1
|
Wang Y, Jiao P, Wang C, Wu C, Wei X, Liu S, Ma Y, Guan S. Overexpression of maize transcription factor ZmNF-YC14 positively regulates drought and salt stress responses in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112502. [PMID: 40204192 DOI: 10.1016/j.plantsci.2025.112502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Maize (Zea mays L.) is a food crop with the largest planted area globally and one of the highest total yields worldwide. However, in recent years, deteriorating climate, increasing scarcity of freshwater resources, and rising land salinity have caused drought and salinity stress to be the two major factors that restrict crop growth, development, and yield, significantly affecting crop production and ecological sustainability. Nuclear factor Ys (NF-Ys) are an important class of transcription factors (TFs); however, their roles in plant stress tolerance responses and the underlying molecular mechanisms remain largely unknown. In this study, we conducted a bioinformatic analysis of 17 members of the maize NF-YC family and examined the ZmNF-YC14 gene through multiple sequence alignment among different species and HFD_NF-YC-like functional domains. Reverse transcription quantitative PCR (RT-qPCR) results indicated that ZmNF-YC14 exhibited the highest expression levels in maize leaves and was positively expressed under both drought and salt stress treatments. Western blot analysis revealed a distinct band at 27.68 kDa. Analyses of Escherichia coli BL21 and yeast strains confirmed that ZmNF-YC14 plays a biological role in enhancing tolerance to salt and drought stress. Arabidopsis plants overexpressing ZmNF-YC14 demonstrated reduced levels of hydrogen peroxide, superoxide anion, and malondialdehyde while exhibiting increased peroxidase, catalase, and superoxide dismutase activities after drought and salt stress treatments. This effect was attributed to the reciprocal relationship between ZmNF-YC14 and its downstream target gene ZmCONSTANS-LIKE16. Therefore, ZmNF-YC14 and ZmCONSTANS-LIKE16 may be essential for the response to abiotic stresses such as drought and salt stress in maize. They play a crucial role in the development of new germplasm, cultivation of new maize varieties, addressing the 'necklace' problem in crop breeding, and ensuring national food security.
Collapse
Affiliation(s)
- Yimeng Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chunlai Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chenyang Wu
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xiaotong Wei
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Chinnaswamy A, Sakthivel SK, Channappa M, Ramanathan V, Shivalingamurthy SG, Peter SC, Kumar R, Kumar RA, Dhansu P, Meena MR, Raju G, Boominathan P, Markandan M, Muthukrishnan A. Overexpression of an NF-YB gene family member, EaNF-YB2, enhances drought tolerance in sugarcane (Saccharum Spp. Hybrid). BMC PLANT BIOLOGY 2024; 24:1246. [PMID: 39722010 DOI: 10.1186/s12870-024-05932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Drought is one of main critical factors that limits sugarcane productivity and juice quality in tropical regions. The unprecedented changes in climate such as monsoon failure, increase in temperature and other factors warrant the need for development of stress tolerant cultivars to sustain sugar production. Plant Nuclear factor (NF-Y) is one of the major classes of transcription factors that have a major role in plant development and abiotic stress response. In our previous studies, we found that under drought conditions, the nuclear factor NF-YB2 was highly expressed in Erianthus arundinaceus, an abiotic stress tolerant wild genus of Saccharum species. In this study, the coding sequence of NF-YB2 gene was isolated from Erianthus arundinaceus and overexpressed in sugarcane to develop drought tolerant lines. RESULTS : EaNF-YB2 overexpressing sugarcane (OE) lines had higher relative water content, chlorophyll content and photosynthetic efficiency compared to non-transgenic (NT) control. In addition, overexpressing lines had higher activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR), and higher proline content, lower malondialdehyde (MDA) and peroxide (H2O2) contents. The expression studies revealed that EaNF-YB2 expression was significantly higher in OE lines than NT control under drought stress. The OE lines had an elevated expression of abiotic stress responsive genes such as BRICK, HSP 70, DREB2, EDH45, and LEA3. The morphological analysis revealed that OE lines exhibited less wilting than NT under drought conditions. CONCLUSION This study provides insights into the role of the EaNF-YB2 gene in drought tolerance in sugarcane. Based on the findings of this study, the EaNF-YB2 gene can be potentially exploited to produce drought tolerant sugarcane cultivars to sustain sugarcane production under water deficit conditions.
Collapse
Affiliation(s)
- Appunu Chinnaswamy
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India.
| | - Surya Krishna Sakthivel
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Mahadevaiah Channappa
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
- Division of Vegetable Crops, Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
| | - Valarmathi Ramanathan
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Suresha Giriyapur Shivalingamurthy
- Division of Crop Production, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Swathik Clarancia Peter
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Ravinder Kumar
- ICAR-SBI Regional Research Centre, Karnal, Haryana, 132001, India
| | - Raja Arun Kumar
- Division of Crop Production, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Pooja Dhansu
- ICAR-SBI Regional Research Centre, Karnal, Haryana, 132001, India
| | - Mintu Ram Meena
- ICAR-SBI Regional Research Centre, Karnal, Haryana, 132001, India
| | - Gomathi Raju
- Division of Crop Production, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Parasuraman Boominathan
- Department of Plant Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Manickavasagam Markandan
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Arun Muthukrishnan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
3
|
Siriwardana CL. Plant Nuclear Factor Y (NF-Y) Transcription Factors: Evolving Insights into Biological Functions and Gene Expansion. Int J Mol Sci 2024; 26:38. [PMID: 39795894 PMCID: PMC11719662 DOI: 10.3390/ijms26010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Gene expansion is a common phenomenon in plant transcription factor families; however, the underlying molecular mechanisms remain elusive. Examples of gene expansion in transcription factors are found in all eukaryotes. One example is plant nuclear factor Y (NF-Y) transcription factors. NF-Y is ubiquitous to eukaryotes and comprises three independent protein families: NF-YA, NF-YB, and NF-YC. While animals and fungi mostly have one of each NF-Y subunit, NF-Y is greatly expanded in plants. For example, humans have one each of NF-YA, NF-YB, and NF-YC, while the model plant Arabidopsis has ten each of NF-YA, NF-YB, and NF-YC. Our understanding of the plant NF-Y, including its biological roles, molecular mechanisms, and gene expansion, has improved over the past few years. Here we will review its biological roles and focus on studies demonstrating that NF-Y can serve as a model for plant gene expansion. These studies show that NF-Y can be classified into ancestrally related subclasses. Further, the primary structure of each NF-Y contains a conserved core domain flanked by non-conserved N- and C-termini. The non-conserved N- and C-termini, under pressure for diversifying selection, may provide clues to this gene family's retention and functional diversification following gene duplication. In summary, this review demonstrates that NF-Y expansion has the potential to be used as a model to study the gene expansion and retention of transcription factor families.
Collapse
Affiliation(s)
- Chamindika L Siriwardana
- Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, TX 76549, USA
| |
Collapse
|
4
|
Han Y, Wang Z, Han B, Zhang Y, Liu J, Yang Y. Allelic variation of TaABI5-A4 significantly affects seed dormancy in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:240. [PMID: 39341982 DOI: 10.1007/s00122-024-04753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
KEY MESSAGE We identified a pivotal transcription factor TaABI5-A4 that is significantly associated with pre-harvest sprouting in wheat; its function in regulating seed dormancy was confirmed in transgenic rice. ABI5 is a critical transcription factor in regulation of crop seed maturation, dormancy, germination, and post-germination. Sixteen copies of homologous sequences of ABI5 were identified in Chinese wheat line Zhou 8425B. Cultivars of two haplotypes TaABI5-A4a and TaABI5-A4b showed significantly different seed dormancies. Based on two SNPs between the sequences of TaABI5-A4a and TaABI5-A4b, two complementary dominant sequence-tagged site (STS) markers were developed and validated in a natural population of 103 Chinese wheat cultivars and advanced lines and 200 recombinant inbred lines (RILs) derived from the Yangxiaomai/Zhongyou 9507 cross; the STS markers can be used efficiently and reliably to evaluate the dormancy of wheat seeds. The transcription level of TaABI5-A4b was significantly increased in TaABI5-A4a-GFP transgenic rice lines compared with that in TaABI5-A4b-GFP. The average seed germination index of TaABI5-A4a-GFP transgenic rice lines was significantly lower than those of TaABI5-A4b-GFP. In addition, seeds of TaABI5-A4a-GFP transgenic lines had higher ABA sensitivity and endogenous ABA content, lower endogenous GA content and plant height, and thicker stem internodes than those of TaABI5-A4b-GFP. Allelic variation of TaABI5-A4-affected wheat seed dormancy and the gene function was confirmed in transgenic rice. The transgenic rice lines of TaABI5-A4a and TaABI5-A4b had significantly different sensitivities to ABA and contents of endogenous ABA and GA in mature seeds, thereby influencing the seed dormancy, plant height, and stem internode length and diameter.
