1
|
Cheng J, Wen S, Li K, Zhou Y, Zhu M, Neuhaus HE, Bie Z. The hexose transporters CsHT3 and CsHT16 regulate postphloem transport and fruit development in cucumber. PLANT PHYSIOLOGY 2025; 197:kiae597. [PMID: 39679528 DOI: 10.1093/plphys/kiae597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/06/2024] [Indexed: 12/17/2024]
Abstract
Hexoses are essential for plant growth and fruit development. However, the precise roles of hexose/H+ symporters in postphloem sugar transport and cellular sugar homeostasis in rapidly growing fruits remain elusive. To elucidate the functions of hexose/H+ symporters in cucumber (Cucumis sativus L.) fruits, we conducted comprehensive analyses of their tissue-specific expression, localization, transport characteristics, and physiological functions. Our results demonstrate that CsHT3 (C. sativus hexose transporter), CsHT12, and CsHT16 are the primary hexose/H+ symporters expressed in cucumber fruits. CsHT3 and CsHT16 are localized in the sieve element-companion cell during the ovary and early fruit development stages. As the fruit develops and expands, the expression of both symporters shifts to phloem parenchyma cells. The CsHT16 knockout mutant produces shorter fruits with a larger circumference, likely due to impaired sugar and phytohormone homeostasis. Concurrent reduction of CsHT3, CsHT12, and CsHT16 expression leads to decreased fruit size. Conversely, CsHT3 overexpression results in increased fruit size and higher fruit sugar levels. These findings suggest that CsHT16 plays an important role in maintaining sugar homeostasis, which shapes the fruit, while CsHT3, CsHT12, and CsHT16 collectively regulate the supply of carbohydrates required for cucumber fruit enlargement.
Collapse
Affiliation(s)
- Jintao Cheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Suying Wen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Kexin Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yixuan Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Mengtian Zhu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., D-67663 Kaiserslautern, Germany
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
2
|
Hao X, Gong Y, Chen S, Ma C, Duanmu H. Genome-Wide Identification of GRAS Transcription Factors and Their Functional Analysis in Salt Stress Response in Sugar Beet. Int J Mol Sci 2024; 25:7132. [PMID: 39000240 PMCID: PMC11241673 DOI: 10.3390/ijms25137132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GAI-RGA-and-SCR (GRAS) transcription factors can regulate many biological processes such as plant growth and development and stress defense, but there are few related studies in sugar beet. Salt stress can seriously affect the yield and quality of sugar beet (Beta vulgaris). Therefore, this study used bioinformatics methods to identify GRAS transcription factors in sugar beet and analyzed their structural characteristics, evolutionary relationships, regulatory networks and salt stress response patterns. A total of 28 BvGRAS genes were identified in the whole genome of sugar beet, and the sequence composition was relatively conservative. According to the topology of the phylogenetic tree, BvGRAS can be divided into nine subfamilies: LISCL, SHR, PAT1, SCR, SCL3, LAS, SCL4/7, HAM and DELLA. Synteny analysis showed that there were two pairs of fragment replication genes in the BvGRAS gene, indicating that gene replication was not the main source of BvGRAS family members. Regulatory network analysis showed that BvGRAS could participate in the regulation of protein interaction, material transport, redox balance, ion homeostasis, osmotic substance accumulation and plant morphological structure to affect the tolerance of sugar beet to salt stress. Under salt stress, BvGRAS and its target genes showed an up-regulated expression trend. Among them, BvGRAS-15, BvGRAS-19, BvGRAS-20, BvGRAS-21, LOC104892636 and LOC104893770 may be the key genes for sugar beet's salt stress response. In this study, the structural characteristics and biological functions of BvGRAS transcription factors were analyzed, which provided data for the further study of the molecular mechanisms of salt stress and molecular breeding of sugar beet.
Collapse
Affiliation(s)
- Xiaolin Hao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yongyong Gong
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA;
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Huizi Duanmu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
3
|
Kumari N, Mishra GP, Dikshit HK, Gupta S, Roy A, Sinha SK, Mishra DC, Das S, Kumar RR, Nair RM, Aski M. Identification of quantitative trait loci (QTLs) regulating leaf SPAD value and trichome density in mungbean ( Vigna radiata L.) using genotyping-by-sequencing (GBS) approach. PeerJ 2024; 12:e16722. [PMID: 38406271 PMCID: PMC10893866 DOI: 10.7717/peerj.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/04/2023] [Indexed: 02/27/2024] Open
Abstract
Quantitative trait loci (QTL) mapping is used for the precise localization of genomic regions regulating various traits in plants. Two major QTLs regulating Soil Plant Analysis Development (SPAD) value (qSPAD-7-1) and trichome density (qTric-7-2) in mungbean were identified using recombinant inbred line (RIL) populations (PMR-1×Pusa Baisakhi) on chromosome 7. Functional analysis of QTL region identified 35 candidate genes for SPAD value (16 No) and trichome (19 No) traits. The candidate genes regulating trichome density on the dorsal leaf surface of the mungbean include VRADI07G24840, VRADI07G17780, and VRADI07G15650, which encodes for ZFP6, TFs bHLH DNA-binding superfamily protein, and MYB102, respectively. Also, candidate genes having vital roles in chlorophyll biosynthesis are VRADIO7G29860, VRADIO7G29450, and VRADIO7G28520, which encodes for s-adenosyl-L-methionine, FTSHI1 protein, and CRS2-associated factor, respectively. The findings unfolded the opportunity for the development of customized genotypes having high SPAD value and high trichome density having a possible role in yield and mungbean yellow vein mosaic India virus (MYMIV) resistance in mungbean.
