1
|
Zhang X, Qi L, Zhou W, Yang J, Zhu Y, Li Z, Chen F, Guan C. DBP degradation and PGPR-mediated enhancement: Mechanisms of Enterobacter sp. X1 revealed by maize (Zea mays L.) transcriptome and rhizosphere microbiome analysis. Microbiol Res 2025; 297:128193. [PMID: 40300371 DOI: 10.1016/j.micres.2025.128193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
Dibutyl phthalate (DBP), a common plasticizer in industrial production, is often detected in agricultural fields and exhibits significant endocrine disrupting effects on humans. Recently, plant growth promoting rhizobacteria (PGPR) have received considerable attention for their application in enhancing phytoremediation of soil organic pollutants. However, few studies have revealed the underlying mechanisms of gene expression changes in the PGPR-assisted phytoremediation process through plant transcriptome and rhizome microbiome analyses. Therefore, a DBP-degrading bacterium with multiple PGP traits was isolated, characterized and named strain X1. The effects of strain X1 inoculation on the promotion of maize (Zea mays L.) to remediate DBP-contaminated soil were then evaluated. The results showed that, compared to the DBP group, the soil DBP removal efficiency in the DBP + X1 treatment group increased 29.3 % (P < 0.05), accompanied by a significant reduction in DBP accumulation in maize (14.5 %) (P < 0.05). On one hand, transcriptome analysis further revealed that gene expression of detoxifying enzymes and antioxidants in plant tissues was up-regulated after inoculation with strain X1, which could prevent the excessive DBP accumulation in maize. Additionally, strain X1 could improve maize photosynthesis by inducing the expression of genes encoding proteins involved in the photosynthetic signaling pathway. On the other hand, the introduction of strain X1 greatly adjusted the diversity of the soil microbial community, enriched the abundance of DBP-degrading bacteria and improved soil enzyme activities in DBP-contaminated soil. In particular, this study also found that the expression of some plant genes was closely related to the relative abundance of rhizosphere microorganisms, such as Massilia and Devosia were associated with up-regulation of the expression of genes involved in the synthesis of alkaline phosphatase, which was of great importance in further exploration of microbial-plant interaction mechanisms. Consequently, this study investigated the role of PGPR on plant growth and the remediation of DBP-contaminated soil during phytoremediation through plant transcriptome and rhizosphere microbiome analysis, which provided a new perspective for future mechanism research on the remediation of contaminated farmland.
Collapse
Affiliation(s)
- Xiaoge Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Lihua Qi
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Wenqing Zhou
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jingjing Yang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yalan Zhu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhiman Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Fenyan Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
2
|
Yuan T, Ren W, Zhang J, Mahmood M, Jia Z, Zhang S, Wang M, Liang S, Yuan F, Liu Y. Synergistic effect of grassland plants and beneficial rhizosphere bacteria helps plants cope with overgrazing stress. BMC PLANT BIOLOGY 2025; 25:614. [PMID: 40346475 PMCID: PMC12065256 DOI: 10.1186/s12870-025-06638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Overgrazing (OG) is an important driver of grassland degradation and productivity decline. Highly effective synergy between plants and rhizosphere growth-promoting rhizobacteria (PGPR) may be a major way for grassland plants to effectively cope with OG stress. There have been few reports providing solid evidence on how this synergy occurs. RESULT This study combined with multi-omics analysis and the interaction effect of specific root exudate with PGPR B68, aiming to reveal the synergistic effect and regulatory mechanism of L. chinensis and PGPR under overgrazing stress. The results showed that Leymus chinensis plants with OG history can recruit the beneficial Phyllobacterium sp. B68 by regulating specific root exudate compounds(such as amino acid L-leucyl-L-alanine and alkaloid cordycepin). These compounds enhanced B68 rhizosphere colonization by promoting B68 chemotaxis and biofilm formation. The pot study experiments indicated that the bacterial isolates used as bio inoculants increased L. chinensis growth (mainly including plant height and biomass) by significantly increasing the chlorophyll content, RuBisCO activity, soluble sugar, plant hormones and nutrient content. Metagenomics results show that B68 inoculation significantly altered rhizosphere soil bacterial community composition and function. Additionally, B68 systemically upregulated the expression level of genes involved in plant hormone signaling, nutrient and sugar transporters, nitrogen metabolism, cell division, cell wall modification and photosynthesis to promote plant growth. The above results indicate that the PGPR B68 recruited by the root exudates of L. chinensis under OG helps the plant adapt to stress by promoting nutrient uptake and transport, maintaining hormone homeostasis, and enhancing the expression of genes related to plant growth and nutrient metabolism. CONCLUSION This study provides new insights into the positive interactions between grassland plants and rhizosphere bacteria under OG stress, offering valuable knowledge for developing new fertilizers and better management practices for degraded rangeland restoration and sustainable agriculture development. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ting Yuan
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot, 010010, China
| | - Weibo Ren
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot, 010010, China.