Collapse
Affiliation(s)
- Yang Han
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Zeng Wang
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Bing Han
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Yingjun Zhang
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, Hebei, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yan Yang
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
5
|
Zhang D, He T, Wang X, Zhou C, Chen Y, Wang X, Wang S, He S, Guo Y, Liu Z, Chen M. Transcription factor DIVARICATA1 positively modulates seed germination in response to salinity stress. PLANT PHYSIOLOGY 2024; 195:2997-3009. [PMID: 38687890 DOI: 10.1093/plphys/kiae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Seed germination is a critical checkpoint for plant growth under unfavorable environmental conditions. In Arabidopsis (Arabidopsis thaliana), the abscisic acid (ABA) and gibberellic acid (GA) signaling pathways play important roles in modulating seed germination. However, the molecular links between salinity stress and ABA/GA signaling are not well understood. Herein, we showed that the expression of DIVARICATA1 (DIV1), which encodes a MYB-like transcription factor, was induced by GA and repressed by ABA, salinity, and osmotic stress in germinating seeds. DIV1 positively regulated seed germination in response to salinity stress by directly regulating the expression of DELAY OF GERMINATION 1-LIKE 3 (DOGL3) and GA-STIMULATED ARABIDOPSIS 4 (GASA4) and indirectly regulating the expression of several germination-associated genes. Moreover, NUCLEAR FACTOR-YC9 (NF-YC9) directly repressed the expression of DIV1 in germinating seeds in response to salinity stress. These results help reveal the function of the NF-YC9-DIV1 module and provide insights into the regulation of ABA and GA signaling in response to salinity stress during seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Da Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tan He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xumin Wang
- Ningxia Agricultural Technology Extension Station, Yinchuan 750001, Ningxia, China
| | - Chenchen Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Youpeng Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shixiang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
6
|
Omelyanchuk NA, Lavrekha VV, Bogomolov AG, Dolgikh VA, Sidorenko AD, Zemlyanskaya EV. Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1905. [PMID: 39065433 PMCID: PMC11280061 DOI: 10.3390/plants13141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
In plant hormone signaling, transcription factor regulatory networks (TFRNs), which link the master transcription factors to the biological processes under their control, remain insufficiently characterized despite their crucial function. Here, we identify a TFRN involved in the response to the key plant hormone auxin and define its impact on auxin-driven biological processes. To reconstruct the TFRN, we developed a three-step procedure, which is based on the integrated analysis of differentially expressed gene lists and a representative collection of transcription factor binding profiles. Its implementation is available as a part of the CisCross web server. With the new method, we distinguished two transcription factor subnetworks. The first operates before auxin treatment and is switched off upon hormone application, the second is switched on by the hormone. Moreover, we characterized the functioning of the auxin-regulated TFRN in control of chlorophyll and lignin biosynthesis, abscisic acid signaling, and ribosome biogenesis.
Collapse
Affiliation(s)
- Nadya A. Omelyanchuk
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Viktoriya V. Lavrekha
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anton G. Bogomolov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Vladislav A. Dolgikh
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra D. Sidorenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Sharma A, Dheer P, Rautela I, Thapliyal P, Thapliyal P, Bajpai AB, Sharma MD. A review on strategies for crop improvement against drought stress through molecular insights. 3 Biotech 2024; 14:173. [PMID: 38846012 PMCID: PMC11150236 DOI: 10.1007/s13205-024-04020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
The demand for food goods is rising along with the world population growth, which is directly related to the yield of agricultural crops around the world. However, a number of environmental factors, including floods, salinity, moisture, and drought, have a detrimental effect on agricultural production around the world. Among all of these stresses, drought stress (DS) poses a constant threat to agricultural crops and is a significant impediment to global agricultural productivity. Its potency and severity are expected to increase in the future years. A variety of techniques have been used to generate drought-resistant plants in order to get around this restriction. Different crop plants exhibit specific traits that contribute to drought resistance (DR), such as early flowering, drought escape (DE), and leaf traits. We are highlighting numerous methods that can be used to overcome the effects of DS in this review. Agronomic methods, transgenic methods, the use of sufficient fertilizers, and molecular methods such as clustered regularly interspaced short palindromic repeats (CRISPRs)-associated nuclease 9 (Cas9), virus-induced gene silencing (VIGS), quantitative trait loci (QTL) mapping, microRNA (miRNA) technology, and OMICS-based approaches make up the majority of these techniques. CRISPR technology has rapidly become an increasingly popular choice among researchers exploring natural tolerance to abiotic stresses although, only a few plants have been produced so far using this technique. In order to address the difficulties imposed by DS, new plants utilizing the CRISPR technology must be developed.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248001 India
| | - Pallavi Dheer
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| | - Indra Rautela
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Preeti Thapliyal
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Priya Thapliyal
- Department of Biochemistry, H.N.B. Garhwal (A Central) University, Srinagar, Uttarakhand 246174 India
| | - Atal Bihari Bajpai
- Department of Botany, D.B.S. (PG) College, Dehradun, Uttarakhand 248001 India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| |
Collapse
|
8
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Goralogia GS, Magnuson A, Li JY, Muchero W, Fuxin L, Strauss SH. Genome-wide association study and network analysis of in vitro transformation in Populus trichocarpa support key roles of diverse phytohormone pathways and cross talk. THE NEW PHYTOLOGIST 2024. [PMID: 38650352 DOI: 10.1111/nph.19737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Wide variation in amenability to transformation and regeneration (TR) among many plant species and genotypes presents a challenge to the use of genetic engineering in research and breeding. To help understand the causes of this variation, we performed association mapping and network analysis using a population of 1204 wild trees of Populus trichocarpa (black cottonwood). To enable precise and high-throughput phenotyping of callus and shoot TR, we developed a computer vision system that cross-referenced complementary red, green, and blue (RGB) and fluorescent-hyperspectral images. We performed association mapping using single-marker and combined variant methods, followed by statistical tests for epistasis and integration of published multi-omic datasets to identify likely regulatory hubs. We report 409 candidate genes implicated by associations within 5 kb of coding sequences, and epistasis tests implicated 81 of these candidate genes as regulators of one another. Gene ontology terms related to protein-protein interactions and transcriptional regulation are overrepresented, among others. In addition to auxin and cytokinin pathways long established as critical to TR, our results highlight the importance of stress and wounding pathways. Potential regulatory hubs of signaling within and across these pathways include GROWTH REGULATORY FACTOR 1 (GRF1), PHOSPHATIDYLINOSITOL 4-KINASE β1 (PI-4Kβ1), and OBF-BINDING PROTEIN 1 (OBP1).