Collapse
Affiliation(s)
- Nikki Kumari
- Genetics, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | | | | | - Soma Gupta
- Genetics, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Anirban Roy
- Plant Pathology, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Subodh Kumar Sinha
- Biotechnology, National Institute of Plant Biotechnology, New Delhi, Delhi, India
| | - Dwijesh C. Mishra
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, Delhi, India
| | - Shouvik Das
- Genetics, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Ranjeet R. Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | | | - Muraleedhar Aski
- Genetics, Indian Agricultural Research Institute, New Delhi, Delhi, India
| |
Collapse
|
4
|
Yin Y, Cui D, Chi Q, Xu H, Guan P, Zhang H, Jiao T, Wang X, Wang L, Sun H. Reactive oxygen species may be involved in the distinctive biological effects of different doses of 12C 6+ ion beams on Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 14:1337640. [PMID: 38312361 PMCID: PMC10835405 DOI: 10.3389/fpls.2023.1337640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/31/2023] [Indexed: 02/06/2024]
Abstract
Introduction Heavy ion beam is a novel approach for crop mutagenesis with the advantage of high energy transfer line density and low repair effect after injury, however, little investigation on the biological effect on plant was performed. 50 Gy irradiation significantly stimulated the growth of Arabidopsis seedlings, as indicated by an increase in root and biomass, while 200 Gy irradiation significantly inhibited the growth of seedlings, causing a visible decrease in plant growth. Methods The Arabidopsis seeds were irradiated by 12C6+. Monte Carlo simulations were used to calculate the damage to seeds and particle trajectories by ion implantation. The seed epidermis received SEM detection and changes in its organic composition were detected using FTIR. Evidence of ROS and antioxidant systems were analyzed. RNA-seq and qPCR were used to detect changes in seedling transcript levels. Results and discussion Monte Carlo simulations revealed that high-dose irradiation causes various damage. Evidence of ROS and antioxidant systems implies that the emergence of phenotypes in plant cells may be associated with oxidative stress. Transcriptomic analysis of the seedlings demonstrated that 170 DEGs were present in the 50 Gy and 200 Gy groups and GO enrichment indicated that they were mainly associated with stress resistance and cell wall homeostasis. Further GO enrichment of DEGs unique to 50 Gy and 200 Gy revealed 58 50Gy-exclusive DEGs were enriched in response to oxidative stress and jasmonic acid entries, while 435 200 Gy-exclusive DEGs were enriched in relation to oxidative stress, organic cyclic compounds, and salicylic acid. This investigation advances our insight into the biological effects of heavy ion irradiation and the underlying mechanisms.
Collapse
Affiliation(s)
- Yue Yin
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongjie Cui
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| | - Qing Chi
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| | - Hangbo Xu
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| | - Panfeng Guan
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| | - Hanfeng Zhang
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tao Jiao
- Asset Management Co., Ltd, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojie Wang
- School of Bioengineering, Xinxiang University, Xinxiang, China
| | - Lin Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Hao Sun
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Uyehara AN, Rasmussen CG. Redundant mechanisms in division plane positioning. Eur J Cell Biol 2023; 102:151308. [PMID: 36921356 DOI: 10.1016/j.ejcb.2023.151308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Redundancies in plant cell division contribute to the maintenance of proper division plane orientation. Here we highlight three types of redundancy: 1) Temporal redundancy, or correction of earlier defects that results in proper final positioning, 2) Genetic redundancy, or functional compensation by homologous genes, and 3) Synthetic redundancy, or redundancy within or between pathways that contribute to proper division plane orientation. Understanding the types of redundant mechanisms involved provides insight into current models of division plane orientation and opens up new avenues for exploration.