| | - Jiatao Zhang
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot, 010010, China
| | - Mohsin Mahmood
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot, 010010, China
| | - Zhenyu Jia
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot, 010010, China
| | - Shaohong Zhang
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot, 010010, China
| | - Min Wang
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot, 010010, China
| | - Shuang Liang
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot, 010010, China
| | - Feng Yuan
- National Center of Pratacultural Technology Innovation, Hohhot, China
| | - Yaling Liu
- National Center of Pratacultural Technology Innovation, Hohhot, China
| |
Collapse
|
3
|
Liu Y, Han Q, Zhang J, Zhang X, Chen Y, Li M, Hao Y, Hong Y, Tang R, Ferguson BJ, Gresshoff PM, Kuai J, Zhou G, Li X, Ji H. Soybean nodulation shapes the rhizosphere microbiome to increase rapeseed yield. J Adv Res 2024:S2090-1232(24)00553-8. [PMID: 39674502 DOI: 10.1016/j.jare.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
INTRODUCTION Crop rotation, a crucial agricultural practice that enhances soil health and crop productivity, is widely used in agriculture worldwide. Soybeans play a crucial role in crop rotation owing to their nitrogen-fixing ability, which is facilitated by symbiotic bacteria in their root systems. The soybean-rapeseed rotation is an effective agricultural practice in the Yangtze River Basin of China. However, the mechanism underlying the effectiveness of this system remains unknown. OBJECTIVES The aim of this study was to decipher the mechanisms by which previous soybean cultivation enhances the growth of subsequent rapeseed. METHODS Soybeans with three distinct nodulation genotypes were rotated with rapeseed, and the impact of previous soybean cultivation on subsequent rapeseed growth was evaluated by examining the soybean root secretome and soil rhizosphere microbiome. RESULTS Soybean-rapeseed rotation significantly enhanced subsequent rapeseed growth and yield, especially when supernodulating soybean plants were used, which released the most nitrogen into the soil rhizosphere. The differences in soybean nodulation capability led to variations in root exudation, which in turn influenced the bacterial communities in the rhizosphere. Notably, the supernodulating soybean plants promoted Sphingomonadaceae family of bacteria growth by secreting oleic acid and cis-4-hydroxy-D-proline, and further attracted them through cis-4-hydroxy-D-proline. Furthermore, the exogenous application of Sphingomonadaceae bacteria, either alone or in combination with rhizobia, significantly enhanced the growth of rapeseed. CONCLUSION Our data definitively demonstrated the crucial role of previous soybean cultivation in enhancing the yield of rapeseed, with the assistance of Sphingomonadaceae bacteria and rhizobia. This study elucidates the role of soybean nodulation in rhizosphere bacterial dynamics, highlighting its importance in sustainable agricultural practices.
Collapse
Affiliation(s)
- Yu Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Han
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jiaming Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuehai Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingbo Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongfang Hao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Hong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruizhen Tang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sustainability, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agricultural and Food Sustainability, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Jie Kuai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongtao Ji
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Han M, Yang H, Huang H, Du J, Zhang S, Fu Y. Allelopathy and allelobiosis: efficient and economical alternatives in agroecosystems. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:11-27. [PMID: 37751515 DOI: 10.1111/plb.13582] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Chemical interactions in plants often involve plant allelopathy and allelobiosis. Allelopathy is an ecological phenomenon leading to interference among organisms, while allelobiosis is the transmission of information among organisms. Crop failures and low yields caused by inappropriate management can be related to both allelopathy and allelobiosis. Therefore, research on these two phenomena and the role of chemical substances in both processes will help us to understand and upgrade agroecosystems. In this review, substances involved in allelopathy and allelobiosis in plants are summarized. The influence of environmental factors on the generation and spread of these substances is discussed, and relationships between allelopathy and allelobiosis in interspecific, intraspecific, plant-micro-organism, plant-insect, and mechanisms, are summarized. Furthermore, recent results on allelopathy and allelobiosis in agroecosystem are summarized and will provide a reference for the future application of allelopathy and allelobiosis in agroecosystem.
Collapse
Affiliation(s)
- M Han
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - H Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - H Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - J Du
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - S Zhang
- The College of Forestry, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, China
| | - Y Fu
- The College of Forestry, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, China
| |
Collapse
|
5
|
Wei X, Fu T, He G, Zhong Z, Yang M, Lou F, He T. Characteristics of rhizosphere and bulk soil microbial community of Chinese cabbage ( Brassica campestris) grown in Karst area. Front Microbiol 2023; 14:1241436. [PMID: 37789857 PMCID: PMC10542900 DOI: 10.3389/fmicb.2023.1241436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/24/2023] [Indexed: 10/05/2023] Open
Abstract
Understanding the rhizosphere soil microbial community and its relationship with the bulk soil microbial community is critical for maintaining soil health and fertility and improving crop yields in Karst regions. The microbial communities in the rhizosphere and bulk soils of a Chinese cabbage (Brassica campestris) plantation in a Karst region, as well as their relationships with soil nutrients, were examined in this study using high-throughput sequencing technologies of 16S and ITS amplicons. The aim was to provide theoretical insights into the healthy cultivation of Chinese cabbage in a Karst area. The findings revealed that the rhizosphere soil showed higher contents of organic matter (OM), alkaline hydrolyzable nitrogen (AN), available phosphorus (AP), total phosphorus (TP), available potassium (AK), total potassium (TK), total nitrogen (TN), catalase (CA), urease (UR), sucrase (SU), and phosphatase (PHO), in comparison with bulk soil, while the pH value showed the opposite trend. The diversity of bacterial and fungal communities in the bulk soil was higher than that in the rhizosphere soil, and their compositions differed between the two types of soil. In the rhizosphere soil, Proteobacteria, Acidobacteriota, Actinobacteriota, and Bacteroidota were the dominant bacterial phyla, while Olpidiomycota, Ascomycota, Mortierellomycota, and Basidiomycota were the predominant fungal phyla. In contrast, the bulk soil was characterized by bacterial dominance of Proteobacteria, Acidobacteriota, Chloroflexi, and Actinobacteriota and fungal dominance of Ascomycota, Olpidiomycota, Mortierellomycota, and Basidiomycota. The fungal network was simpler than the bacterial network, and both networks exhibited less complexity in the rhizosphere soil compared with the bulk soil. Moreover, the rhizosphere soil harbored a higher proportion of beneficial Rhizobiales. The rhizosphere soil network was less complicated than the network in bulk soil by building a bacterial-fungal co-occurrence network. Furthermore, a network of relationships between soil properties and network keystone taxa revealed that the rhizosphere soil keystone taxa were more strongly correlated with soil properties than those in the bulk soil; despite its lower complexity, the rhizosphere soil contains a higher abundance of bacteria which are beneficial for cabbage growth compared with the bulk soil.