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jialin Yuan
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Damanpreet Kaur
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Yuan Jiang
- Statistics Department, Oregon State University, Corvallis, OR, 97331, USA
| | - Greg S Goralogia
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Anna Magnuson
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jia Yi Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA
| | - Li Fuxin
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
9
|
Bin J, Tan Q, Wen S, Huang L, Wang H, Imtiaz M, Zhang Z, Guo H, Xie L, Zeng R, Wei Q. Comprehensive Analyses of Four PhNF-YC Genes from Petunia hybrida and Impacts on Flowering Time. PLANTS (BASEL, SWITZERLAND) 2024; 13:742. [PMID: 38475587 DOI: 10.3390/plants13050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Nuclear Factor Y (NF-Y) is a class of heterotrimeric transcription factors composed of three subunits: NF-A, NF-YB, and NF-YC. NF-YC family members play crucial roles in various developmental processes, particularly in the regulation of flowering time. However, their functions in petunia remain poorly understood. In this study, we isolated four PhNF-YC genes from petunia and confirmed their subcellular localization in both the nucleus and cytoplasm. We analyzed the transcript abundance of all four PhNF-YC genes and found that PhNF-YC2 and PhNF-YC4 were highly expressed in apical buds and leaves, with their transcript levels decreasing before flower bud differentiation. Silencing PhNF-YC2 using VIGS resulted in a delayed flowering time and reduced chlorophyll content, while PhNF-YC4-silenced plants only exhibited a delayed flowering time. Furthermore, we detected the transcript abundance of flowering-related genes involved in different signaling pathways and found that PhCO, PhGI, PhFBP21, PhGA20ox4, and PhSPL9b were regulated by both PhNF-YC2 and PhNF-YC4. Additionally, the transcript abundance of PhSPL2, PhSPL3, and PhSPL4 increased only in PhNF-YC2-silenced plants. Overall, these results provide evidence that PhNF-YC2 and PhNF-YC4 negatively regulate flowering time in petunia by modulating a series of flowering-related genes.
Collapse
Affiliation(s)
- Jing Bin
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shiyun Wen
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Licheng Huang
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Huimin Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Imtiaz
- Department of Horticulture, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Zhisheng Zhang
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Herong Guo
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li Xie
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ruizhen Zeng
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Wei
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Yan X, Han M, Li S, Liang Z, Ouyang J, Wang X, Liao P. A member of NF-Y family, OsNF-YC5 negatively regulates salt tolerance in rice. Gene 2024; 892:147869. [PMID: 37797782 DOI: 10.1016/j.gene.2023.147869] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
NF-Y, a critical transcription factor, binds to the CCAAT-box in target gene promoters, playing a pivotal role in plant development and abiotic stress response. OsNF-YC5, encodes a putative subunit of the NF-Y transcription factor in rice, had an undetermined function. Our research revealed that OsNF-YC5 is induced by high salinity and exogenous abscisic acid (ABA). Subcellular localization studies showed that OsNF-YC5 is nuclear- and cytoplasm-localized. Using CRISPR-Cas9 to disrupt OsNF-YC5, we observed significantly enhanced rice salinity tolerance and ABA-hypersensitivity. Compared to the wild-type, osnf-yc5 mutants exhibited reduced H2O2 and malondialdehyde (MDA) levels, increased catalase (CAT) activity, and elevated OsCATA transcripts under salt stress. Moreover, ABA-dependent (OsABI2 and OsLEA3) and ABA-independent (OsDREB1A, OsDREB1B, and OsDREB2A) marker genes were upregulated in mutant lines in response to salinity. These results indicate that disrupting OsNF-YC5 enhances rice salinity tolerance, potentially by boosting CAT enzyme activity and modulating gene expression in both ABA-dependent and ABA-independent pathways. Therefore, this study provides a valuable theoretical foundation and genetic resources for developing novel salt-tolerant rice varieties.
Collapse
Affiliation(s)
- Xin Yan
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Mengtian Han
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Shuai Li
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Zhiyan Liang
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Jiexiu Ouyang
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Xin Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Pengfei Liao
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China.
| |
Collapse
|
11
|
Gedam PA, Khandagale K, Shirsat D, Thangasamy A, Kulkarni O, Kulkarni A, Patil SS, Barvkar VT, Mahajan V, Gupta AJ, Bhagat KP, Khade YP, Singh M, Gawande S. Elucidating the molecular responses to waterlogging stress in onion ( Allium cepa L.) leaf by comparative transcriptome profiling. FRONTIERS IN PLANT SCIENCE 2023; 14:1150909. [PMID: 37615019 PMCID: PMC10442827 DOI: 10.3389/fpls.2023.1150909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
Introduction Waterlogging is a major stress that severely affects onion cultivation worldwide, and developing stress-tolerant varieties could be a valuable measure for overcoming its adverse effects. Gathering information regarding the molecular mechanisms and gene expression patterns of waterlogging-tolerant and sensitive genotypes is an effective method for improving stress tolerance in onions. To date, the waterlogging tolerance-governing molecular mechanism in onions is unknown. Methods This study identified the differentially expressed genes (DEGs) through transcriptome analysis in leaf tissue of two onion genotypes (Acc. 1666; tolerant and W-344; sensitive) presenting contrasting responses to waterlogging stress. Results Differential gene expression analysis revealed that in Acc. 1666, 1629 and 3271 genes were upregulated and downregulated, respectively. In W-344, 2134 and 1909 genes were upregulated and downregulated, respectively, under waterlogging stress. The proteins coded by these DEGs regulate several key biological processes to overcome waterlogging stress such as phytohormone production, antioxidant enzymes, programmed cell death, and energy production. The clusters of orthologous group pathway analysis revealed that DEGs contributed to the post-translational modification, energy production, and carbohydrate metabolism-related pathways under waterlogging stress. The enzyme assay demonstrated higher activity of antioxidant enzymes in Acc. 1666 than in W-344. The differential expression of waterlogging tolerance related genes, such as those related to antioxidant enzymes, phytohormone biosynthesis, carbohydrate metabolism, and transcriptional factors, suggested that significant fine reprogramming of gene expression occurs in response to waterlogging stress in onion. A few genes such as ADH, PDC, PEP carboxylase, WRKY22, and Respiratory burst oxidase D were exclusively upregulated in Acc. 1666. Discussion The molecular information about DEGs identified in the present study would be valuable for improving stress tolerance and for developing waterlogging tolerant onion varieties.
Collapse
Affiliation(s)
- Pranjali A. Gedam
- Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, India
| | - Kiran Khandagale
- Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, India
| | - Dhananjay Shirsat
- Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, India
| | - A. Thangasamy
- Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, India
| | - Onkar Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Abhijeet Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | | | | | - Vijay Mahajan
- Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, India
| | - Amar Jeet Gupta
- Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, India
| | - Kiran P. Bhagat
- Indian Council of Agricultural Research (ICAR)-Directorate of Floriculture Research, Pune, India
| | - Yogesh P. Khade
- Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, India
| | - Major Singh
- Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, India
| | - Suresh Gawande
- Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, India
| |
Collapse
|
12
|
Zhang H, Liu S, Ren T, Niu M, Liu X, Liu C, Wang H, Yin W, Xia X. Crucial Abiotic Stress Regulatory Network of NF-Y Transcription Factor in Plants. Int J Mol Sci 2023; 24:ijms24054426. [PMID: 36901852 PMCID: PMC10002336 DOI: 10.3390/ijms24054426] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Nuclear Factor-Y (NF-Y), composed of three subunits NF-YA, NF-YB and NF-YC, exists in most of the eukaryotes and is relatively conservative in evolution. As compared to animals and fungi, the number of NF-Y subunits has significantly expanded in higher plants. The NF-Y complex regulates the expression of target genes by directly binding the promoter CCAAT box or by physical interaction and mediating the binding of a transcriptional activator or inhibitor. NF-Y plays an important role at various stages of plant growth and development, especially in response to stress, which attracted many researchers to explore. Herein, we have reviewed the structural characteristics and mechanism of function of NF-Y subunits, summarized the latest research on NF-Y involved in the response to abiotic stresses, including drought, salt, nutrient and temperature, and elaborated the critical role of NF-Y in these different abiotic stresses. Based on the summary above, we have prospected the potential research on NF-Y in response to plant abiotic stresses and discussed the difficulties that may be faced in order to provide a reference for the in-depth analysis of the function of NF-Y transcription factors and an in-depth study of plant responses to abiotic stress.