Collapse
Affiliation(s)
- Aimee N Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA.
| |
Collapse
|
6
|
Xie Y, Liu X, Sun C, Song X, Li X, Cui H, Guo J, Liu L, Ying A, Zhang Z, Zhu X, Yan L, Zhang X. CsTRM5 regulates fruit shape via mediating cell division direction and cell expansion in cucumber. HORTICULTURE RESEARCH 2023; 10:uhad007. [PMID: 36960430 PMCID: PMC10028494 DOI: 10.1093/hr/uhad007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Fruit shape and size are important appearance and yield traits in cucumber, but the underlying genes and their regulatory mechanisms remain poorly understood. Here we identified a mutant with spherical fruits from an Ethyl Methane Sulfonate (EMS)-mutagenized library, named the qiu mutant. Compared with the cylindrical fruit shape in 32X (wild type), the fruit shape in qiu was round due to reduced fruit length and increased fruit diameter. MutMap analysis narrowed the candidate gene in the 6.47 MB range on Chr2, harboring the FS2.1 locus reported previously. A single-nucleotide polymorphism (SNP) (11359603) causing a truncated protein of CsaV3_2G013800, the homolog of tomato fruit shape gene SlTRM5, may underlie the fruit shape variation in the qiu mutant. Knockout of CsTRM5 by the CRISPR-Cas9 system confirmed that CsaV3_2G013800/CsTRM5 was the causal gene responsible for qiu. Sectioning analysis showed that the spherical fruit in qiu resulted mainly from increased and reduced cell division along the transverse and longitudinal directions, respectively. Meanwhile, the repressed cell expansion contributed to the decreased fruit length in qiu. Transcriptome profiling showed that the expression levels of cell-wall-related genes and abscisic acid (ABA) pathway genes were significantly upregulated in qiu. Hormone measurements indicated that ABA content was greatly increased in the qiu mutant. Exogenous ABA application reduced fruit elongation by inhibiting cell expansion in cucumber. Taken together, these data suggest that CsTRM5 regulates fruit shape by affecting cell division direction and cell expansion, and that ABA participates in the CsTRM5-mediated cell expansion during fruit elongation in cucumber.
Collapse
Affiliation(s)
| | | | | | - Xiaofei Song
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Xiaoli Li
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Haonan Cui
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Jingyu Guo
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Liu Liu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Ao Ying
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zeqin Zhang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xueyun Zhu
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | | | | |
Collapse
|
7
|
Zhang X, Zhao B, Sun Y, Feng Y. Effects of gibberellins on important agronomic traits of horticultural plants. FRONTIERS IN PLANT SCIENCE 2022; 13:978223. [PMID: 36267949 PMCID: PMC9578688 DOI: 10.3389/fpls.2022.978223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Horticultural plants such as vegetables, fruits, and ornamental plants are crucial to human life and socioeconomic development. Gibberellins (GAs), a class of diterpenoid compounds, control numerous developmental processes of plants. The roles of GAs in regulating growth and development of horticultural plants, and in regulating significant progress have been clarified. These findings have significant implications for promoting the quality and quantity of the products of horticultural plants. Here we review recent progress in determining the roles of GAs (including biosynthesis and signaling) in regulating plant stature, axillary meristem outgrowth, compound leaf development, flowering time, and parthenocarpy. These findings will provide a solid foundation for further improving the quality and quantity of horticultural plants products.
Collapse
Affiliation(s)
- Xiaojia Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Baolin Zhao
- Chinese Academy of Science (CAS) Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, China
| | - Yibo Sun
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yulong Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
8
|
Li N, Zhang Y, Wang X, Ma H, Sun Y, Li G, Zhang S. Integration of Transcriptomic and Proteomic Profiles Reveals Multiple Levels of Genetic Regulation of Taproot Growth in Sugar Beet ( Beta vulgaris L.). FRONTIERS IN PLANT SCIENCE 2022; 13:882753. [PMID: 35909753 PMCID: PMC9326478 DOI: 10.3389/fpls.2022.882753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Sugar beet taproot growth and development is a complex biological process involving morphogenesis and dry matter accumulation. However, the molecular regulatory mechanisms underlying taproot growth and development remain elusive. We performed a correlation analysis of the proteome and transcriptome in two cultivars (SD13829 and BS02) at the start and the highest points of the taproot growth rate. The corresponding correlation coefficients were 0.6189, 0.7714, 0.6803, and 0.7056 in four comparison groups. A total of 621 genes were regulated at both transcriptional and translational levels, including 190, 71, 140, and 220 in the BS59-VS-BS82, BS59-VS-SD59, BS82-VS-SD82, and SD59-VS-SD82 groups, respectively. Ten, 32, and 68 correlated-DEGs-DEPs (cor-DEGs-DEPs) were significantly enrdiched in the proteome and transcriptome of the BS59-VS-BS82, SD59-VS-SD82, and BS82-VS-SD82 groups, respectively, which included ribonuclease 1-like protein, DEAD-box ATP-dependent RNA helicase, TolB protein, heat shock protein 83, 20 kDa chaperonin, polygalacturonase, endochitinase, brassinolide and gibberellin receptors (BRI1 and GID1), and xyloglucan endotransglucosylase/hydrolase (XTH). In addition, Beta vulgaris XTH could enhance the growth and development of Arabidopsis primary roots by improving cell growth in the root tip elongation zone. These findings suggested that taproot growth and expansion might be regulated at transcriptional and posttranscriptional levels and also may be attributed to cell wall metabolism to improve cell wall loosening and elongation.
