1
|
Zhu T, Zhang J, Liu T, Zhang S, Yang B, Xu L, Zhao L, Li M, Jin L. Transcriptomic and metabolomic analyses reveal the mechanism of color difference between two kinds of Cistanche deserticola before and after drying. FRONTIERS IN PLANT SCIENCE 2025; 15:1506523. [PMID: 39917604 PMCID: PMC11798998 DOI: 10.3389/fpls.2024.1506523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025]
Abstract
Introduction Cistanche deserticola is an important traditional Chinese herbal medicine. The fresh cistanche squamous stem is typically yellow-white and brown after drying. Oil cistanche is a cistanche variant with a purple squamous stem that turns black after drying. The color difference between oil cistanche and cistanche is obvious, and the former has a higher market price. However, the mechanism underlying the color difference of oil cistanche and cistanche remains unclear. Methods This study evaluated the total flavone contents in oil cistanche and cistanche and compared the differential metabolites and differentially expressed genes (DEGs) and the contents of iridoid of dried oil cistanche and cistanche samples were determined by high-performance liquid chromatography, and finally the polysaccharides contents of them were determined to comprehensively analyze the formation mechanism of color difference between oil cistanche and cistanche. Results The results showed that the total flavonoid content in oil cistanche was significantly higher than that in cistanche. Metabolomic analysis identified 50 differentially accumulated metabolites (DAMs) (34 up-regulated and 16 down-regulated), including carbohydrates, terpenoids, and flavonoids. Moreover, 3,376 DEGs were selected, among which significant up-regulated of IGS1 and CYP84A1 and down-regulated of 4CLL1, F6H2-2-1 and 5MAT1 genes jointly regulated flavonoid biosynthesis and affected the accumulation of differentially accumulated metabolites. Significant up-regulated of the CCD7 gene affected carotenoid component production, and significant up-regulated of the UGT85A24 gene promoted the accumulation of geniposidic acid. In addition, the contents of iridoid and polysaccharide in oil cistanche were significantly higher than those in cistanche. Discussion The differential expression of flavonoids and terpenoid differential metabolites and CYP84A1, 5MAT1, FLS, UGT85A24 and CCD7 mainly caused the purple color of fresh oil cistanche. Dried samples of oil cistanche were darker in color than those of cistanche, due to the higher content of iridoids and polysaccharides in the former. This study preliminarily revealed the causes of the color differences between oil cistanche and cistanche, and provided references for the systematic study of cistanche and its germplasm resources, as well as for the breeding of C. deserticola.
Collapse
Affiliation(s)
- Tiantian Zhu
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & Ministry of Education (MOE) of People's Republic of China (PRC), Lanzhou, China
- Engineering Research Center for Evaluation, Protection, and Utilization of Rare Traditional Chinese Medicine Resources, Lanzhou, China
| | - Jing Zhang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tianle Liu
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shuai Zhang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Baimei Yang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Li Xu
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Lei Zhao
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Provincial-Level Key Laboratory for Chinese Tibet Herbal Chemicals and Quality Research in Gansu Colleges and Universities, Lanzhou, China
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & Ministry of Education (MOE) of People's Republic of China (PRC), Lanzhou, China
- Engineering Research Center for Evaluation, Protection, and Utilization of Rare Traditional Chinese Medicine Resources, Lanzhou, China
| |
Collapse
|
2
|
Bhanupriya C, Kar S. RNAi-mediated downregulation of endogenous 4-coumarate: CoA ligase activity in Sorghum bicolor to alter the lignin content, which augmented the carbohydrate content and growth. PLANTA 2025; 261:30. [PMID: 39794647 DOI: 10.1007/s00425-024-04603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
MAIN CONCLUSION This study seeks to improve the biomass extractability of Sorghum bicolor by targeting a critical enzyme, 4CL, through metabolic engineering of the lignin biosynthetic pathway at the post-transcriptional level. Sorghum bicolor L., a significant forage crop, offers a potential source of carbohydrate components for biofuel production. The high lignin content in sorghum stems often impedes the extractability of desired carbohydrate components for industrial use. Thus, the present study aimed to develop an improved variety of S. bicolor with reduced lignin through RNA interference of the endogenous 4-coumarate:CoA ligase (4CL) gene involved in the lignin biosynthetic pathway. The S. bicolor gene was isolated, characterized, and used to construct the RNAi-inducing hpRNA gene-silencing construct. Two independent transgenic sorghum lines were produced by introducing an hpRNA-induced gene-silencing cassette of the Sb4CL through Agrobacterium-mediated transformation in the shoot tips of S. bicolor. This was confirmed by PCR amplification of the hygromycin-resistance gene and Southern hybridization. The Sb4CL gene transcript and its enzymatic activity were found to reduce to varying degrees, as shown by northern hybridization and enzyme activity in the independent transgenic samples. Endogenous Sb4CL downregulation in sorghum stem tissue correlates with reduced lignin content to a maximum range of 25%. The transfer of the transgene in the second generation was also analyzed. Decreased lignin content in the transgenic lines was compensated by increased total cell wall carbohydrates such as cellulose (36.56%) and soluble sugars (59.72%) compared to untransformed plants. The study suggests that suppressing the Sb4CL gene effectively develops better sorghum varieties with lower lignin content. This can be useful for industrial purposes, as the enhanced carbohydrate content and favorable alteration of lignin content can lead to economic benefits.