Collapse
Affiliation(s)
- Xiaoliao Wei
- College of Agriculture, Guizhou University, Guiyang, China
| | - Tianling Fu
- Engineering Key Laboratory for Pollution Control and Resource Reuse Technology of Mountain Livestock Breeding, Institute of New Rural Development, Guizhou University, Guiyang, China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang, China
| | - Zhuoyan Zhong
- College of Agriculture, Guizhou University, Guiyang, China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Fei Lou
- College of Agriculture, Guizhou University, Guiyang, China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang, China
- Engineering Key Laboratory for Pollution Control and Resource Reuse Technology of Mountain Livestock Breeding, Institute of New Rural Development, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Ajeethan N, Yurgel SN, Abbey L. Role of Bacteria-Derived Flavins in Plant Growth Promotion and Phytochemical Accumulation in Leafy Vegetables. Int J Mol Sci 2023; 24:13311. [PMID: 37686117 PMCID: PMC10488295 DOI: 10.3390/ijms241713311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Sinorhizobium meliloti 1021 bacteria secretes a considerable amount of flavins (FLs) and can form a nitrogen-fixing symbiosis with legumes. This strain is also associated with non-legume plants. However, its role in plant growth promotion (PGP) of non-legumes is not well understood. The present study evaluated the growth and development of lettuce (Lactuca sativa) and kale (Brassica oleracea var. acephala) plants inoculated with S. meliloti 1021 (FL+) and its mutant 1021ΔribBA, with a limited ability to secrete FLs (FL-). The results from this study indicated that inoculation with 1021 significantly (p < 0.05) increased the lengths and surface areas of the roots and hypocotyls of the seedlings compared to 1021ΔribBA. The kale and lettuce seedlings recorded 19% and 14% increases in total root length, respectively, following inoculation with 1021 compared to 1021ΔribBA. A greenhouse study showed that plant growth, photosynthetic rate, and yield were improved by 1021 inoculation. Moreover, chlorophylls a and b, and total carotenoids were more significantly (p < 0.05) increased in kale plants associated with 1021 than non-inoculated plants. In kale, total phenolics and flavonoids were significantly (p < 0.05) increased by 6% and 23%, respectively, and in lettuce, the increments were 102% and 57%, respectively, following 1021 inoculation. Overall, bacterial-derived FLs enhanced kale and lettuce plant growth, physiological indices, and yield. Future investigation will use proteomic approaches combined with plant physiological responses to better understand host-plant responses to bacteria-derived FLs.
Collapse
Affiliation(s)
- Nivethika Ajeethan
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada
| | - Svetlana N. Yurgel
- USDA, ARS, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA;
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada
| |
Collapse
|
7
|
Doni F, Safitri R, Suhaimi NSM, Miranti M, Rossiana N, Mispan MS, Anhar A, Uphoff N. Evaluating the underlying physiological and molecular mechanisms in the system of rice intensification performance with Trichoderma-rice plant symbiosis as a model system. FRONTIERS IN PLANT SCIENCE 2023; 14:1214213. [PMID: 37692429 PMCID: PMC10484004 DOI: 10.3389/fpls.2023.1214213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
The system of rice intensification (SRI) is an extensively-researched and increasingly widely-utilized methodology for alleviating current constraints on rice production. Many studies have shown physiological and morphological improvements in rice plants induced by SRI management practices to be very similar to those that are associated with the presence of beneficial microbial endophytes in or around rice plants, especially their roots. With SRI methods, grain yields are increased by 25-100% compared to conventional methods, and the resulting plant phenotypes are better able to cope with biotic and abiotic stresses. SRI management practices have been shown to be associated with significant increases in the populations of certain microorganisms known to enhance soil health and plant growth, e.g., Azospirillum, Trichoderma, Glomus, and Pseudomonas. This article evaluates the effects of applying Trichoderma as a model microbe for assessing microbial growth-promotion, biological control activity, and modulation of gene expression under the conditions created by SRI practices. Information about the molecular changes and interactions associated with certain effects of SRI management suggests that these practices are enhancing rice plants' expression of their genetic potentials. More systematic studies that assess the effects of SRI methods respectively and collectively, compared with standard rice production methods, are needed to develop a more encompassing understanding of how SRI modifications of crops' growing environment elicit and contribute to more robust and more productive phenotypes of rice.
Collapse
Affiliation(s)
- Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Ratu Safitri
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Nurul Shamsinah Mohd Suhaimi
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Nia Rossiana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Azwir Anhar
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, West Sumatra, Indonesia
| | - Norman Uphoff
- Department of Global Development, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Li X, Sun HF, Fan JH, Li YY, Ma LJ, Wang LL, Li XM. Transcriptome modulation by endophyte drives rice seedlings response to Pb stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114740. [PMID: 36907094 DOI: 10.1016/j.ecoenv.2023.114740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/09/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the growth, SPAD value, chlorophyll fluorescence and transcriptome response of endophyte uninoculated and inoculated rice seedlings under Pb stress after treatment of 1 d and 5 d. Inoculation of endophytes significantly improved the plant height, SPAD value, Fv/F0, Fv/Fm and PIABS by 1.29, 1.73, 0.16, 1.25 and 1.90 times on the 1 d, by 1.07, 2.45, 0.11, 1.59 and 7.90 times on the 5 d, respectively, however, decreased the root length by 1.11 and 1.65 times on the 1 d and 5 d, respectively under Pb stress. Analysis of rice seedlings leaves by RNA-seq, there were 574 down-regulated and 918 up-regulated genes after treatment of 1 d, 205 down-regulated and 127 up-regulated genes after treatment of 5 d, of which 20 genes (11 up-regulated and 9 down-regulated) exhibited the same changing pattern after treatment of 1 d and 5 d. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to annotate these DEGs, and it was found that many of DEGs involved in photosynthesis, oxidative detoxification, hormone synthesis and signal transduction, protein phosphorylation/kinase and transcription factors. These findings provide new insights into the molecular mechanism of interaction between endophyte and plants under heavy metal stress, and contribute to agricultural production in limited environments.
