold stress tolerance and reactive oxygen species (ROS) levels in transgenic Arabidopsis under cold stress. Overall, our results demonstrate that Aa-miR158 is significantly involved in the cold stress response and provide a new strategy for cold tolerance breeding of A. andraeanum.
Collapse
|
7
|
Zhou D, Chen C, Jin Z, Chen J, Lin S, Lyu T, Liu D, Xiong X, Cao J, Huang L. Transcript Profiling Analysis and ncRNAs' Identification of Male-Sterile Systems of Brassica campestris Reveal New Insights Into the Mechanism Underlying Anther and Pollen Development. FRONTIERS IN PLANT SCIENCE 2022; 13:806865. [PMID: 35211139 PMCID: PMC8861278 DOI: 10.3389/fpls.2022.806865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Male-sterile mutants are useful materials to study the anther and pollen development. Here, whole transcriptome sequencing was performed for inflorescences in three sterile lines of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis), the genic male-sterile line (A line), the Polima cytoplasmic male-sterile (CMS) line (P line), and the Ogura CMS line (O line) along with their maintainer line (B line). In total, 7,136 differentially expressed genes (DEGs), 361 differentially expressed long non-coding RNAs (lncRNAs) (DELs), 56 differentially expressed microRNAs (miRNAs) (DEMs) were selected out. Specific regulatory networks related to anther cell differentiation, meiosis cytokinesis, pollen wall formation, and tapetum development were constructed based on the abortion characteristics of male-sterile lines. Candidate genes and lncRNAs related to cell differentiation were identified in sporocyteless P line, sixteen of which were common to the DEGs in Arabidopsis spl/nzz mutant. Genes and lncRNAs concerning cell plate formation were selected in A line that is defected in meiosis cytokinesis. Also, the orthologs of pollen wall formation and tapetum development genes in Arabidopsis showed distinct expression patterns in the three different sterile lines. Among 361 DELs, 35 were predicted to interact with miRNAs, including 28 targets, 47 endogenous target mimics, and five precursors for miRNAs. Two lncRNAs were further proved to be functional precursors for bra-miR156 and bra-miR5718, respectively. Overexpression of bra-miR5718HG in B. campestris slowed down the growth of pollen tubes, caused shorter pollen tubes, and ultimately affected the seed set. Our study provides new insights into molecular regulation especially the ncRNA interaction during pollen development in Brassica crops.
Collapse
Affiliation(s)
- Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Caizhi Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Zongmin Jin
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Jingwen Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Tao Lyu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Dandan Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Xinpeng Xiong
- College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
8
|
Jiang J, Xu P, Li Y, Li Y, Zhou X, Jiang M, Zhang J, Zhu J, Wang W, Yang L. Identification of miRNAs and their target genes in genic male sterility lines in Brassica napus by small RNA sequencing. BMC PLANT BIOLOGY 2021; 21:520. [PMID: 34753417 PMCID: PMC8576947 DOI: 10.1186/s12870-021-03306-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/30/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Brassica napus is the third leading source of edible oil in the world. Genic male sterility (GMS) lines provide crucial material for harnessing heterosis for rapeseed. GMS lines have been used successfully for rapeseed hybrid production in China. MicroRNAs (miRNAs) play crucial regulatory roles in various plant growth, development, and stress response processes. However, reports on miRNAs that regulate the pollen development of GMS lines in B. napus are few. RESULTS In this study, 12 small RNA and transcriptome libraries were constructed and sequenced for the flower buds from the fertile and sterile lines of two recessive GMS (RGMS) lines, namely, "6251AB" and "6284AB". At the same time, 12 small RNA and transcriptome libraries were also constructed and sequenced for the flower buds from the fertile and sterile lines of two dominant GMS (DGMS) lines, namely, "4001AB" and "4006AB". Based on the results, 46 known miRNAs, 27 novel miRNAs on the other arm of known pre-miRNAs, and 44 new conserved miRNAs were identified. Thirty-five pairs of novel miRNA-3p/miRNA-5p were found. Among all the identified miRNAs, fifteen differentially expressed miRNAs with over 1.5-fold change between flower buds of sterile and fertile lines were identified, including six differentially expressed miRNAs between "4001A" and "4001B", two differentially expressed miRNAs between "4006A" and "4006B", four differentially expressed miRNAs between "6251A" and "6251B", and ten differentially expressed miRNAs between "6284A" and "6284B". The correlation analysis of small RNA and transcriptome sequencing was conducted. And 257 candidate target genes were predicted for the 15 differentially expressed miRNAs. The results of 5' modified RACE indicated that BnaA09g48720D, BnaA09g11120D, and BnaCnng51960D were cleaved by bna-miR398a-3p, bna-miR158-3p and bna-miR159a, respectively. Among the differentially expressed miRNAs, miR159 was chosen to analyze its function. Overexpression of bna-miR159 in Arabidopsis resulted in decreased seed setting rate, and shortened siliques, illustrating that miR159 may regulate the fertility and silique development in rapeseed. CONCLUSIONS Our findings provide an overview of miRNAs that are potentially involved in GMS and pollen development. New information on miRNAs and their related target genes are provided to exploit the GMS mechanism and reveal the miRNA networks in B. napus.