Collapse
Affiliation(s)
- Han Zhang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shujing Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tianmeng Ren
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxue Niu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Houling Wang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| | - Xinli Xia
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| |
Collapse
|
13
|
Mangena P. Pleiotropic effects of recombinant protease inhibitors in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994710. [PMID: 36119571 PMCID: PMC9478479 DOI: 10.3389/fpls.2022.994710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Recombinant gene encoded protease inhibitors have been identified as some of the most effective antidigestive molecules to guard against proteolysis of essential proteins and plant attacking proteases from herbivorous pests and pathogenic microorganisms. Protease inhibitors (PIs) can be over expressed in transgenic plants to complement internal host defense systems, Bt toxins in genetically modified pest resistance and abiotic stress tolerance achieved through cystatins expression. Although the understanding of the role of proteolytic enzymes and their inhibitors encoded by both endogenous and transgenes expressed in crop plants has significantly advanced, their implication in biological systems still requires further elucidations. This paper, therefore, succinctly reviewed most recently published literature on recombinant proteases inhibitors (RPIs), focusing mainly on their unintended consequences in plants, other living organisms, and the environment. The review discusses major negative and unintended effects of RPIs involving the inhibitors' non-specificity on protease enzymes, non-target organisms and ubiquitous versatility in their mechanism of inhibition. The paper also discusses some direct and indirect effects of RPIs such as degradation by distinct classes of proteases, reduced functionality due to plant exposure to severe environmental stress and any other potential negative influences exerted on both the host plant as well as the environment. These pleiotropic effects must be decisively monitored to eliminate and prevent any potential adverse effects that transgenic plants carrying recombinant inhibitor genes may have on non-target organisms and biodiversity.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, Faculty of Science and Agriculture, School of Molecular and Life Sciences, University of Limpopo, Polokwane, Limpopo, South Africa
| |
Collapse
|
14
|
Ferrari RC, Kawabata AB, Ferreira SS, Hartwell J, Freschi L. A matter of time: regulatory events behind the synchronization of C4 and crassulacean acid metabolism in Portulaca oleracea. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4867-4885. [PMID: 35439821 DOI: 10.1093/jxb/erac163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Portulaca species can switch between C4 and crassulacean acid metabolism (CAM) depending on environmental conditions. However, the regulatory mechanisms behind this rare photosynthetic adaptation remain elusive. Using Portulaca oleracea as a model system, here we investigated the involvement of the circadian clock, plant hormones, and transcription factors in coordinating C4 and CAM gene expression. Free-running experiments in constant conditions suggested that C4 and CAM gene expression are intrinsically connected to the circadian clock. Detailed time-course, drought, and rewatering experiments revealed distinct time frames for CAM induction and reversion (days versus hours, respectively), which were accompanied by changes in abscisic acid (ABA) and cytokinin metabolism and signaling. Exogenous ABA and cytokinins were shown to promote and repress CAM expression in P. oleracea, respectively. Moreover, the drought-induced decline in C4 transcript levels was completely recovered upon cytokinin treatment. The ABA-regulated transcription factor genes HB7, NFYA7, NFYC9, TT8, and ARR12 were identified as likely candidate regulators of CAM induction following this approach, whereas NFYC4 and ARR9 were connected to C4 expression patterns. Therefore, we provide insights into the signaling events controlling C4-CAM transitions in response to water availability and over the day/night cycle, highlighting candidate genes for future functional studies in the context of facultative C4-CAM photosynthesis.
Collapse
Affiliation(s)
- Renata Callegari Ferrari
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| | - Aline Bastos Kawabata
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| |
Collapse
|
15
|
Yu J, Yuan Y, Zhang W, Song T, Hou X, Kong L, Cui G. Overexpression of an NF-YC2 gene confers alkali tolerance to transgenic alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:960160. [PMID: 35991397 PMCID: PMC9389336 DOI: 10.3389/fpls.2022.960160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Alkaline stress severely limits plant growth and yield worldwide. NF-YC transcription factors (TFs) respond to abiotic stress by activating gene expression. However, the biological function of NF-YC TFs in alfalfa (Medicago sativa L.) is not clear. In our study, an NF-YC2 gene was identified and transgenic plants were obtained by constructing overexpression vector and cotyledon node transformation system in alfalfa. The open reading frame of MsNF-YC2 is 879 bp with 32.4 kDa molecular mass. MsNF-YC2 showed tissue expression specificity and was induced by a variety of abiotic stresses including drought, salt, and alkali stress in alfalfa. Under alkali stress treatment, transgenic plants exhibited higher levels of antioxidant enzyme activities and proline (Pro), correlating with a lower levels of hydrogen peroxide (H2O2), superoxide anion (O2 -) compared with wild-type (WT) plants. Transcriptomic results showed that overexpression of MsNF-YC2 regulated the expression of phytohormone signal transduction and photosynthesis-related genes under normal and alkaline stress treatments. These results suggest that the MsNF-YC2 gene plays crucial role enhance alkali adaptation abilities in alfalfa.
Collapse
|
16
|
Tong S, Wang Y, Chen N, Wang D, Liu B, Wang W, Chen Y, Liu J, Ma T, Jiang Y. PtoNF-YC9-SRMT-PtoRD26 module regulates the high saline tolerance of a triploid poplar. Genome Biol 2022; 23:148. [PMID: 35799188 PMCID: PMC9264554 DOI: 10.1186/s13059-022-02718-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/25/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Sensing and responding to stresses determine the tolerance of plants to adverse environments. The triploid Chinese white poplar is widely cultivated in North China because of its adaptation to a wide range of habitats including highly saline ones. However, its triploid genome complicates any detailed investigation of the molecular mechanisms underlying its adaptations. RESULTS We report a haplotype-resolved genome of this triploid poplar and characterize, using reverse genetics and biochemical approaches, a MYB gene, SALT RESPONSIVE MYB TRANSCRIPTION FACTOR (SRMT), which combines NUCLEAR FACTOR Y SUBUNIT C 9 (PtoNF-YC9) and RESPONSIVE TO DESICCATION 26 (PtoRD26), to regulate an ABA-dependent salt-stress response signaling. We reveal that the salt-inducible PtoRD26 is dependent on ABA signaling. We demonstrate that ABA or salt drives PtoNF-YC9 shuttling into the nucleus where it interacts with SRMT, resulting in the rapid expression of PtoRD26 which in turn directly regulates SRMT. This positive feedback loop of SRMT-PtoRD26 can rapidly amplify salt-stress signaling. Interference with either component of this regulatory module reduces the salt tolerance of this triploid poplar. CONCLUSION Our findings reveal a novel ABA-dependent salt-responsive mechanism, which is mediated by the PtoNF-YC9-SRMT-PtoRD26 module that confers salt tolerance to this triploid poplar. These genes may therefore also serve as potential and important modification targets in breeding programs.
Collapse
Affiliation(s)
- Shaofei Tong
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yubo Wang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Ningning Chen
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Deyan Wang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Bao Liu
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Weiwei Wang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yang Chen
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| | - Tao Ma
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| | - Yuanzhong Jiang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| |
Collapse
|
17
|
Abstract
Cryptochrome 1 (CRY1), a main blue light receptor protein, plays a significant role in several biological processes. However, the expression patterns and function of CRY1 in strawberry have not been identified. Here, the expression profile of CRY1 in different tissues and developmental stages of strawberry fruit, and expression patterns response to abiotic stresses (low temperature, salt and drought) were analyzed. Its subcellular localization, interaction proteins and heterologous overexpression in tobacco were also investigated. The results showed that CRY1 was mainly expressed in leaves and fruits with an expression peak at the initial red stage in strawberry fruit. Abiotic stresses could significantly induce the expression of CRY1. The CRY1 protein was located in both nucleus and cytoplasm. Five proteins (CSN5a-like, JAZ5, eIF3G. NF-YC9, and NDUFB9) interacting with CRY1 were discovered. Genes related flowering times, such as HY5 and CO, in three overexpressed FaCRY1 tobacco lines, were significantly upregulated. Taken together, our results suggested CRY1 have a broad role in biological processes in strawberry.