Collapse
|
9
|
TaKLU Plays as a Time Regulator of Leaf Growth via Auxin Signaling. Int J Mol Sci 2022; 23:ijms23084219. [PMID: 35457033 PMCID: PMC9033062 DOI: 10.3390/ijms23084219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
The growth of leaves is subject to strict time regulation. Several genes influencing leaf growth have been identified, but little is known about how genes regulate the orderly initiation and growth of leaves. Here, we demonstrate that TaKLU/TaCYP78A5 contributes to a time regulation mechanism in leaves from initiation to expansion. TaKLU encodes the cytochrome P450 CYP78A5, and its homolog AtKLU has been described whose deletion is detrimental to organ growth. Our results show that TaKLU overexpression increases leaf size and biomass by altering the time of leaf initiation and expansion. TaKLU-overexpressing plants have larger leaves with more cells. Further dynamic observations indicate that enlarged wheat leaves have experienced a longer expansion time. Different from AtKLU inactivation increases leaf number and initiation rates, TaKLU overexpression only smooths the fluctuations of leaf initiation rates by adjusting the initiation time of local leaves, without affecting the overall leaf number and initiation rates. In addition, complementary analyses suggest TaKLU is functionally conserved with AtKLU in controlling the leaf initiation and size and may involve auxin accumulation. Our results provide a new insight into the time regulation mechanisms of leaf growth in wheat.
Collapse
|
10
|
Doan PPT, Kim JH, Kim J. Rapid Investigation of Functional Roles of Genes in Regulation of Leaf Senescence Using Arabidopsis Protoplasts. FRONTIERS IN PLANT SCIENCE 2022; 13:818239. [PMID: 35371171 PMCID: PMC8969776 DOI: 10.3389/fpls.2022.818239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence is the final stage of leaf development preceding death, which involves a significant cellular metabolic transition from anabolism to catabolism. Several processes during leaf senescence require coordinated regulation by senescence regulatory genes. In this study, we developed a rapid and systematic cellular approach to dissect the functional roles of genes in senescence regulation through their transient expression in Arabidopsis protoplasts. We established and validated this system by monitoring the differential expression of a luciferase-based reporter that was driven by promoters of SEN4 and SAG12, early and late senescence-responsive genes, depending on effectors of known positive and negative senescence regulators. Overexpression of positive senescence regulators, including ORE1, RPK1, and RAV1, increased the expression of both SEN4- and SAG12-LUC while ORE7, a negative senescence regulator decreased their expression. Consistently with overexpression, knockdown of target genes using amiRNAs resulted in opposite SAG12-LUC expression patterns. The timing and patterns of reporter responses induced by senescence regulators provided molecular evidence for their distinct kinetic involvement in leaf senescence regulation. Remarkably, ORE1 and RPK1 are involved in cell death responses, with more prominent and earlier involvement of ORE1 than RPK1. Consistent with the results in protoplasts, further time series of reactive oxygen species (ROS) and cell death assays using different tobacco transient systems reveal that ORE1 causes acute cell death and RPK1 mediates superoxide-dependent intermediate cell death signaling during leaf senescence. Overall, our results indicated that the luciferase-based reporter system in protoplasts is a reliable experimental system that can be effectively used to examine the regulatory roles of Arabidopsis senescence-associated genes.
Collapse
Affiliation(s)
- Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, South Korea
| | - Jin Hee Kim
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
| | - Jeongsik Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, South Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
- Faculty of Science Education, Jeju National University, Jeju, South Korea
| |
Collapse
|
11
|
Transcriptomic Analysis Reveals Regulatory Networks for Osmotic Water Stress and Rewatering Response in the Leaves of Ginkgo biloba. FORESTS 2021. [DOI: 10.3390/f12121705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To elucidate the transcriptomic regulation mechanisms that underlie the response of Ginkgo biloba to dehydration and rehydration, we used ginkgo saplings exposed to osmotically driven water stress and subsequent rewatering. When compared with a control group, 137, 1453, 1148, and 679 genes were differentially expressed in ginkgo leaves responding to 2, 6, 12, and 24 h of water deficit, and 796 and 1530 genes were differentially expressed responding to 24 and 48 h of rewatering. Upregulated genes participated in the biosynthesis of abscisic acid, eliminating reactive oxygen species (ROS), and biosynthesis of flavonoids and bilobalide, and downregulated genes were involved in water transport and cell wall enlargement in water stress-treated ginkgo leaves. Under rehydration conditions, the genes associated with water transport and cell wall enlargement were upregulated, and the genes that participated in eliminating ROS and the biosynthesis of flavonoids and bilobalide were downregulated in the leaves of G. biloba. Furthermore, the weighted gene coexpression networks were established and correlated with distinct water stress and rewatering time-point samples. Hub genes that act as key players in the networks were identified. Overall, these results indicate that the gene coexpression networks play essential roles in the transcriptional reconfiguration of ginkgo leaves in response to water stress and rewatering.