Collapse
Affiliation(s)
- Jianxia Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403 China
| | - Pengfei Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yajie Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yanli Li
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403 China
| | - Xirong Zhou
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403 China
| | - Meiyan Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403 China
| | - Junying Zhang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403 China
| | - Jifeng Zhu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403 China
| | - Weirong Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403 China
| | - Liyong Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403 China
| |
Collapse
|
9
|
Xu P, Zhu Y, Zhang Y, Jiang J, Yang L, Mu J, Yu X, He Y. Global Analysis of the Genetic Variations in miRNA-Targeted Sites and Their Correlations With Agronomic Traits in Rapeseed. Front Genet 2021; 12:741858. [PMID: 34594365 PMCID: PMC8476912 DOI: 10.3389/fgene.2021.741858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) and their target genes play vital roles in crops. However, the genetic variations in miRNA-targeted sites that affect miRNA cleavage efficiency and their correlations with agronomic traits in crops remain unexplored. On the basis of a genome-wide DNA re-sequencing of 210 elite rapeseed (Brassica napus) accessions, we identified the single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) in miRNA-targeted sites complementary to miRNAs. Variant calling revealed 7.14 million SNPs and 2.89 million INDELs throughout the genomes of 210 rapeseed accessions. Furthermore, we detected 330 SNPs and 79 INDELs in 357 miRNA target sites, of which 33.50% were rare variants. We also analyzed the correlation between the genetic variations in miRNA target sites and 12 rapeseed agronomic traits. Eleven SNPs in miRNA target sites were significantly correlated with phenotypes in three consecutive years. More specifically, three correlated SNPs within the miRNA-binding regions of BnSPL9-3, BnSPL13-2, and BnCUC1-2 were in the loci associated with the branch angle, seed weight, and silique number, respectively; expression profiling suggested that the variation at these 3 miRNA target sites significantly affected the expression level of the corresponding target genes. Taken together, the results of this study provide researchers and breeders with a global view of the genetic variations in miRNA-targeted sites in rapeseed and reveal the potential effects of these genetic variations on elite agronomic traits.
Collapse
Affiliation(s)
- Pengfei Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yantao Zhu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Yanfeng Zhang
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Jianxia Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liyong Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jianxin Mu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Babaei S, Singh MB, Bhalla PL. Circular RNAs Repertoire and Expression Profile during Brassica rapa Pollen Development. Int J Mol Sci 2021; 22:ijms221910297. [PMID: 34638635 PMCID: PMC8508787 DOI: 10.3390/ijms221910297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules generated by the back-splicing of exons from linear precursor mRNAs. Though various linear RNAs have been shown to play important regulatory roles in many biological and developmental processes, little is known about the role of their circular counterparts. In this study, we performed high-throughput RNA sequencing to delineate the expression profile and potential function of circRNAs during the five stages of pollen development in Brassica rapa. A total of 1180 circRNAs were detected in pollen development, of which 367 showed stage-specific expression patterns. Functional enrichment and metabolic pathway analysis showed that the parent genes of circRNAs were mainly involved in pollen-related molecular and biological processes such as mitotic and meiotic cell division, DNA processes, protein synthesis, protein modification, and polysaccharide biosynthesis. Moreover, by predicting the circRNA–miRNA network from our differentially expressed circRNAs, we found 88 circRNAs with potential miRNA binding sites, suggesting their role in post-transcriptional regulation of the genes. Finally, we confirmed the back-splicing sites of nine selected circRNAs using divergent primers and Sanger sequencing. Our study presents the systematic analysis of circular RNAs during pollen development and forms the basis of future studies for unlocking complex gene regulatory networks underpinning reproduction in flowering plants.