Collapse
Affiliation(s)
- Ch Bhanupriya
- Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, India.
| | - Satarupa Kar
- Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
3
|
Portilla Llerena JP, Kiyota E, dos Santos FRC, Garcia JC, de Lima RF, Mayer JLS, dos Santos Brito M, Mazzafera P, Creste S, Nobile PM. ShF5H1 overexpression increases syringyl lignin and improves saccharification in sugarcane leaves. GM CROPS & FOOD 2024; 15:67-84. [PMID: 38507337 PMCID: PMC10956634 DOI: 10.1080/21645698.2024.2325181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
The agricultural sugarcane residues, bagasse and straws, can be used for second-generation ethanol (2GE) production by the cellulose conversion into glucose (saccharification). However, the lignin content negatively impacts the saccharification process. This polymer is mainly composed of guaiacyl (G), hydroxyphenyl (H), and syringyl (S) units, the latter formed in the ferulate 5-hydroxylase (F5H) branch of the lignin biosynthesis pathway. We have generated transgenic lines overexpressing ShF5H1 under the control of the C4H (cinnamate 4-hydroxylase) rice promoter, which led to a significant increase of up to 160% in the S/G ratio and 63% in the saccharification efficiency in leaves. Nevertheless, the content of lignin was unchanged in this organ. In culms, neither the S/G ratio nor sucrose accumulation was altered, suggesting that ShF5H1 overexpression would not affect first-generation ethanol production. Interestingly, the bagasse showed a significantly higher fiber content. Our results indicate that the tissue-specific manipulation of the biosynthetic branch leading to S unit formation is industrially advantageous and has established a foundation for further studies aiming at refining lignin modifications. Thus, the ShF5H1 overexpression in sugarcane emerges as an efficient strategy to improve 2GE production from straw.
Collapse
Affiliation(s)
- Juan Pablo Portilla Llerena
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Eduardo Kiyota
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Julio C. Garcia
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
| | | | | | - Michael dos Santos Brito
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Silvana Creste
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
4
|
Rivai RR, Yamazaki K, Kobayashi M, Tobimatsu Y, Tokunaga T, Fujiwara T, Umezawa T. Altered Lignin Accumulation in Sorghum Mutated in Silicon Uptake Transporter SbLsi1. PLANT & CELL PHYSIOLOGY 2024; 65:1983-1992. [PMID: 39343968 DOI: 10.1093/pcp/pcae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/01/2024]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] has been receiving attention as a feedstock for lignocellulose biomass energy. During the combustion process, ash-containing silicon (Si) can be produced, which causes problems in furnace maintenance. Hence, lowering Si content in plants is crucial. However, limiting Si supply to crops is difficult in practice because Si is abundant in the soil. Previously, an Si uptake transporter (SbLsi1) has been identified, and an Si-depleted mutant has also been generated in the model sorghum variety BTx623. In this study, we aimed to investigate the changes induced by a mutation in SbLsi1 on the accumulation and structure of lignin in cell walls. Through chemical and NMR analyses, we demonstrated that the lsi1 mutation resulted in a significant increase in lignin accumulation levels as well as a significant reduction in Si content. At least some of the modification was induced by transcriptional changes, as suggested by the upregulation of phenylpropanoid biosynthesis-related genes in the mutant plants. These findings derived from the model variety could be useful for the future development of practical cultivars with high biomass and less Si content for bioenergy applications.