Collapse
|
12
|
Lu R, Zhang J, Wu YW, Wang Y, Zhang J, Zheng Y, Li Y, Li XB. bHLH transcription factors LP1 and LP2 regulate longitudinal cell elongation. PLANT PHYSIOLOGY 2021; 187:2577-2591. [PMID: 34618066 PMCID: PMC8644604 DOI: 10.1093/plphys/kiab387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/21/2021] [Indexed: 05/31/2023]
Abstract
Basic helix-loop-helix/helix-loop-helix (bHLH/HLH) transcription factors play substantial roles in plant cell elongation. In this study, two bHLH/HLH homologous proteins leaf related protein 1 and leaf-related protein 2 (AtLP1 and AtLP2) were identified in Arabidopsis thaliana. LP1 and LP2 play similar positive roles in longitudinal cell elongation. Both LP1 and LP2 overexpression plants exhibited long hypocotyls, elongated cotyledons, and particularly long leaf blades. The elongated leaves resulted from increased longitudinal cell elongation. lp1 and lp2 loss-of-function single mutants did not display distinct phenotypes, but the lp1lp2 double mutant showed decreased leaf length associated with less longitudinal polar cell elongation. Furthermore, the phenotype of lp1lp2 could be rescued by the expression of LP1 or LP2. Expression of genes related to cell elongation was upregulated in LP1 and LP2 overexpression plants but downregulated in lp1lp2 double mutant plants compared with that of wild type. LP1 and LP2 proteins could directly bind to the promoters of Longifolia1 (LNG1) and LNG2 to activate the expression of these cell elongation related genes. Both LP1 and LP2 could interact with two other bHLH/HLH proteins, IBH1 (ILI1 binding BHLH Protein1) and IBL1 (IBH1-like1), thereby suppressing the transcriptional activation of LP1 and LP2 to the target genes LNG1 and LNG2. Thus, our data suggested that LP1 and LP2 act as positive regulators to promote longitudinal cell elongation by activating the expression of LNG1 and LNG2 genes in Arabidopsis. Moreover, homodimerization of LP1 and LP2 may be essential for their function, and interaction between LP1/LP2 and other bHLH/HLH proteins may obstruct transcriptional regulation of target genes by LP1 and LP2.
Collapse
Affiliation(s)
- Rui Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jiao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yu-Wei Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jie Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
13
|
Liu B, Zhang B, Yang Z, Liu Y, Yang S, Shi Y, Jiang C, Qin F. Manipulating ZmEXPA4 expression ameliorates the drought-induced prolonged anthesis and silking interval in maize. THE PLANT CELL 2021; 33:2058-2071. [PMID: 33730156 PMCID: PMC8290287 DOI: 10.1093/plcell/koab083] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/10/2021] [Indexed: 05/21/2023]
Abstract
Drought poses a major environmental threat to maize (Zea mays) production worldwide. Since maize is a monoecious plant, maize grain yield is dependent on the synchronous development of male and female inflorescences. When a drought episode occurs during flowering, however, an asynchronism occurs in the anthesis and silking interval (ASI) that results in significant yield losses. The underlying mechanism responsible for this asynchronism is still unclear. Here, we obtained a comprehensive development-drought transcriptome atlas of maize ears. Genes that function in cell expansion and growth were highly repressed by drought in 50 mm ears. Notably, an association study using a natural-variation population of maize revealed a significant relationship between the level of α-expansin4 (ZmEXPA4) expression and drought-induced increases in ASI. Furthermore, genetic manipulation of ZmEXPA4 expression using a drought-inducible promoter in developing maize ears reduced the ASI under drought conditions. These findings provide important insights into the molecular mechanism underlying the increase in ASI in maize ears subjected to drought and provide a promising strategy that can be used for trait improvement.