Collapse
|
11
|
Jeyaraj A, Elango T, Li X, Guo G. Utilization of microRNAs and their regulatory functions for improving biotic stress tolerance in tea plant [ Camellia sinensis (L.) O. Kuntze]. RNA Biol 2020; 17:1365-1382. [PMID: 32478595 PMCID: PMC7549669 DOI: 10.1080/15476286.2020.1774987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs play a central role in responses to biotic stressors through their interactions with their target mRNAs. Tea plant (Camellia sinensis L.), an important beverage crop, is vulnerable to tea geometrid and anthracnose disease that causes considerable crop loss and tea production worldwide. Sustainable production of tea in the current scenario to biotic factors is major challenges. To overcome the problem of biotic stresses, high-throughput sequencing (HTS) with bioinformatics analyses has been used as an effective approach for the identification of stress-responsive miRNAs and their regulatory functions in tea plant. These stress-responsive miRNAs can be utilized for miRNA-mediated gene silencing to enhance stress tolerance in tea plant. Therefore, this review summarizes the current understanding of miRNAs regulatory functions in tea plant responding to Ectropis oblique and Colletotrichum gloeosporioides attacks for future miRNA research. Also, it highlights the utilization of miRNA-mediated gene silencing strategies for developing biotic stress-tolerant tea plant.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
- Department of Biotechnology, Karpagam Academy of Higher Education, Tamilnadu, India
| | - Tamilselvi Elango
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Xinghui Li
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Guiyi Guo
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, P.R. China
| |
Collapse
|
12
|
Lin S, Su S, Jin L, Peng R, Sun D, Ji H, Yu Y, Xu J. Identification of microRNAs and their targets in inflorescences of an Ogura-type cytoplasmic male-sterile line and its maintainer fertile line of turnip (Brassica rapa ssp. rapifera) via high-throughput sequencing and degradome analysis. PLoS One 2020; 15:e0236829. [PMID: 32730367 PMCID: PMC7392268 DOI: 10.1371/journal.pone.0236829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is a widely used trait in angiosperms caused by perturbations in nucleus-mitochondrion interactions that suppress the production of functional pollen. MicroRNAs (miRNAs) are small non-coding RNAs that act as regulatory molecules of transcriptional or post-transcriptional gene silencing in plants. The discovery of miRNAs and their possible implications in CMS induction provides clues for the intricacies and complexity of this phenomenon. Previously, we characterized an Ogura-CMS line of turnip (Brassica rapa ssp. rapifera) that displays distinct impaired anther development with defective microspore production and premature tapetum degeneration. In the present study, high-throughput sequencing was employed for a genome-wide investigation of miRNAs. Six small RNA libraries of inflorescences collected from the Ogura-CMS line and its maintainer fertile (MF) line of turnip were constructed. A total of 120 pre-miRNAs corresponding to 89 mature miRNAs were identified, including 87 conversed miRNAs and 33 novel miRNAs. Among these miRNAs, the expression of 10 differentially expressed mature miRNAs originating from 12 pre-miRNAs was shown to have changed by more than two-fold between inflorescences of the Ogura-CMS line and inflorescences of the MF line, including 8 down- and 2 up-regulated miRNAs. The expression profiles of the differentially expressed miRNAs were confirmed by stem-loop quantitative real-time PCR. In addition, to identify the targets of the identified miRNAs, a degradome analysis was performed. A total of 22 targets of 25 miRNAs and 17 targets of 28 miRNAs were identified as being involved in the reproductive development for Ogura-CMS and MF lines of turnip, respectively. Negative correlations of expression patterns between partial miRNAs and their targets were detected. Some of these identified targets, such as squamosa promoter-binding-like transcription factor family proteins, auxin response factors and pentatricopeptide repeat-containing proteins, were previously reported to be involved in reproductive development in plants. Taken together, our results can help improve the understanding of miRNA-mediated regulatory pathways that might be involved in CMS occurrence in turnip.