Collapse
|
18
|
Wang T, Wei Q, Wang Z, Liu W, Zhao X, Ma C, Gao J, Xu Y, Hong B. CmNF-YB8 affects drought resistance in chrysanthemum by altering stomatal status and leaf cuticle thickness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:741-755. [PMID: 34889055 DOI: 10.1111/jipb.13201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/08/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major abiotic stress that limits plant growth and development. Adaptive mechanisms have evolved to mitigate drought stress, including the capacity to adjust water loss rate and to modify the morphology and structure of the epidermis. Here, we show that the expression of CmNF-YB8, encoding a nuclear factor Y (NF-Y) B-type subunit, is lower under drought conditions in chrysanthemum (Chrysanthemum morifolium). Transgenic chrysanthemum lines in which transcript levels of CmNF-YB8 were reduced by RNA interference (CmNF-YB8-RNAi) exhibited enhanced drought resistance relative to control lines, whereas lines overexpressing CmNF-YB8 (CmNF-YB8-OX) were less tolerant to drought. Compared to wild type (WT), CmNF-YB8-RNAi plants showed reduced stomatal opening and a thicker epidermal cuticle that correlated with their water loss rate. We also identified genes involved in stomatal adjustment (CBL-interacting protein kinase 6, CmCIPK6) and cuticle biosynthesis (CmSHN3) that are more highly expressed in CmNF-YB8-RNAi lines than in WT, CmCIPK6 being a direct downstream target of CmNF-YB8. Virus-induced gene silencing of CmCIPK6 or CmSHN3 in the CmNF-YB8-RNAi background abolished the effects of CmNF-YB8-RNAi on stomatal closure and cuticle deposition, respectively. CmNF-YB8 thus regulates CmCIPK6 and CmSHN3 expression to alter stomatal movement and cuticle thickness in the leaf epidermis, thereby affecting drought resistance.
Collapse
Affiliation(s)
- Tianle Wang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qian Wei
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiling Wang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenwen Liu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xin Zhao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chao Ma
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanjie Xu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Hong
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Ali F, Qanmber G, Li F, Wang Z. Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 2022; 35:199-214. [PMID: 35003801 PMCID: PMC8721241 DOI: 10.1016/j.jare.2021.03.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Functional ABA biosynthesis genes show specific roles for ABA accumulation at different stages of seed development and seedling establishment. De novo ABA biosynthesis during embryogenesis is required for late seed development, maturation, and induction of primary dormancy. ABA plays multiple roles with the key LAFL hub to regulate various downstream signaling genes in seed and seedling development. Key ABA signaling genes ABI3, ABI4, and ABI5 play important multiple functions with various cofactors during seed development such as de-greening, desiccation tolerance, maturation, dormancy, and seed vigor. The crosstalk between ABA and other phytohormones are complicated and important for seed development and seedling establishment.
Background Seed is vital for plant survival and dispersion, however, its development and germination are influenced by various internal and external factors. Abscisic acid (ABA) is one of the most important phytohormones that influence seed development and germination. Until now, impressive progresses in ABA metabolism and signaling pathways during seed development and germination have been achieved. At the molecular level, ABA biosynthesis, degradation, and signaling genes were identified to play important roles in seed development and germination. Additionally, the crosstalk between ABA and other hormones such as gibberellins (GA), ethylene (ET), Brassinolide (BR), and auxin also play critical roles. Although these studies explored some actions and mechanisms by which ABA-related factors regulate seed morphogenesis, dormancy, and germination, the complete network of ABA in seed traits is still unclear. Aim of review Presently, seed faces challenges in survival and viability. Due to the vital positive roles in dormancy induction and maintenance, as well as a vibrant negative role in the seed germination of ABA, there is a need to understand the mechanisms of various ABA regulators that are involved in seed dormancy and germination with the updated knowledge and draw a better network for the underlying mechanisms of the ABA, which would advance the understanding and artificial modification of the seed vigor and longevity regulation. Key scientific concept of review Here, we review functions and mechanisms of ABA in different seed development stages and seed germination, discuss the current progresses especially on the crosstalk between ABA and other hormones and signaling molecules, address novel points and key challenges (e.g., exploring more regulators, more cofactors involved in the crosstalk between ABA and other phytohormones, and visualization of active ABA in the plant), and outline future perspectives for ABA regulating seed associated traits.
Collapse
Affiliation(s)
- Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
20
|
Genome-wide screening and identification of nuclear Factor-Y family genes and exploration their function on regulating abiotic and biotic stress in potato (Solanum tuberosum L.). Gene 2021; 812:146089. [PMID: 34896520 DOI: 10.1016/j.gene.2021.146089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
The Nuclear Factor-Y (NF-Y) transcription factor (TF), which includes three distinct subunits (NF-YA, NF-YB and NF-YC), is known to manipulate various aspects of plant growth, development, and stress responses. Although the NF-Y gene family was well studied in many species, little is known about their functions in potato. In this study, a total of 37 potato NF-Y genes were identified, including 11 StNF-YAs, 20 StNF-YBs, and 6 StNF-YCs. The genetic features of these StNF-Y genes were investigated by comparing their evolutionary relationship, intron/exon organization and motif distribution pattern. Multiple alignments showed that all StNF-Y proteins possessed clearly conserved core regions that were flanked by non-conserved sequences. Gene duplication analysis indicated that nine StNF-Y genes were subjected to tandem duplication and eight StNF-Ys arose from segmental duplication events. Synteny analysis suggested that most StNF-Y genes (33 of 37) were orthologous to potato's close relative tomato (Solanum lycopersicum L.). Tissue-specific expression of the StNF-Y genes suggested their potential roles in controlling potato growth and development. The role of StNF-Ys in regulating potato responses to abiotic stress (ABA, drought and salinity) was also confirmed: twelve StNF-Y genes were up-regulated and another two were down-regulated under different abiotic treatments. In addition, genes responded differently to pathogen challenges, suggesting that StNF-Y genes may play distinct roles under certain biotic stress. In summary, insights into the evolution of NF-Y family members and their functions in potato development and stress responses are provided.
Collapse
|
21
|
Expression of the Malus sieversii NF-YB21 Encoded Gene Confers Tolerance to Osmotic Stresses in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22189777. [PMID: 34575941 PMCID: PMC8467963 DOI: 10.3390/ijms22189777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Drought is the main environmental factor that limits the yield and quality of apples (Malus × domestica) grown in arid and semi-arid regions. Nuclear factor Ys (NF-Ys) are important transcription factors involved in the regulation of plant growth, development, and various stress responses. However, the function of NF-Y genes is poorly understood in apples. Here, we identified 43 NF-Y genes in the genome of apples and conducted an initial functional characterization of the apple NF-Y. Expression analysis of NF-Y members in M. sieversii revealed that a large number of NF-Ys were highly expressed in the roots compared with the leaves, and a large proportion of NF-Y genes responded to drought treatment. Furthermore, heterologous expression of MsNF-YB21, which was significantly upregulated by drought, led to a longer root length and, thus, conferred improved osmotic and salt tolerance in Arabidopsis. Moreover, the physiological analysis of MsNF-YB21 overexpression revealed enhanced antioxidant systems, including antioxidant enzymes and compatible solutes. In addition, genes encoding catalase (AtCAT2, AtCAT3), superoxide dismutase (AtFSD1, AtFSD3, AtCSD1), and peroxidase (AtPER12, AtPER42, AtPER47, AtPER51) showed upregulated expression in the MsNF-YB21 overexpression lines. These results for the MsNF-Y gene family provide useful information for future studies on NF-Ys in apples, and the functional analysis of MsNF-YB21 supports it as a potential target in the improvement of apple drought tolerance via biotechnological strategies.
Collapse
|
22
|
Eriksen RL, Padgitt-Cobb LK, Townsend MS, Henning JA. Gene expression for secondary metabolite biosynthesis in hop (Humulus lupulus L.) leaf lupulin glands exposed to heat and low-water stress. Sci Rep 2021; 11:5138. [PMID: 33664420 PMCID: PMC7970847 DOI: 10.1038/s41598-021-84691-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Hops are valued for their secondary metabolites, including bitter acids, flavonoids, oils, and polyphenols, that impart flavor in beer. Previous studies have shown that hop yield and bitter acid content decline with increased temperatures and low-water stress. We looked at physiological traits and differential gene expression in leaf, stem, and root tissue from hop (Humulus lupulus) cv. USDA Cascade in plants exposed to high temperature stress, low-water stress, and a compound treatment of both high temperature and low-water stress for six weeks. The stress conditions imposed in these experiments caused substantial changes to the transcriptome, with significant reductions in the expression of numerous genes involved in secondary metabolite biosynthesis. Of the genes involved in bitter acid production, the critical gene valerophenone synthase (VPS) experienced significant reductions in expression levels across stress treatments, suggesting stress-induced lability in this gene and/or its regulatory elements may be at least partially responsible for previously reported declines in bitter acid content. We also identified a number of transcripts with homology to genes shown to affect abiotic stress tolerance in other plants that may be useful as markers for breeding improved abiotic stress tolerance in hop. Lastly, we provide the first transcriptome from hop root tissue.