Collapse
Affiliation(s)
- Boxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bin Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
| | - Zhirui Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yunlu Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
- Author for correspondence:
| |
Collapse
|
14
|
Chen Y, Dubois M, Vermeersch M, Inzé D, Vanhaeren H. Distinct cellular strategies determine sensitivity to mild drought of Arabidopsis natural accessions. PLANT PHYSIOLOGY 2021; 186:1171-1185. [PMID: 33693949 PMCID: PMC8195540 DOI: 10.1093/plphys/kiab115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/14/2021] [Indexed: 05/18/2023]
Abstract
The worldwide distribution of Arabidopsis (Arabidopsis thaliana) accessions imposes different types of evolutionary pressures, which contributes to various responses of these accessions to environmental stresses. Responses to drought stress have mostly been studied in the Columbia accession, which is predominantly used in plant research. However, the reactions to drought stress are complex and our understanding of the responses that contribute to maintaining plant growth during mild drought (MD) is very limited. Here, we studied the mechanisms with which natural accessions react to MD at a physiological and molecular level during early leaf development. We documented variations in MD responses among natural accessions and used transcriptome sequencing of a drought-sensitive accession, ICE163, and a drought-insensitive accession, Yeg-1, to gain insights into the mechanisms underlying this discrepancy. This revealed that ICE163 preferentially induces jasmonate- and anthocyanin-related pathways, which are beneficial in biotic stress defense, whereas Yeg-1 has a more pronounced activation of abscisic acid signaling, the classical abiotic stress response. Related physiological traits, including the content of proline, anthocyanins, and reactive oxygen species, stomatal closure, and cellular leaf parameters, were investigated and linked to the transcriptional responses. We can conclude that most of these processes constitute general drought response mechanisms that are regulated similarly in drought-insensitive and -sensitive accessions. However, the capacity to close stomata and maintain cell expansion under MD appeared to be major factors that allow to better sustain leaf growth under MD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Address for communication:
| | - Hannes Vanhaeren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| |
Collapse
|
15
|
Landi M, Agati G, Fini A, Guidi L, Sebastiani F, Tattini M. Unveiling the shade nature of cyanic leaves: A view from the "blue absorbing side" of anthocyanins. PLANT, CELL & ENVIRONMENT 2021; 44:1119-1129. [PMID: 32515010 DOI: 10.1111/pce.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/01/2020] [Indexed: 05/02/2023]
Abstract
Anthocyanins have long been suggested as having great potential in offering photoprotection to plants facing high light irradiance. Nonetheless, their effective ability in protecting the photosynthetic apparatus from supernumerary photons has been questioned by some authors, based upon the inexact belief that anthocyanins almost exclusively absorb green photons, which are poorly absorbed by chlorophylls. Here we focus on the blue light absorbing features of anthocyanins, a neglected issue in anthocyanin research. Anthocyanins effectively absorb blue photons: the absorbance of blue relative to green photons increases from tri- to mono-hydroxy B-ring substituted structures, reaching up to 50% of green photons absorption. We offer a comprehensive picture of the molecular events activated by low blue-light availability, extending our previous analysis in purple and green basil, which we suggest to be responsible for the "shade syndrome" displayed by cyanic leaves. While purple leaves display overexpression of genes promoting chlorophyll biosynthesis and light harvesting, in green leaves it is the genes involved in the stability/repair of photosystems that are largely overexpressed. As a corollary, this adds further support to the view of an effective photoprotective role of anthocyanins. We discuss the profound morpho-anatomical adjustments imposed by the epidermal anthocyanin shield, which reflect adjustments in light harvesting capacity under imposed shade and make complex the analysis of the photosynthetic performance of cyanic versus acyanic leaves.
Collapse
Affiliation(s)
- Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giovanni Agati
- Institute of Applied Physics 'Nello Carrara', Florence, Italy
| | - Alessio Fini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy University of Milan, Milan, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Florence, Italy
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, National Research Council of Italy, Florence, Italy
| |
Collapse
|
16
|
Keyzor C, Mermaz B, Trigazis E, Jo S, Song J. Histone Demethylases ELF6 and JMJ13 Antagonistically Regulate Self-Fertility in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:640135. [PMID: 33643367 PMCID: PMC7907638 DOI: 10.3389/fpls.2021.640135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 05/17/2023]
Abstract
The chromatin modification H3K27me3 is involved in almost every developmental stage in Arabidopsis. Much remains unknown about the dynamic regulation of this histone modification in flower development and control of self-fertility. Here we demonstrate that the H3K27me3-specific demethylases ELF6 and JMJ13 antagonistically regulate carpel and stamen growth and thus modulate self-fertility. Transcriptome and epigenome data are used to identify potential targets of ELF6 and JMJ13 responsible for these physiological functions. We find that ELF6 relieves expansin genes of epigenetic silencing to promote cell elongation in the carpel, enhancing carpel growth and therefore encouraging out-crossing. On the other hand, JMJ13 activates genes of the jasmonic acid regulatory network alongside the auxin responsive SAUR26, to inhibit carpel growth, enhance stamen growth, and overall promote self-pollination. Our evidence provides novel mechanisms of self-fertility regulation in A. thaliana demonstrating how chromatin modifying enzymes govern the equilibrium between flower self-pollination and out-crossing.
Collapse
|
17
|
Mariotti R, Belaj A, De La Rosa R, Leòn L, Brizioli F, Baldoni L, Mousavi S. EST-SNP Study of Olea europaea L. Uncovers Functional Polymorphisms between Cultivated and Wild Olives. Genes (Basel) 2020; 11:E916. [PMID: 32785094 PMCID: PMC7465833 DOI: 10.3390/genes11080916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The species Olea europaea includes cultivated varieties (subsp. europaea var. europaea), wild plants (subsp. europaea var. sylvestris), and five other subspecies spread over almost all continents. Single nucleotide polymorphisms in the expressed sequence tag able to underline intra-species differentiation are not yet identified, beyond a few plastidial markers. METHODS In the present work, more than 1000 transcript-specific SNP markers obtained by the genotyping of 260 individuals were studied. These genotypes included cultivated, oleasters, and samples of subspecies guanchica, and were analyzed in silico, in order to identify polymorphisms on key genes distinguishing different Olea europaea forms. RESULTS Phylogeny inference and principal coordinate analysis allowed to detect two distinct clusters, clearly separating wilds and guanchica samples from cultivated olives, meanwhile the structure analysis made possible to differentiate these three groups. Sequences carrying the polymorphisms that distinguished wild and cultivated olives were analyzed and annotated, allowing to identify 124 candidate genes that have a functional role in flower development, stress response, or involvement in important metabolic pathways. Signatures of selection that occurred during olive domestication, were detected and reported. CONCLUSION This deep EST-SNP analysis provided important information on the genetic and genomic diversity of the olive complex, opening new opportunities to detect gene polymorphisms with potential functional and evolutionary roles, and to apply them in genomics-assisted breeding, highlighting the importance of olive germplasm conservation.