Collapse
Affiliation(s)
- Xin Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - He-Fei Sun
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Jia-Hui Fan
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Yue-Ying Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Lian-Ju Ma
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Lan-Lan Wang
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Xue-Mei Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China.
| |
Collapse
|
9
|
Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs. THE ISME JOURNAL 2023; 17:417-431. [PMID: 36627434 PMCID: PMC9938287 DOI: 10.1038/s41396-023-01357-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Migration from rhizosphere to rhizoplane is a key selecting process in root microbiome assembly, but not fully understood. Rhizobiales members are overrepresented in the core root microbiome of terrestrial plants, and here we report a genome-wide transposon-sequencing of rhizoplane fitness genes of beneficial Sinorhizobium fredii on wild soybean, cultivated soybean, rice, and maize. There were few genes involved in broad-host-range rhizoplane colonization. The fadL mutant lacking a fatty acid transporter exhibited high colonization rates, while mutations in exoFQP (encoding membrane proteins directing exopolysaccharide polymerization and secretion), but not those in exo genes essential for exopolysaccharide biosynthesis, led to severely impaired colonization rates. This variation was not explainable by their rhizosphere and rhizoplane survivability, and associated biofilm and exopolysaccharide production, but consistent with their migration ability toward rhizoplane, and associated surface motility and the mixture of quorum-sensing AHLs (N-acylated-L-homoserine lactones). Genetics and physiology evidences suggested that FadL mediated long-chain AHL uptake while ExoF mediated the secretion of short-chain AHLs which negatively affected long-chain AHL biosynthesis. The fadL and exoF mutants had elevated and depleted extracellular long-chain AHLs, respectively. A synthetic mixture of long-chain AHLs mimicking that of the fadL mutant can improve rhizobial surface motility. When this AHL mixture was spotted into rhizosphere, the migration toward roots and rhizoplane colonization of S. fredii were enhanced in a diffusible way. This work adds novel parts managing extracellular AHLs, which modulate bacterial migration toward rhizoplane. The FadL-ExoFQP system is conserved in Alphaproteobacteria and may shape the "home life" of diverse keystone rhizobacteria.
Collapse
|
10
|
Wang J, Qin S, Fan R, Peng Q, Hu X, Yang L, Liu Z, Baccelli I, Migheli Q, Berg G, Chen X, Cernava T. Plant Growth Promotion and Biocontrol of Leaf Blight Caused by Nigrospora sphaerica on Passion Fruit by Endophytic Bacillus subtilis Strain GUCC4. J Fungi (Basel) 2023; 9:132. [PMID: 36836247 PMCID: PMC9966402 DOI: 10.3390/jof9020132] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Passion fruit (Passiflora edulis Sims) is widely cultivated in tropic and sub-tropic regions for the production of fruit, flowers, cosmetics, and for pharmacological applications. Its high economic, nutritional, and medical values elicit the market demand, and the growing areas are rapidly increasing. Leaf blight caused by Nigrospora sphaerica is a new and emerging disease of passion fruit in Guizhou, in southwest China, where the unique karst mountainous landscape and climate conditions are considered potential areas of expansion for passion fruit production. Bacillus species are the most common biocontrol and plant-growth-promotion bacteria (PGPB) resources in agricultural systems. However, little is known about the endophytic existence of Bacillus spp. in the passion fruit phyllosphere as well as their potential as biocontrol agents and PGPB. In this study, 44 endophytic strains were isolated from 15 healthy passion fruit leaves, obtained from Guangxi province, China. Through purification and molecular identification, 42 of the isolates were ascribed to Bacillus species. Their inhibitory activity against N. sphaerica was tested in vitro. Eleven endophytic Bacillus spp. strains inhibited the pathogen by >65%. All of them produced biocontrol- and plant-growth-promotion-related metabolites, including indole-3-acetic acid (IAA), protease, cellulase, phosphatase, and solubilized phosphate. Furthermore, the plant growth promotion traits of the above 11 endophytic Bacillus strains were tested on passion fruit seedlings. One isolate, coded B. subtilis GUCC4, significantly increased passion fruit stem diameter, plant height, leaf length, leaf surface, fresh weight, and dry weight. In addition, B. subtilis GUCC4 reduced the proline content, which indicated its potential to positively regulate passion fruit biochemical properties and resulted in plant growth promotion effects. Finally, the biocontrol efficiencies of B. subtilis GUCC4 against N. sphaerica were determined in vivo under greenhouse conditions. Similarly to the fungicide mancozeb and to a commercial B. subtilis-based biofungicide, B. subtilis GUCC4 significantly reduced disease severity. These results suggest that B. subtilis GUCC4 has great potential as a biological control agent and as PGPB on passion fruit.