Collapse
Affiliation(s)
- Renée L. Eriksen
- grid.512836.b0000 0001 2205 063XUSDA Agricultural Research Service, Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97331 USA
| | - Lillian K. Padgitt-Cobb
- grid.4391.f0000 0001 2112 1969Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331 USA
| | - M. Shaun Townsend
- grid.4391.f0000 0001 2112 1969Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331 USA
| | - John A. Henning
- grid.512836.b0000 0001 2205 063XUSDA Agricultural Research Service, Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97331 USA
| |
Collapse
|
23
|
Qu Y, Wang Y, Zhu J, Zhang Y, Hou H. Genomic Organization, Phylogenetic Comparison, and Differential Expression of the Nuclear Factor-Y Gene Family in Apple ( Malus Domestica). PLANTS 2020; 10:plants10010016. [PMID: 33374140 PMCID: PMC7824617 DOI: 10.3390/plants10010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/23/2023]
Abstract
The nuclear factor Y (NF-Y) as a transcription factor plays an important role in plants growth and development, and response to stress. However, few genome-wide analyzes and functional research of the NF-Y family has been undertaken in apple (Malus domestica Borkh.) so far. In this study, we comprehensively identified the 43 MdNF-Y genes in apple, which dispersedly distributed among the three subgroups based on their sequence alignment analysis, including 11 MdNF-YAs, 22 MdNF-YBs and 10 MdNF-YCs. The members in the same subgroups had similar evolution relationships, gene structures, and conserved motifs. The gene duplication analysis suggested that all the genes were dispersed followed by 27 segmental duplication. Moreover, based on synteny analysis of MdNF-Ys with eight plant species results suggested that some ortholog genes were preserved during the evolution of these species. Cis-element analysis showed potential functions of MdNF-Ys in apple growth and development and responded to abiotic stress. Furthermore, the interaction among MdNF-Ys protein were investigated in yeast two-hybrid assays. The expression patterns of MdNF-Ys in tissue-specific response reveled divergence and might play important role in apple growth and development. Subsequently, whole MdNF-Y genes family was carried out for RT-PCR in response to five abiotic stress (ABA, drought, heat, cold, and salinity) to identify their expression patterns. Taken together, our study will provide a foundation for the further study to the molecular mechanism of apple in growing development and response to abiotic stresses.
Collapse
Affiliation(s)
- Yanjie Qu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, Shandong, China; (Y.Q.); (Y.W.); (J.Z.); (Y.Z.)
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yaping Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, Shandong, China; (Y.Q.); (Y.W.); (J.Z.); (Y.Z.)
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, Shandong, China; (Y.Q.); (Y.W.); (J.Z.); (Y.Z.)
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, Shandong, China; (Y.Q.); (Y.W.); (J.Z.); (Y.Z.)
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Hongmin Hou
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, Shandong, China; (Y.Q.); (Y.W.); (J.Z.); (Y.Z.)
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, Shandong, China
- Correspondence: ; Tel.: +86-0532-860-80752
| |
Collapse
|
24
|
Chen W, Hu T, Ye J, Wang B, Liu G, Wang Y, Yuan L, Li J, Li F, Ye Z, Zhang Y. A CCAAT-binding factor, SlNFYA10, negatively regulates ascorbate accumulation by modulating the D-mannose/L-galactose pathway in tomato. HORTICULTURE RESEARCH 2020; 7:200. [PMID: 33328457 PMCID: PMC7705693 DOI: 10.1038/s41438-020-00418-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 05/04/2023]
Abstract
Ascorbic acid (AsA), an important antioxidant and growth regulator, and it is essential for plant development and human health. Specifically, humans have to acquire AsA from dietary sources due to their inability to synthesize it. The AsA biosynthesis pathway in plants has been elucidated, but its regulatory mechanism remains largely unknown. In this report, we biochemically identified a CCAAT-box transcription factor (SlNFYA10) that can bind to the promoter of SlGME1, which encodes GDP-Man-3',5'-epimerase, a pivotal enzyme in the D-mannose/L-galactose pathway. Importantly, SlNFYA10 simultaneously binds to the promoter of SlGGP1, a downstream gene of SlGME1 in the D-mannose/L-galactose pathway. Binding assays in yeast and functional analyses in plants have confirmed that SlNFYA10 exerts a negative effect on the expression of both SlGME1 and SlGGP1. Transgenic tomato lines overexpressing SlNFYA10 show decreased levels of SlGME1 and SlGGP1 abundance and AsA concentration in their leaves and fruits, accompanied by enhanced sensitivity to oxidative stress. Overall, SlNFYA10 is the first CCAAT-binding factor identified to date to negatively regulate the AsA biosynthetic pathway at multiple sites and modulate plant responses to oxidative stress.
Collapse
Affiliation(s)
- Weifang Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Tixu Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Bing Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Genzhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ying Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lei Yuan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jiaming Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fangman Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
- HZAU Chuwei Institute of Advanced Seeds, 430070, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China.
- HZAU Chuwei Institute of Advanced Seeds, 430070, Wuhan, China.
| |
Collapse
|
25
|
Zhou Y, Zhang Y, Wang X, Han X, An Y, Lin S, Shen C, Wen J, Liu C, Yin W, Xia X. Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus. THE NEW PHYTOLOGIST 2020; 227:407-426. [PMID: 32145071 DOI: 10.1111/nph.16524] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/24/2020] [Indexed: 05/21/2023]
Abstract
Root growth control plays an important role in plant adaptation to drought stress, but the underlying molecular mechanisms of this control remain largely elusive. Here, a root-specific nuclear factor Y (NF-Y) transcription factor PdNF-YB21 was isolated from Populus. The functional mechanism of PdNF-YB21 was characterised by various morphological, physiological, molecular, biochemical and spectroscopy techniques. Overexpression of PdNF-YB21 in poplar promoted root growth with highly lignified and enlarged xylem vessels, resulting in increased drought resistance. By contrast, CRISPR/Cas9-mediated poplar mutant nf-yb21 exhibited reduced root growth and drought resistance. PdNF-YB21 interacted with PdFUSCA3 (PdFUS3), a B3 domain transcription factor. PdFUS3 directly activated the promoter of the abscisic acid (ABA) synthesis key gene PdNCED3, resulting in a significant increase in root ABA content in poplars subjected to water deficit. Coexpression of poplar NF-YB21 and FUS3 significantly enhanced the expression of PdNCED3. Furthermore, ABA promoted indoylacetic acid transport in root tips, which ultimately increased root growth and drought resistance. Taken together, our data indicate that NF-YB21-FUS3-NCED3 functions as an important avenue in auxin-regulated poplar root growth in response to drought.
Collapse
Affiliation(s)
- Yangyan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Xiao Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yi An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shiwei Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chao Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - JiaLong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
26
|
Zhang Q, Dai W, Wang X, Li J. Elevated CO 2 concentration affects the defense of tobacco and melon against lepidopteran larvae through the jasmonic acid signaling pathway. Sci Rep 2020; 10:4060. [PMID: 32132576 PMCID: PMC7055285 DOI: 10.1038/s41598-020-60749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/17/2020] [Indexed: 11/26/2022] Open
Abstract
The massive use of fossil fuels since the industrial revolution has led to a rapid increase in the concentration of carbon dioxide (CO2) in the atmosphere. What effects elevated CO2 concentrations (ECO2) have on the defense mechanisms plants employ against insects remains poorly understood. This study showed that ECO2 of 750 ± 20 mmol/mol, increased the photosynthetic rate and biomass gain of tobacco and melon plants. However, while mass gain of Spodoptera litura, a nocturnal moth in the Noctuidae family, was higher when feeding on tobacco plants under ECO2, mass gain of Diaphania indica was reduced when feeding on melon plant at ECO2 compared to ambient CO2. Plants have many mechanisms to defend themselves against insects. Jasmonic acid (JA) is a crucial element of plant defense against lepidopteran insects. Our study showed that JA levels increased in tobacco plants under ECO2 but decreased in melon plants. It is speculated that ECO2 changes plant resistance to insects mainly by affecting the JA signaling pathway. Nutrient analysis suggested defensive metabolites rather than changes in the total nitrogen or protein content of the plants led to the changes in plant defense levels under ECO2. In summary, ECO2 affects the interaction between plants and insects. The results may provide a theoretical basis for studying the changes in crop resistance to pests under ECO2 and predicting the impact of ECO2 on future agro-ecosystems.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
- Institute of Agro-products Processing Science and Technolog, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Wenting Dai
- Institute of Agro-products Processing Science and Technolog, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Xuhui Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jinxin Li
- Institute of Agro-products Processing Science and Technolog, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China.