Collapse
Affiliation(s)
- Roberto Mariotti
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| | - Angjelina Belaj
- IFAPA—Centro Alameda del Obispo, Avda Menendez Pidal, s/n, E-14004 Cordoba, Spain; (A.B.); (R.D.L.R.); (L.L.)
| | - Raul De La Rosa
- IFAPA—Centro Alameda del Obispo, Avda Menendez Pidal, s/n, E-14004 Cordoba, Spain; (A.B.); (R.D.L.R.); (L.L.)
| | - Lorenzo Leòn
- IFAPA—Centro Alameda del Obispo, Avda Menendez Pidal, s/n, E-14004 Cordoba, Spain; (A.B.); (R.D.L.R.); (L.L.)
| | - Federico Brizioli
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| | - Luciana Baldoni
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| | - Soraya Mousavi
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| |
Collapse
|
18
|
Galstyan A, Nemhauser JL. Auxin promotion of seedling growth via ARF5 is dependent on the brassinosteroid-regulated transcription factors BES1 and BEH4. PLANT DIRECT 2019; 3:e00166. [PMID: 31508562 PMCID: PMC6722427 DOI: 10.1002/pld3.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 05/21/2023]
Abstract
Seedlings must continually calibrate their growth in response to the environment. Auxin and brassinosteroids (BRs) are plant hormones that work together to control growth responses during photomorphogenesis. We used our previous analysis of promoter architecture in an auxin and BR target gene to guide our investigation into the broader molecular bases and biological relevance of transcriptional co-regulation by these hormones. We found that the auxin-regulated transcription factor Auxin Responsive Factor 5 (ARF5) and the brassinosteroid-regulated transcription factor BRI1-EMS-Suppressor 1/Brassinazole Resistant 2 (BES1) co-regulated a subset of growth-promoting genes via conserved bipartite cis-regulatory elements. Moreover, ARF5 binding to DNA could be enriched by increasing BES1 levels. The evolutionary loss of bipartite elements in promoters results in loss of hormone responsiveness. We also identified another member of the BES1/BZR1 family called BEH4 that acts partially redundantly with BES1 to regulate seedling growth. Double mutant analysis showed that BEH4 and not BZR1 were required alongside BES1 for normal auxin response during early seedling development. We propose that an ARF5-BES1/BEH4 transcriptional module acts to promote growth via modulation of a diverse set of growth-associated genes.
Collapse
Affiliation(s)
- Anahit Galstyan
- Department of BiologyUniversity of WashingtonSeattleWAUSA
- Present address:
Max Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Cologne50829Germany
| | | |
Collapse
|
19
|
Nepal N, Yactayo‐Chang JP, Medina‐Jiménez K, Acosta‐Gamboa LM, González‐Romero ME, Arteaga‐Vázquez MA, Lorence A. Mechanisms underlying the enhanced biomass and abiotic stress tolerance phenotype of an Arabidopsis MIOX over-expresser. PLANT DIRECT 2019; 3:e00165. [PMID: 31497751 PMCID: PMC6718051 DOI: 10.1002/pld3.165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/11/2019] [Accepted: 08/10/2019] [Indexed: 05/07/2023]
Abstract
Myo-inositol oxygenase (MIOX) is the first enzyme in the inositol route to ascorbate (L-ascorbic acid, AsA, vitamin C). We have previously shown that Arabidopsis plants constitutively expressing MIOX have elevated foliar AsA content and displayed enhanced growth rate, biomass accumulation, and increased tolerance to multiple abiotic stresses. In this work, we used a combination of transcriptomics, chromatography, microscopy, and physiological measurements to gain a deeper understanding of the underlying mechanisms mediating the phenotype of the AtMIOX4 line. Transcriptomic analysis revealed increased expression of genes involved in auxin synthesis, hydrolysis, transport, and metabolism, which are supported by elevated auxin levels both in vitro and in vivo, and confirmed by assays demonstrating their effect on epidermal cell elongation in the AtMIOX4 over-expressers. Additionally, we detected up-regulation of transcripts involved in photosynthesis and this was validated by increased efficiency of the photosystem II and proton motive force. We also found increased expression of amylase leading to higher intracellular glucose levels. Multiple gene families conferring plants tolerance/expressed in response to cold, water limitation, and heat stresses were found to be elevated in the AtMIOX4 line. Interestingly, the high AsA plants also displayed up-regulation of transcripts and hormones involved in defense including jasmonates, defensin, glucosinolates, and transcription factors that are known to be important for biotic stress tolerance. These results overall indicate that elevated levels of auxin and glucose, and enhanced photosynthetic efficiency in combination with up-regulation of abiotic stresses response genes underly the higher growth rate and abiotic stresses tolerance phenotype of the AtMIOX4 over-expressers.