Collapse
Affiliation(s)
- Junrong Wang
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
- College of Ecology and Environment, Tibet University, Lhasa 850012, China
| | - Shun Qin
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Ruidong Fan
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Qiang Peng
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Xiaojing Hu
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Liu Yang
- Guangxi Crop Genetic Improvement Biotechnology Laboratory, Nanning 530007, China
| | - Zengliang Liu
- Microbiology Research Institute, Guangxi Agricultural Science Academy, Nanning 530007, China
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Italy
| | - Quirico Migheli
- Dipartimento di Agraria and NRD–Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, 07100 Sassari, Italy
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
- College of Ecology and Environment, Tibet University, Lhasa 850012, China
| | - Tomislav Cernava
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
11
|
Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153765. [PMID: 35952452 DOI: 10.1016/j.jplph.2022.153765] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
Nitrogen fixing symbioses between plants and bacteria are ancient and, while not numerous, are formed in diverse lineages of plants ranging from microalgae to angiosperms. One symbiosis stands out as the most widespread one is that between legumes and rhizobia, leading to the formation of nitrogen-fixing nodules. The legume family is one of the largest and most diverse group of plants and legumes have been used by humans since the beginning of agriculture, both as high nitrogen food, as well as pastures and rotation crops. One open question is whether their ability to form a nitrogen-fixing symbiosis has contributed to legumes' success, and whether legumes have any unique characteristics that have made them more diverse and widespread than other groups of plants. This review examines the evolutionary journey that has led to the diversification of legumes, in particular its nitrogen-fixing symbiosis, and asks four questions to investigate which legume traits might have contributed to their success: 1. In what ways do legumes differ from other plant groups that have evolved nitrogen-fixing symbioses? In order to answer this question, the characteristics of the symbioses, and efficiencies of nitrogen fixation are compared between different groups of nitrogen fixing plants. 2. Could certain unique features of legumes be a reason for their success? This section examines the manifestations and possible benefits of a nitrogen-rich 'lifestyle' in legumes. 3. If nitrogen fixation was a reason for such a success, why have some species lost the symbiosis? Formation of symbioses has trade-offs, and while these are less well known for non-legumes, there are known energetic and ecological reasons for loss of symbiotic potential in legumes. 4. What can we learn from the unique traits of legumes for future crop improvements? While exploiting some of the physiological properties of legumes could be used to improve legume breeding, our increasing molecular understanding of the essential regulators of root nodule symbioses raise hope of creating new nitrogen fixing symbioses in other crop species.
Collapse
Affiliation(s)
- Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia.
| |
Collapse
|
12
|
Verma PK, Verma S, Pandey N. Root system architecture in rice: impacts of genes, phytohormones and root microbiota. 3 Biotech 2022; 12:239. [PMID: 36016841 PMCID: PMC9395555 DOI: 10.1007/s13205-022-03299-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
To feed the continuously expanding world's population, new crop varieties have been generated, which significantly contribute to the world's food security. However, the growth of these improved plant varieties relies primarily on synthetic fertilizers, which negatively affect the environment and human health; therefore, continuous improvement is needed for sustainable agriculture. Several plants, including cereal crops, have the adaptive capability to combat adverse environmental changes by altering physiological and molecular mechanisms and modifying their root system to improve nutrient uptake efficiency. These plants operate distinct pathways at various developmental stages to optimally establish their root system. These processes include changes in the expression profile of genes, changes in phytohormone level, and microbiome-induced root system architecture (RSA) modification. Several studies have been performed to understand microbial colonization and their involvement in RSA improvement through changes in phytohormone and transcriptomic levels. This review highlights the impact of genes, phytohormones, and particularly root microbiota in influencing RSA and provides new insights resulting from recent studies on rice root as a model system and summarizes the current knowledge about biochemical and central molecular mechanisms.
Collapse
Affiliation(s)
- Pankaj Kumar Verma
- Department of Botany, University of Lucknow, Lucknow, India
- Present Address: French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Shikha Verma
- Present Address: French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Nalini Pandey
- Department of Botany, University of Lucknow, Lucknow, India
| |
Collapse
|
13
|
Vora SM, Ankati S, Patole C, Podile AR, Archana G. Alterations of Primary Metabolites in Root Exudates of Intercropped Cajanus cajan-Zea mays Modulate the Adaptation and Proteome of Ensifer (Sinorhizobium) fredii NGR234. MICROBIAL ECOLOGY 2022; 83:1008-1025. [PMID: 34351469 DOI: 10.1007/s00248-021-01818-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/07/2021] [Indexed: 05/22/2023]
Abstract
Legume-cereal intercropping systems, in the context of diversity, ecological function, and better yield have been widely studied. Such systems enhance nutrient phytoavailability by balancing root-rhizosphere interactions. Root exudates (RE) play an important role in the rhizospheric interactions of plant-plant and/or plant-microbiome interaction. However, the influence of the primary metabolites of RE on plant-rhizobia interactions in a legume-cereal intercrop system is not known. To understand the plant communication with rhizobia, Cajanus cajan-Zea mays intercropped plants and the broad host range legume nodulating Ensifer fredii NGR234 as the model plants and rhizobium used respectively. A metabolomics-based approach revealed a clear separation between intercropped and monocropped RE of the two plants. Intercropped C. cajan showed an increase in the myo-inositol, and proline, while intercropped Z. mays showed enhanced galactose, D-glucopyranoside, and arginine in the RE. Physiological assays of NGR234 with the RE of intercropped C. cajan exhibited a significant enhancement in biofilm formation, while intercropped Z. mays RE accelerated the bacterial growth in the late log phase. Further, using label-free proteomics, we identified a total of 2570 proteins of NGR234 covering 50% annotated protein sequences upon exposure to Z. mays RE. Furthermore, intercropped Z. mays RE upregulated bacterioferritin comigratory protein (BCP), putative nitroreductase, IlvD, LeuC, D (branched-chain amino acid proteins), and chaperonin proteins GroEL2. Identification offered new insights into the metabolome of the legume-cereal intercrop and proteome of NGR234-Z. mays interactions that underline the new molecular candidates likely to be involved in the fitness of rhizobium in the intercropping system.