| |
Collapse
|
27
|
Martignago D, Rico-Medina A, Blasco-Escámez D, Fontanet-Manzaneque JB, Caño-Delgado AI. Drought Resistance by Engineering Plant Tissue-Specific Responses. FRONTIERS IN PLANT SCIENCE 2020; 10:1676. [PMID: 32038670 PMCID: PMC6987726 DOI: 10.3389/fpls.2019.01676] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/28/2019] [Indexed: 05/18/2023]
Abstract
Drought is the primary cause of agricultural loss globally, and represents a major threat to food security. Currently, plant biotechnology stands as one of the most promising fields when it comes to developing crops that are able to produce high yields in water-limited conditions. From studies of Arabidopsis thaliana whole plants, the main response mechanisms to drought stress have been uncovered, and multiple drought resistance genes have already been engineered into crops. So far, most plants with enhanced drought resistance have displayed reduced crop yield, meaning that there is still a need to search for novel approaches that can uncouple drought resistance from plant growth. Our laboratory has recently shown that the receptors of brassinosteroid (BR) hormones use tissue-specific pathways to mediate different developmental responses during root growth. In Arabidopsis, we found that increasing BR receptors in the vascular plant tissues confers resistance to drought without penalizing growth, opening up an exceptional opportunity to investigate the mechanisms that confer drought resistance with cellular specificity in plants. In this review, we provide an overview of the most promising phenotypical drought traits that could be improved biotechnologically to obtain drought-tolerant cereals. In addition, we discuss how current genome editing technologies could help to identify and manipulate novel genes that might grant resistance to drought stress. In the upcoming years, we expect that sustainable solutions for enhancing crop production in water-limited environments will be identified through joint efforts.
Collapse
Affiliation(s)
| | | | | | | | - Ana I. Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
28
|
Wang P, Zheng Y, Guo Y, Chen X, Sun Y, Yang J, Ye N. Identification, expression, and putative target gene analysis of nuclear factor-Y (NF-Y) transcription factors in tea plant (Camellia sinensis). PLANTA 2019; 250:1671-1686. [PMID: 31410553 DOI: 10.1007/s00425-019-03256-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/06/2019] [Indexed: 05/03/2023]
Abstract
Genome-wide identification and characterization of nuclear factor-Y family in tea plants, and their expression profiles and putative targets provide the basis for further elucidation of their biological functions. The nuclear factor-Y (NF-Y) transcription factors (TFs) are crucial regulators of plant growth and physiology. However, the NF-Y TFs in tea plant (Camellia sinensis) have not yet been elucidated, and its biological functions, especially the putative target genes within the genome range, are still unclear. In this study, we identified 35 CsNF-Y encoding genes in the tea plant genome, including 10 CsNF-YAs, 15 CsNF-YBs and 10 CsNF-YCs. Their conserved domains and motifs, phylogeny, duplication event, gene structure, and promoter were subsequently analyzed. Tissue expression analysis revealed that CsNF-Ys exhibited three distinct expression patterns in eight tea tree tissues, among which CsNF-YAs were moderately expressed. Drought and abscisic acid (ABA) treatment indicated that CsNF-YAs may have a greater impact than other subunit members. Furthermore, through the genome-wide investigation of the presence of the CCAAT box, we found that CsNF-Ys may participate in the development of tea plants by regulating target genes of multiple physiological pathways, including photosynthesis, chlorophyll metabolism, fatty acid biosynthesis, and amino acid metabolism pathways. Our findings will contribute to the functional analysis of NF-Y genes in woody plants and the cultivation of high-quality tea plant cultivars.
Collapse
Affiliation(s)
- Pengjie Wang
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yucheng Zheng
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yongchun Guo
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xuejin Chen
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yun Sun
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiangfan Yang
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Naixing Ye
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
29
|
Vaishak KP, Yadukrishnan P, Bakshi S, Kushwaha AK, Ramachandran H, Job N, Babu D, Datta S. The B-box bridge between light and hormones in plants. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 191:164-174. [PMID: 30640143 DOI: 10.1016/j.jphotobiol.2018.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 12/27/2018] [Indexed: 11/29/2022]
Abstract
Plant development is meticulously modulated by interactions between the surrounding environment and the endogenous phytohormones. Light, as an external signal coordinates with the extensive networks of hormones inside the plant to execute its effects on growth and development. Several proteins in plants have been identified for their crucial roles in mediating light regulated development. Among these are the B-box (BBX) family of transcription factors characterized by the presence of zinc-finger B-box domain in their N-terminal region. In Arabidopsis there are 32 BBX proteins that are divided into five structural groups on the basis of the domains present. Several BBX proteins play important roles in seedling photomorphogenesis, neighbourhood detection and photoperiodic regulation of flowering. There is increasing evidence that besides light signaling BBX proteins also play integral roles in several hormone signaling pathways in plants. Here we attempt to comprehensively integrate the roles of multiple BBX proteins in various light and hormone signaling pathways. We further discuss the role of the BBX proteins in mediating crosstalk between the two signaling pathways to harmonize plant growth and development. Finally, we try to analyse the conservation of BBX genes across species and discuss the role of BBX proteins in regulating economically important traits in crop plants.
Collapse
Affiliation(s)
- K P Vaishak
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India; School of Biological Sciences, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, India
| | - Premachandran Yadukrishnan
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Souvika Bakshi
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Kushwaha
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Harshil Ramachandran
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Nikhil Job
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Dion Babu
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Sourav Datta
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India.
| |
Collapse
|
30
|
Myers ZA, Holt BF. NUCLEAR FACTOR-Y: still complex after all these years? CURRENT OPINION IN PLANT BIOLOGY 2018; 45:96-102. [PMID: 29902675 DOI: 10.1016/j.pbi.2018.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/11/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
The NUCLEAR FACTOR-Y (NF-Y) families of transcription factors are important regulators of plant development and physiology. Though NF-Y regulatory roles have recently been suggested for numerous aspects of plant biology, their roles in flowering time, early seedling development, stress responses, hormone signaling, and nodulation are the best characterized. The past few years have also seen significant advances in our understanding of the mechanistic function of the NF-Y, and as such, increasingly complex and interesting questions are now more approachable. This review will primarily focus on these developmental, physiological, and mechanistic roles of the NF-Y in recent research.
Collapse
Affiliation(s)
- Zachary A Myers
- University of Oklahoma, Department of Microbiology and Plant Biology, 770 Van Vleet Oval, Norman, OK 73019, United States.
| | - Ben F Holt
- University of Oklahoma, Department of Microbiology and Plant Biology, 770 Van Vleet Oval, Norman, OK 73019, United States.