Collapse
Affiliation(s)
- Sue Lin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Shiwen Su
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Renyi Peng
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Youjian Yu
- College of Agriculture and Food Science, Zhejiang A & F University, Lin’an, China
| | - Jian Xu
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| |
Collapse
|
13
|
Joint RNA-Seq and miRNA Profiling Analyses to Reveal Molecular Mechanisms in Regulating Thickness of Pod Canopy in Brassica napus. Genes (Basel) 2019; 10:genes10080591. [PMID: 31387302 PMCID: PMC6722711 DOI: 10.3390/genes10080591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Oilseed rape (Brassica napus) is the second largest oilseed crop worldwide. As an architecture component of B. napus, thickness of pod canopy (TPC) plays an important role in yield formation, especially under high-density cultivation conditions. However, the mechanisms underlying the regulation of TPC remain unclear. RNA and microRNA (miRNA) profiling of two groups of B. napus lines with significantly different TPC at the bolting with a tiny bud stage revealed differential expressions of numerous genes involved in nitrogen-related pathways. Expression of several nitrogen-related response genes, including ASP5, ASP2, ASN3, ATCYSC1, PAL2, APT2, CRTISO, and COX15, was dramatically changed in the thick TPC lines compared to those in the thin TPC lines. Differentially expressed miRNAs also included many involved in nitrogen-related pathways. Expression of most target genes was negatively associated with corresponding miRNAs, such as miR159, miR6029, and miR827. In addition, 12 (including miR319, miR845, and miR158) differentially expressed miRNAs between two plant tissues sampled (stem apex and flower bud) were identified, implying that they might have roles in determining overall plant architecture. These results suggest that nitrogen signaling may play a pivotal role in regulating TPC in B. napus.
Collapse
|
14
|
Basso MF, Ferreira PCG, Kobayashi AK, Harmon FG, Nepomuceno AL, Molinari HBC, Grossi‐de‐Sa MF. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1482-1500. [PMID: 30947398 PMCID: PMC6662102 DOI: 10.1111/pbi.13116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/22/2019] [Accepted: 03/17/2019] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) modulate the abundance and spatial-temporal accumulation of target mRNAs and indirectly regulate several plant processes. Transcriptional regulation of the genes encoding miRNAs (MIR genes) can be activated by numerous transcription factors, which themselves are regulated by other miRNAs. Fine-tuning of MIR genes or miRNAs is a powerful biotechnological strategy to improve tolerance to abiotic or biotic stresses in crops of economic importance. Current approaches for miRNA fine-tuning are based on the down- or up-regulation of MIR gene transcription and the use of genetic engineering tools to manipulate the final concentration of these miRNAs in the cytoplasm. Transgenesis, cisgenesis, intragenesis, artificial MIR genes, endogenous and artificial target mimicry, MIR genes editing using Meganucleases, ZNF proteins, TALENs and CRISPR/Cas9 or CRISPR/Cpf1, CRISPR/dCas9 or dCpf1, CRISPR13a, topical delivery of miRNAs and epigenetic memory have been successfully explored to MIR gene or miRNA modulation and improve agronomic traits in several model or crop plants. However, advantages and drawbacks of each of these new biotechnological tools (NBTs) are still not well understood. In this review, we provide a brief overview of the biogenesis and role of miRNAs in response to abiotic or biotic stresses, we present critically the main NBTs used for the manipulation of MIR genes and miRNAs, we show current efforts and findings with the MIR genes and miRNAs modulation in plants, and we summarize the advantages and drawbacks of these NBTs and provide some alternatives to overcome. Finally, challenges and future perspectives to miRNA modulating in important crops are also discussed.