Collapse
Affiliation(s)
- Siddhi M Vora
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Sravani Ankati
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Chhaya Patole
- Institute for Stem Cell Science and Regenerative Medicine, NCBS-TIFR Campus, Bellary Road, Bangalore, Karnataka, India
| | - Appa Rao Podile
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - G Archana
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
14
|
Hernández-Reyes C, Lichtenberg E, Keller J, Delaux PM, Ott T, Schenk ST. NIN-Like Proteins: Interesting Players in Rhizobia-Induced Nitrate Signaling Response During Interaction with Non-Legume Host Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:230-243. [PMID: 34813707 DOI: 10.1094/mpmi-10-21-0261-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrogen is an essential macronutrient and a key cellular messenger. Plants have evolved refined molecular systems to sense the cellular nitrogen status. This is exemplified by the root nodule symbiosis between legumes and symbiotic rhizobia, where nitrate availability inhibits this mutualistic interaction. Additionally, nitrate also functions as a metabolic messenger, resulting in nitrate signaling cascades which intensively crosstalk with other physiological pathways. Nodule inception-like proteins (NLPs) are key players in nitrate signaling and regulate nitrate-dependent transcription during legume-rhizobia interactions. Nevertheless, the coordinated interplay between nitrate signaling pathways and rhizobacteria-induced responses remains to be elucidated. In our study, we investigated rhizobia-induced changes in the root system architecture of the non-legume host arabidopsis under different nitrate conditions. We demonstrate that rhizobium-induced lateral root growth and increased root hair length and density are regulated by a nitrate-related signaling pathway. Key players in this process are AtNLP4 and AtNLP5, because the corresponding mutants failed to respond to rhizobia. At the cellular level, AtNLP4 and AtNLP5 control a rhizobia-induced decrease in cell elongation rates, while additional cell divisions occurred independently of AtNLP4. In summary, our data suggest that root morphological responses to rhizobia are coordinated by a newly considered nitrate-related NLP pathway that is evolutionarily linked to regulatory circuits described in legumes.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Casandra Hernández-Reyes
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet Tolosan, France
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Sebastian T Schenk
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Doni F, Suhaimi NSM, Mispan MS, Fathurrahman F, Marzuki BM, Kusmoro J, Uphoff N. Microbial Contributions for Rice Production: From Conventional Crop Management to the Use of 'Omics' Technologies. Int J Mol Sci 2022; 23:737. [PMID: 35054923 PMCID: PMC8775878 DOI: 10.3390/ijms23020737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/26/2022] Open
Abstract
Rice, the main staple food for about half of the world's population, has had the growth of its production stagnate in the last two decades. One of the ways to further improve rice production is to enhance the associations between rice plants and the microbiome that exists around, on, and inside the plant. This article reviews recent developments in understanding how microorganisms exert positive influences on plant growth, production, and health, focusing particularly on rice. A variety of microbial species and taxa reside in the rhizosphere and the phyllosphere of plants and also have multiple roles as symbiotic endophytes while living within plant tissues and even cells. They alter the morphology of host plants, enhance their growth, health, and yield, and reduce their vulnerability to biotic and abiotic stresses. The findings of both agronomic and molecular analysis show ways in which microorganisms regulate the growth, physiological traits, and molecular signaling within rice plants. However, many significant scientific questions remain to be resolved. Advancements in high-throughput multi-omics technologies can be used to elucidate mechanisms involved in microbial-rice plant associations. Prospectively, the use of microbial inoculants and associated approaches offers some new, cost-effective, and more eco-friendly practices for increasing rice production.
Collapse
Affiliation(s)
- Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia; (B.M.M.); (J.K.)
| | - Nurul Shamsinah Mohd Suhaimi
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.S.M.S.); (M.S.M.)
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.S.M.S.); (M.S.M.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - F Fathurrahman
- Department of Agrotechnology, Faculty of Agriculture, Universitas Islam Riau, Pekanbaru 28284, Indonesia;
| | - Betty Mayawatie Marzuki
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia; (B.M.M.); (J.K.)
| | - Joko Kusmoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia; (B.M.M.); (J.K.)
| | - Norman Uphoff
- SRI International Network and Resources Center, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
16
|
Mukherjee A. What do we know from the transcriptomic studies investigating the interactions between plants and plant growth-promoting bacteria? FRONTIERS IN PLANT SCIENCE 2022; 13:997308. [PMID: 36186072 PMCID: PMC9521398 DOI: 10.3389/fpls.2022.997308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/02/2022] [Indexed: 05/21/2023]
Abstract
Major crops such as corn, wheat, and rice can benefit from interactions with various plant growth-promoting bacteria (PGPB). Naturally, several studies have investigated the primary mechanisms by which these PGPB promote plant growth. These mechanisms involve biological nitrogen fixation, phytohormone synthesis, protection against biotic and abiotic stresses, etc. Decades of genetic and biochemical studies in the legume-rhizobia symbiosis and arbuscular mycorrhizal symbiosis have identified a few key plant and microbial signals regulating these symbioses. Furthermore, genetic studies in legumes have identified the host genetic pathways controlling these symbioses. But, the same depth of information does not exist for the interactions between host plants and PGPB. For instance, our knowledge of the host genes and the pathways involved in these interactions is very poor. However, some transcriptomic studies have investigated the regulation of gene expression in host plants during these interactions in recent years. In this review, we discuss some of the major findings from these studies and discuss what lies ahead. Identifying the genetic pathway(s) regulating these plant-PGPB interactions will be important as we explore ways to improve crop production sustainably.