| |
Collapse
|
31
|
Zotova L, Kurishbayev A, Jatayev S, Khassanova G, Zhubatkanov A, Serikbay D, Sereda S, Sereda T, Shvidchenko V, Lopato S, Jenkins C, Soole K, Langridge P, Shavrukov Y. Genes Encoding Transcription Factors TaDREB5 and TaNFYC-A7 Are Differentially Expressed in Leaves of Bread Wheat in Response to Drought, Dehydration and ABA. FRONTIERS IN PLANT SCIENCE 2018; 9:1441. [PMID: 30319682 PMCID: PMC6171087 DOI: 10.3389/fpls.2018.01441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/10/2018] [Indexed: 05/18/2023]
Abstract
Two groups of six spring bread wheat varieties with either high or low grain yield under the dry conditions of Central and Northern Kazakhstan were selected for analysis. Experiments were set up with the selected wheat varieties in controlled environments as follows: (1) slowly progressing drought imposed on plants in soil, (2) rapid dehydration of whole plants grown in hydroponics, (3) dehydration of detached leaves, and (4) ABA treatment of whole plants grown in hydroponics. Representatives of two different families of transcription factors (TFs), TaDREB5 and TaNFYC-A7, were found to be linked to yield-under-drought using polymorphic Amplifluor-like SNP marker assays. qRT-PCR revealed differing patterns of expression of these genes in the leaves of plants subjected to the above treatments. Under drought, TaDREB5 was significantly up-regulated in leaves of all high-yielding varieties tested and down-regulated in all low-yielding varieties, and the level of expression was independent of treatment type. In contrast, TaNFYC-A7 expression levels showed different responses in the high- and low-yield groups of wheat varieties. TaNFYC-A7 expression under dehydration (treatments 2 and 3) was higher than under drought (treatment 1) in all high-yielding varieties tested, while in all low-yielding varieties the opposite pattern was observed: the expression levels of this gene under drought were higher than under dehydration. Rapid dehydration of detached leaves and intact wheat plants grown in hydroponics produced similar changes in gene expression. ABA treatment of whole plants caused rapid stomatal closure and a rise in the transcript level of both genes during the first 30 min, which decreased 6 h after treatment. At this time-point, expression of TaNFYC-A7 was again significantly up-regulated compared to untreated controls, while TaDREB5 returned to its initial level of expression. These findings reveal significant differences in the transcriptional regulation of two drought-responsive and ABA-dependent TFs under slowly developing drought and rapid dehydration of wheat plants. The results obtained suggest that correlation between grain yield in dry conditions and TaNFYC-A7 expression levels in the examined wheat varieties is dependent on the length of drought development and/or strength of drought; while in the case of TaDREB5, no such dependence is observed.
Collapse
Affiliation(s)
- Lyudmila Zotova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Akhylbek Kurishbayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Gulmira Khassanova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Askar Zhubatkanov
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Dauren Serikbay
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Sergey Sereda
- Karaganda Research Institute of Plant Industry and Breeding, Karaganda, Kazakhstan
| | - Tatiana Sereda
- Karaganda Research Institute of Plant Industry and Breeding, Karaganda, Kazakhstan
| | - Vladimir Shvidchenko
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Sergiy Lopato
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Colin Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Bedford Park, SA, Australia
| | - Kathleen Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Bedford Park, SA, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
32
|
Wu X, Shi H, Guo Z. Overexpression of a NF-YC Gene Results in Enhanced Drought and Salt Tolerance in Transgenic Seashore Paspalum. FRONTIERS IN PLANT SCIENCE 2018; 9:1355. [PMID: 30298080 PMCID: PMC6160577 DOI: 10.3389/fpls.2018.01355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/28/2018] [Indexed: 06/03/2023]
Abstract
Seashore paspalum (Paspalum vaginatum O. Swartz) is an important warm-season turfgrass species. In this study we generated transgenic seashore paspalum overexpressing CdtNF-YC1, a nuclear factor Y transcription factor from hybrid bermudagrass (Cynodon dactylon × Cynodon transvaalensis). DNA blot hybridization and qRT-PCR analysis showed that CdtNF-YC1 was integrated into the genomes of transgenic seashore paspalum plants and expressed. Reduced relative water content (RWC) and survival rate and increased ion leakage were observed in both wild type (WT) and transgenic plants after drought stress, while transgenic plants had higher levels of RWC and survival rate and lower ion leakage than the WT. Maximal photochemical efficiency of photosystem II (F v/F m), chlorophyll concentration and survival rate were decreased after salt stress, while higher levels were maintained in transgenic plants than in WT. In addition, an increased Na+ content and decreased or unaltered K+ in leaves and roots were observed after salt treatment, while lower level of Na+ and higher levels of K+ and K+/ Na+ ratio were maintained in transgenic plants than in WT. The results indicated that overexpressing CdtNF-YC1 resulted in enhanced drought and salt tolerance in transgenic plants. Transcript levels of stress responsive genes including PvLEA3, PvP5CS1, PvABI2, and PvDREB1B were induced in response to drought and salt stress, and higher levels were observed in transgenic seashore paspalum than in WT. The results suggest that the enhanced drought and salt tolerance in transgenic seashore paspalum is associated with induction of a series of stress responsive genes as a result of overexpression of CdtNF-YC1.
Collapse
Affiliation(s)
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
33
|
ABA Receptor Subfamily III Enhances Abscisic Acid Sensitivity and Improves the Drought Tolerance of Arabidopsis. Int J Mol Sci 2018; 19:ijms19071938. [PMID: 30004422 PMCID: PMC6073838 DOI: 10.3390/ijms19071938] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
The phytohormone abscisic acid (ABA) regulates plant growth, the developmental process, and abiotic stresses. ABA signaling is induced in response to mediate plant acclimation to environmental challenges, including high salinity and drought. The ABA-binding receptors (RCAR/PYR1/PYL), composing of 14 members, are the core components of the ABA-signaling pathway. Here, we observed that the three subfamilies within the RCARs showed different expression patterns at the basal and exogenous ABA levels. Subsequently, we generated transgenic plants overexpressing subfamily III, RCAR11–RCAR14, respectively. The transgenic plants showed increased ABA sensitivity in seed germination and post-germination seedling establishment and root length. Further studies revealed that the overexpressing subfamily III transgenic plants enhanced drought resistance, increased water-use efficiency, and accelerated stress-responsive gene expression compared with the wild-type plants. These findings confirm that the subfamily III plays a key role in ABA-mediated developmental processes and, more importantly, is involved in drought tolerance in the ABA-dependent pathway.
Collapse
|
34
|
Vishal B, Kumar PP. Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid. FRONTIERS IN PLANT SCIENCE 2018; 9:838. [PMID: 29973944 PMCID: PMC6019495 DOI: 10.3389/fpls.2018.00838] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 05/19/2023]
Abstract
Overall growth and development of a plant is regulated by complex interactions among various hormones, which is critical at different developmental stages. Some of the key aspects of plant growth include seed development, germination and plant survival under unfavorable conditions. Two of the key phytohormones regulating the associated physiological processes are gibberellins (GA) and abscisic acid (ABA). GAs participate in numerous developmental processes, including, seed development and seed germination, seedling growth, root proliferation, determination of leaf size and shape, flower induction and development, pollination and fruit expansion. Despite the association with abiotic stresses, ABA is essential for normal plant growth and development. It plays a critical role in different abiotic stresses by regulating various downstream ABA-dependent stress responses. Plants maintain a balance between GA and ABA levels constantly throughout the developmental processes at different tissues and organs, including under unfavorable environmental or physiological conditions. Here, we will review the literature on how GA and ABA control different stages of plant development, with focus on seed germination and selected abiotic stresses. The possible crosstalk of ABA and GA in specific events of the above processes will also be discussed, with emphasis on downstream stress signaling components, kinases and transcription factors (TFs). The importance of several key ABA and GA signaling intermediates will be illustrated. The knowledge gained from such studies will also help to establish a solid foundation to develop future crop improvement strategies.
Collapse
|
35
|
Liu X, Hou X. Antagonistic Regulation of ABA and GA in Metabolism and Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2018; 9:251. [PMID: 29535756 PMCID: PMC5834473 DOI: 10.3389/fpls.2018.00251] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/12/2018] [Indexed: 05/18/2023]
Abstract
The phytohormones gibberellic acid (GA) and abscisic acid (ABA) are widely recognized as essential endogenous regulators that mostly play antagonistic roles in plant developmental processes and environmental responses. A variety of both internal and external cues oppositely regulate GA and ABA biosynthesis and catabolism, which directly and indirectly affect their signaling pathways and subsequent responses. Recent discoveries have revealed direct molecular links between GA- and ABA-signaling components, which provide novel insights into their antagonistic regulation. In this review, we mainly focus on these recent reports and the growing understanding of GA and ABA antagonism in metabolic regulation and signaling interactions, and attempt to clarify the problems and challenges involved in exploring the complicated regulatory events associated with these two phytohormones.
Collapse
|
36
|
Combined Analysis of mRNAs and miRNAs to Identify Genes Related to Biological Characteristics of Autotetraploid Paulownia. FORESTS 2017. [DOI: 10.3390/f8120501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|