Collapse
Affiliation(s)
| | | | | | - Frank G. Harmon
- Plant Gene Expression CenterUSDA‐ARSAlbanyCAUSA
- Department of Plant and Microbial BiologyUC BerkeleyBerkeleyCAUSA
| | | | | | - Maria Fatima Grossi‐de‐Sa
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
- Post‐Graduation Program in Genomic Sciences and BiotechnologyCatholic University of BrasíliaBrasíliaDFBrazil
- Post‐Graduation Program in BiotechnologyPotiguar University (UNP)NatalRNBrazil
| |
Collapse
|
15
|
Li H, Guo J, Zhang C, Zheng W, Song Y, Wang Y. Identification of Differentially Expressed miRNAs between a Wheat K-type Cytoplasmic Male Sterility Line and Its Near-Isogenic Restorer Line. PLANT & CELL PHYSIOLOGY 2019; 60:1604-1618. [PMID: 31076750 DOI: 10.1093/pcp/pcz065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
K-type cytoplasmic male sterility (KCMS) lines were ideal material for three-line hybrid wheat system due to the major role in hybrid wheat production. In this study, the morphology of developing microspore and mature pollen was compared between a KCMS line and its near-isogenic restorer line (KCMS-NIL). The most striking difference is that the microspore was unable to develop into tricellular pollen in the KCMS line. MicroRNA plays vital roles in flowering and gametophyte development. Small RNA sequencing identified a total of 274 known and 401 novel miRNAs differentially expressed between two lines or two developmental stages. Most of miRNAs with high abundance were differentially expressed at the uninucleate stage, and their expression level recovered or remained at the binucleate stage. Further degradome sequencing identified target genes which were mainly enriched in transcription regulation, phytohormone signaling and RNA degradation pathways. Combining with the transcriptome data, a correlation was found between the abnormal anther development, such as postmeiotic mitosis cessation, deformative pollen wall and the chromosome condensation of the vegetative cell, and the alterations in the related miRNA and their targets expression profiles. According to the correlation and pathway analysis, we propose a hypothetic miRNA-mediated network for the control of KCMS restoration.
Collapse
Affiliation(s)
- Hongxia Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jinglei Guo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Chengyang Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Weijun Zheng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yulong Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yu Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
16
|
Mishra A, Bohra A. Non-coding RNAs and plant male sterility: current knowledge and future prospects. PLANT CELL REPORTS 2018; 37:177-191. [PMID: 29332167 DOI: 10.1007/s00299-018-2248-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Latest outcomes assign functional role to non-coding (nc) RNA molecules in regulatory networks that confer male sterility to plants. Male sterility in plants offers great opportunity for improving crop performance through application of hybrid technology. In this respect, cytoplasmic male sterility (CMS) and sterility induced by photoperiod (PGMS)/temperature (TGMS) have greatly facilitated development of high-yielding hybrids in crops. Participation of non-coding (nc) RNA molecules in plant reproductive development is increasingly becoming evident. Recent breakthroughs in rice definitively associate ncRNAs with PGMS and TGMS. In case of CMS, the exact mechanism through which the mitochondrial ORFs exert influence on the development of male gametophyte remains obscure in several crops. High-throughput sequencing has enabled genome-wide discovery and validation of these regulatory molecules and their target genes, describing their potential roles performed in relation to CMS. Discovery of ncRNA localized in plant mtDNA with its possible implication in CMS induction is intriguing in this respect. Still, conclusive evidences linking ncRNA with CMS phenotypes are currently unavailable, demanding complementing genetic approaches like transgenics to substantiate the preliminary findings. Here, we review the recent literature on the contribution of ncRNAs in conferring male sterility to plants, with an emphasis on microRNAs. Also, we present a perspective on improved understanding about ncRNA-mediated regulatory pathways that control male sterility in plants. A refined understanding of plant male sterility would strengthen crop hybrid industry to deliver hybrids with improved performance.
Collapse
Affiliation(s)
- Ankita Mishra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| |
Collapse
|
17
|
Li H, Wang Y, Wu M, Li L, Jin C, Zhang Q, Chen C, Song W, Wang C. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli ( Brassica oleracea var. italica) Pollen. FRONTIERS IN PLANT SCIENCE 2017; 8:404. [PMID: 28392797 PMCID: PMC5364186 DOI: 10.3389/fpls.2017.00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli (Brassica oleracea var. italica) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences, Nankai UniversityTianjin, China
- College of Horticulture and Landscape, Tianjin Agricultural UniversityTianjin, China
| | - Yu Wang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Mei Wu
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Lihong Li
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chuan Jin
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Qingli Zhang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chengbin Chen
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Wenqin Song
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chunguo Wang
- College of Life Sciences, Nankai UniversityTianjin, China
| |
Collapse
|