Collapse
|
17
|
Morales-Quintana L, Barrera A, Hereme R, Jara K, Rivera-Mora C, Valenzuela-Riffo F, Gundel PE, Pollmann S, Ramos P. Molecular and structural characterization of expansins modulated by fungal endophytes in the Antarctic Colobanthus quitensis (Kunth) Bartl. Exposed to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:465-476. [PMID: 34717178 DOI: 10.1016/j.plaphy.2021.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Expansins are proteins involved in cell wall metabolism that play an important role in plant growth, development, fruit ripening and abiotic stress tolerance. In the present study, we analyzed putative expansins that respond to drought stress. Five expansin genes were identified in cDNA libraries isolated from Colobanthus quitensis gown either with or without endophytic fungi under hydric stress. A differential transcript abundance was observed by qPCR analysis upon drought stress. To compare these expansin genes, and to suggest a possible mechanism of action at the molecular level, the structural model of the deduced proteins was obtained by comparative modeling methodology. The structures showed two domains and an open groove on the surface of the proteins was observed in the five structural models. The proteins were evaluated in terms of their protein-ligand interactions using four different ligands. The results suggested differences in their mode of protein-ligand interaction, in particular concerning the residues involved in the protein-ligand interaction. The presented evidence supports the participation of some members of the expansin multiprotein family in the response to drought stress in C. quitensis and suggest that the response is modulated by endophytic fungi.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédica, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, 3467987, Chile
| | - Andrea Barrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Rasme Hereme
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Karla Jara
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | | | - Pedro E Gundel
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; IFEVA (Facultad de Agronomía, Universidad de Buenos Aires - CONICET), Argentina
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Patricio Ramos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Centro de Biotecnología de los Recursos Naturales (CenBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
18
|
Research Advances of Beneficial Microbiota Associated with Crop Plants. Int J Mol Sci 2020; 21:ijms21051792. [PMID: 32150945 PMCID: PMC7084388 DOI: 10.3390/ijms21051792] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Plants are associated with hundreds of thousands of microbes that are present outside on the surfaces or colonizing inside plant organs, such as leaves and roots. Plant-associated microbiota plays a vital role in regulating various biological processes and affects a wide range of traits involved in plant growth and development, as well as plant responses to adverse environmental conditions. An increasing number of studies have illustrated the important role of microbiota in crop plant growth and environmental stress resistance, which overall assists agricultural sustainability. Beneficial bacteria and fungi have been isolated and applied, which show potential applications in the improvement of agricultural technologies, as well as plant growth promotion and stress resistance, which all lead to enhanced crop yields. The symbioses of arbuscular mycorrhizal fungi, rhizobia and Frankia species with their host plants have been intensively studied to provide mechanistic insights into the mutual beneficial relationship of plant–microbe interactions. With the advances in second generation sequencing and omic technologies, a number of important mechanisms underlying plant–microbe interactions have been unraveled. However, the associations of microbes with their host plants are more complicated than expected, and many questions remain without proper answers. These include the influence of microbiota on the allelochemical effect caused by one plant upon another via the production of chemical compounds, or how the monoculture of crops influences their rhizosphere microbial community and diversity, which in turn affects the crop growth and responses to environmental stresses. In this review, first, we systematically illustrate the impacts of beneficial microbiota, particularly beneficial bacteria and fungi on crop plant growth and development and, then, discuss the correlations between the beneficial microbiota and their host plants. Finally, we provide some perspectives for future studies on plant–microbe interactions.
Collapse
|
19
|
Jha PN, Gomaa AB, Yanni YG, El-Saadany AEY, Stedtfeld TM, Stedtfeld RD, Gantner S, Chai B, Cole J, Hashsham SA, Dazzo FB. Alterations in the Endophyte-Enriched Root-Associated Microbiome of Rice Receiving Growth-Promoting Treatments of Urea Fertilizer and Rhizobium Biofertilizer. MICROBIAL ECOLOGY 2020; 79:367-382. [PMID: 31346687 DOI: 10.1007/s00248-019-01406-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
We examined the bacterial endophyte-enriched root-associated microbiome within rice (Oryza sativa) 55 days after growth in soil with and without urea fertilizer and/or biofertilization with a growth-promotive bacterial strain (Rhizobium leguminosarum bv. trifolii E11). After treatment to deplete rhizosphere/rhizoplane communities, washed roots were macerated and their endophyte-enriched communities were analyzed by 16S ribosomal DNA 454 amplicon pyrosequencing. This analysis clustered 99,990 valid sequence reads into 1105 operational taxonomic units (OTUs) with 97% sequence identity, 133 of which represented a consolidated core assemblage representing 12.04% of the fully detected OTU richness. Taxonomic affiliations indicated Proteobacteria as the most abundant phylum (especially α- and γ-Proteobacteria classes), followed by Firmicutes, Bacteroidetes, Verrucomicrobia, Actinobacteria, and several other phyla. Dominant genera included Rheinheimera, unclassified Rhodospirillaceae, Pseudomonas, Asticcacaulis, Sphingomonas, and Rhizobium. Several OTUs had close taxonomic affiliation to genera of diazotrophic rhizobacteria, including Rhizobium, unclassified Rhizobiales, Azospirillum, Azoarcus, unclassified Rhizobiaceae, Bradyrhizobium, Azonexus, Mesorhizobium, Devosia, Azovibrio, Azospira, Azomonas, and Azotobacter. The endophyte-enriched microbiome was restructured within roots receiving growth-promoting treatments. Compared to the untreated control, endophyte-enriched communities receiving urea and/or biofertilizer treatments were significantly reduced in OTU richness and relative read abundances. Several unique OTUs were enriched in each of the treatment communities. These alterations in structure of root-associated communities suggest dynamic interactions in the host plant microbiome, some of which may influence the well-documented positive synergistic impact of rhizobial biofertilizer inoculation plus low doses of urea-N fertilizer on growth promotion of rice, considered as one of the world's most important food crops.