Collapse
Affiliation(s)
- Nirman Nepal
- Arkansas Biosciences InstituteArkansas State UniversityState UniversityARUSA
| | | | - Karina Medina‐Jiménez
- Arkansas Biosciences InstituteArkansas State UniversityState UniversityARUSA
- INBIOTECAUniversidad VeracruzanaXalapaMéxico
| | | | | | | | - Argelia Lorence
- Arkansas Biosciences InstituteArkansas State UniversityState UniversityARUSA
- Department of Chemistry and PhysicsArkansas State UniversityState UniversityARUSA
| |
Collapse
|
20
|
Belchí-Navarro S, Almagro L, Bru-Martínez R, Pedreño MA. Changes in the secretome of Vitis vinifera cv. Monastrell cell cultures treated with cyclodextrins and methyl jasmonate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:520-527. [PMID: 30448023 DOI: 10.1016/j.plaphy.2018.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Elicitors induce defense responses that resemble those triggered by pathogen attack, including the synthesis of phytoalexins and pathogen-related proteins, which are accumulated in the extracellular space. In this work we analyze the changes in the secretome of Vitis vinifera cv. Monastrell cell cultures. This refers to the secreted proteome obtained from cell suspension cultures, in response to treatment with cyclodextrins and methyl jasmonate, separately or in combination using label-free quantitative approaches. Of the proteins found, thirty-three did not show significant differences in response to the different treatments carried out, indicating that these proteins were expressed in a constitutive way in both control and elicited grapevine cell cultures. These proteins included pathogenesis-related proteins 4 and 5, class III peroxidases, NtPRp-27, chitinases and class IV endochitinases, among others. Moreover, eleven proteins were differentially expressed in the presence of cyclodextrins and/or methyl jasmonate: three different peroxidases, two pathogenesis related protein 1, LysM domain-containing GPI-anchored protein 1, glycerophosphoryl diester phosphodiesterase, reticulin oxidase, heparanase, β-1,3-glucanase and xyloglucan endotransglycosylase. Treatments with cyclodextrins reinforced the defensive arsenal and induced the accumulation of peroxidase V and xyloglucan endotransglycosylase. However, elicitation with methyl jasmonate decreased the levels of several proteins such as pathogenesis related protein 1, LysM domain-containing GPI-anchored protein 1, cationic peroxidase, and glycerophosphoryl diester phosphodiesterase, but increased the levels of new gene products such as heparanase, β-1,3 glucanase, reticulin oxidase, and peroxidase IV, all of which could be used as potential biomarkers in the grapevine defense responses.
Collapse
Affiliation(s)
- S Belchí-Navarro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | - L Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain.
| | - R Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante and Instituto de Investigación Sanitaria y Biomédica de Alicante ISABIAL-FISABIO, Alicante, Spain
| | - M A Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| |
Collapse
|
21
|
Lee YK, Kim IJ. Functional conservation of Arabidopsis LNG1 in tobacco relating to leaf shape change by increasing longitudinal cell elongation by overexpression. Genes Genomics 2018; 40:1053-1062. [PMID: 29949075 DOI: 10.1007/s13258-018-0712-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
The LONGIFOLIA1 (LNG1) gene of Arabidopsis regulates leaf shape by polar cell elongation independent of ROTUNDAFOLIA3 (ROT3). To expand our knowledge on the function of this gens in plant systems, Arabidopsis LNG1 (AtLNG1) was introduced both sense and antisense orientation under the control of 35S CaMV promoter into tobacco plants that lack AtLNG1 homolog. Resulting transgenic tobacco plants were analyzed by their phenotype, anatomy and transcript levels. AtLNG1-overexpressing tobacco lines showed increase in the leaf petiole and leaf blade compared with wild type tobacco line. The overexpressors also showed elongated palisade cells as well as epidermal cells in the leaf length direction, but no increase in cell number. Ectopic expression of AtLNG1 in tobacco plants also increased the expression of cell wall modification-related genes, such as NT_XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE9 (NT_XTH9), NT_XTH15 and NT_XTH33, indicating that these genes appear to be target of AtLNG1. As results of molecular and cellular examination, AtLNG1 seemed to have a conserved functional role in shaping leaf morphology in both Arabidopsis and tobacco.
Collapse
Affiliation(s)
- Young Koung Lee
- Cold Spring Harbor Laboratory, 1 Bungtown Road,, Cold Spring Harbor, NY, 11724, USA
- Division of Biological Sciences and Institute for Basic Science/Division of Biological Sciences and Research Institute for Glycoscience, Wonkwang University, Iksan, 54538, South Korea
| | - In-Jung Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 690-756, South Korea.
- Research Institute for Subtropical Agriculture and Biotechnology, SARI, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|