Collapse
Affiliation(s)
- Prabhat N Jha
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Abu-Bakr Gomaa
- Department of Civil & Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
- Department of Agricultural Microbiology, National Research Centre, Cairo, Egypt
| | - Youssef G Yanni
- Department of Microbiology, Sakha Agricultural Research Station, Kafr El-Sheikh, 33717, Egypt
| | | | - Tiffany M Stedtfeld
- Department of Civil & Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Swift Biosciences, Inc., Ann Arbor, MI, USA
| | - Robert D Stedtfeld
- Department of Civil & Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Swift Biosciences, Inc., Ann Arbor, MI, USA
| | - Stephan Gantner
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
- Department of Medicine, Economics and Health, University of Applied Sciences, Cologne, Germany
| | - Benli Chai
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
- Swift Biosciences, Inc., Ann Arbor, MI, USA
| | - James Cole
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Syed A Hashsham
- Department of Civil & Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Frank B Dazzo
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
20
|
King E, Wallner A, Rimbault I, Barrachina C, Klonowska A, Moulin L, Czernic P. Monitoring of Rice Transcriptional Responses to Contrasted Colonizing Patterns of Phytobeneficial Burkholderia s.l. Reveals a Temporal Shift in JA Systemic Response. FRONTIERS IN PLANT SCIENCE 2019; 10:1141. [PMID: 31608089 PMCID: PMC6769109 DOI: 10.3389/fpls.2019.01141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/21/2019] [Indexed: 05/30/2023]
Abstract
In the context of plant-pathogen and plant-mutualist interactions, the underlying molecular bases associated with host colonization have been extensively studied. However, it is not the case for non-mutualistic beneficial interactions or associative symbiosis with plants. Particularly, little is known about the transcriptional regulations associated with the immune tolerance of plants towards beneficial microbes. In this context, the study of the Burkholderia rice model is very promising to describe the molecular mechanisms involved in associative symbiosis. Indeed, several species of the Burkholderia sensu lato (s.l.) genus can colonize rice tissues and have beneficial effects; particularly, two species have been thoroughly studied: Burkholderia vietnamiensis and Paraburkholderia kururiensis. This study aims to compare the interaction of these species with rice and especially to identify common or specific plant responses. Therefore, we analyzed root colonization of the rice cultivar Nipponbare using DsRed-tagged bacterial strains and produced the transcriptomes of both roots and leaves 7 days after root inoculation. This led us to the identification of a co-expression jasmonic acid (JA)-related network exhibiting opposite regulation in response to the two strains in the leaves of inoculated plants. We then monitored by quantitative polymerase chain reaction (qPCR) the expression of JA-related genes during time course colonization by each strain. Our results reveal a temporal shift in this JA systemic response, which can be related to different colonization strategies of both strains.
Collapse
Affiliation(s)
- Eoghan King
- IRD, CIRAD, University of Montpellier, IPME, Montpellier, France
| | - Adrian Wallner
- IRD, CIRAD, University of Montpellier, IPME, Montpellier, France
| | | | - Célia Barrachina
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Lionel Moulin
- IRD, CIRAD, University of Montpellier, IPME, Montpellier, France
| | - Pierre Czernic
- IRD, CIRAD, University of Montpellier, IPME, Montpellier, France
| |
Collapse
|
21
|
Doni F, Mispan MS, Suhaimi NSM, Ishak N, Uphoff N. Roles of microbes in supporting sustainable rice production using the system of rice intensification. Appl Microbiol Biotechnol 2019; 103:5131-5142. [PMID: 31101941 DOI: 10.1007/s00253-019-09879-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
The system of rice intensification (SRI) is an agroecological approach to rice cultivation that seeks to create optimal conditions for healthy plant growth by minimizing inter-plant competition, transplanting widely spaced young single seedlings, and optimizing favorable soil conditions with organic amendments, increased soil aeration by weeding, and controlled water management. These practices improve rice plant growth with yields up to three times more than with conventional cultivation methods, and increase crop resilience under biotic and abiotic stresses. This review discusses the roles of beneficial microbes in improving rice plant growth, yield, and resilience when SRI practices are used, and how these modifications in plant, soil, water, and nutrient management affect the populations and diversity of soil microorganisms. Mechanisms whereby symbiotic microbes support rice plants' growth and performance are also discussed.
Collapse
Affiliation(s)
- Febri Doni
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Nazri Ishak
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Norman Uphoff
- SRI International Network and Resources Center, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
22
|
Harman GE, Uphoff N. Symbiotic Root-Endophytic Soil Microbes Improve Crop Productivity and Provide Environmental Benefits. SCIENTIFICA 2019; 2019:9106395. [PMID: 31065398 PMCID: PMC6466867 DOI: 10.1155/2019/9106395] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/05/2019] [Indexed: 05/02/2023]
Abstract
Plants should not be regarded as entities unto themselves, but as the visible part of plant-microbe complexes which are best understood as "holobiomes." Some microorganisms when given the opportunity to inhabit plant roots become root symbionts. Such root colonization by symbiotic microbes can raise crop yields by promoting the growth of both shoots and roots, by enhancing uptake, fixation, and/or more efficient use of nutrients, by improving plants' resistance to pests, diseases, and abiotic stresses that include drought, salt, and other environmental conditions, and by enhancing plants' capacity for photosynthesis. We refer plant-microbe associations with these capabilities that have been purposefully established as enhanced plant holobiomes (EPHs). Here, we consider four groups of phylogenetically distinct and distant symbiotic endophytes: (1) Rhizobiaceae bacteria; (2) plant-obligate arbuscular mycorrhizal fungi (AMF); (3) selected endophytic strains of fungi in the genus Trichoderma; and (4) fungi in the Sebicales order, specifically Piriformospora indica. Although these exhibit quite different "lifestyles" when inhabiting plants, all induce beneficial systemic changes in plants' gene expression that are surprisingly similar. For example, all induce gene expression that produces proteins which detoxify reactive oxygen species (ROS). ROS are increased by environmental stresses on plants or by overexcitation of photosynthetic pigments. Gene overexpression results in a cellular environment where ROS levels are controlled and made more compatible with plants' metabolic processes. EPHs also frequently exhibit increased rates of photosynthesis that contribute to greater plant growth and other capabilities. Soil organic matter (SOM) is augmented when plant root growth is increased and roots remain in the soil. The combination of enhanced photosynthesis, increasing sequestration of CO2 from the air, and elevation of SOM removes C from the atmosphere and stores it in the soil. Reductions in global greenhouse gas levels can be accelerated by incentives for carbon farming and carbon cap-and-trade programs that reward such climate-friendly agriculture. The development and spread of EPHs as part of such initiatives has potential both to enhance farm productivity and incomes and to decelerate global warming.
Collapse
|