Collapse
Affiliation(s)
- Reza Ramdan Rivai
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Research Center for Applied Botany, National Research and Innovation Agency of the Republic of Indonesia, Bogor 16911, Indonesia
| | - Kiyoshi Yamazaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tsuyoshi Tokunaga
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
5
|
Shad MA, Li X, Rao MJ, Luo Z, Li X, Ali A, Wang L. Exploring Lignin Biosynthesis Genes in Rice: Evolution, Function, and Expression. Int J Mol Sci 2024; 25:10001. [PMID: 39337489 PMCID: PMC11432410 DOI: 10.3390/ijms251810001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Lignin is nature's second most abundant vascular plant biopolymer, playing significant roles in mechanical support, water transport, and stress responses. This study identified 90 lignin biosynthesis genes in rice based on phylogeny and motif constitution, and they belong to PAL, C4H, 4CL, HCT, C3H, CCoAOMT, CCR, F5H, COMT, and CAD families. Duplication events contributed largely to the expansion of these gene families, such as PAL, CCoAOMT, CCR, and CAD families, mainly attributed to tandem and segmental duplication. Microarray data of 33 tissue samples covering the entire life cycle of rice suggested fairly high PAL, HCT, C3H, CCoAOMT, CCR, COMT, and CAD gene expressions and rather variable C4H, 4CL, and F5H expressions. Some members of lignin-related genes (OsCCRL11, OsHCT1/2/5, OsCCoAOMT1/3/5, OsCOMT, OsC3H, OsCAD2, and OsPAL1/6) were expressed in all tissues examined. The expression patterns of lignin-related genes can be divided into two major groups with eight subgroups, each showing a distinct co-expression in tissues representing typically primary and secondary cell wall constitutions. Some lignin-related genes were strongly co-expressed in tissues typical of secondary cell walls. Combined HPLC analysis showed increased lignin monomer (H, G, and S) contents from young to old growth stages in five genotypes. Based on 90 genes' microarray data, 27 genes were selected for qRT-PCR gene expression analysis. Four genes (OsPAL9, OsCAD8C, OsCCR8, and OsCOMTL4) were significantly negatively correlated with lignin monomers. Furthermore, eleven genes were co-expressed in certain genotypes during secondary growth stages. Among them, six genes (OsC3H, OsCAD2, OsCCR2, OsCOMT, OsPAL2, and OsPAL8) were overlapped with microarray gene expressions, highlighting their importance in lignin biosynthesis.
Collapse
Affiliation(s)
- Munsif Ali Shad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
| | - Xukai Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Zixuan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
| | - Xianlong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
| | - Aamir Ali
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Lingqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Umezawa T. Metabolic engineering of Oryza sativa for lignin augmentation and structural simplification. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:89-101. [PMID: 39463768 PMCID: PMC11500570 DOI: 10.5511/plantbiotechnology.24.0131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/31/2024] [Indexed: 10/29/2024]
Abstract
The sustainable production and utilization of lignocellulose biomass are indispensable for establishing sustainable societies. Trees and large-sized grasses are the major sources of lignocellulose biomass, while large-sized grasses greatly surpass trees in terms of lignocellulose biomass productivity. With an overall aim to improve lignocellulose usability, it is important to increase the lignin content and simplify lignin structures in biomass plants via lignin metabolic engineering. Rice (Oryza sativa) is not only a representative and important grass crop, but also is a model for large-sized grasses in biotechnology. This review outlines progress in lignin metabolic engineering in grasses, mainly rice, including characterization of the lignocellulose properties, the augmentation of lignin content and the simplification of lignin structures. These findings have broad applicability for the metabolic engineering of lignin in large-sized grass biomass plants.
Collapse
Affiliation(s)
- Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University
| |
Collapse
|
7
|
Gao Y, Wang X, Hou X, Chen J. Evolution and Analysis of Caffeic Acid Transferase (COMT) in Seed Plants. Biochem Genet 2024; 62:1953-1976. [PMID: 37801144 DOI: 10.1007/s10528-023-10525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Caffeic acid transferase (COMT) is a key enzyme in the lignin and melatonin synthesis pathways and plays an important role in plant growth and development. All seed plants have two characteristics: they have vascular tissues, phloem, and xylem, and they can produce and reproduce seeds. In order to understand the distribution and evolution of COMTs in seed plants, we performed physicochemical property analysis, subcellular localization, phylogenetic analysis, conserved motif analysis, and protein interaction network analysis of 44 COMT homologs from 26 seed plants through in silico. The results showed that in seed plants, the structure of COMT genes tends to be stable in different plant taxa, while the relationship between the chromosomal positions of different COMT genes in the same plant was more intricate. The conserved distribution of COMT in seed plants reflected its highly specialized function.
Collapse
Affiliation(s)
- Yinghui Gao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xuan Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xiaoyan Hou
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China.
| |
Collapse
|
8
|
Funnell-Harris DL, Sattler SE, O'Neill PM, Gries T, Ge Z, Nersesian N. Effects of Altering Three Steps of Monolignol Biosynthesis on Sorghum Responses to Stalk Pathogens and Water Deficit. PLANT DISEASE 2023; 107:3984-3995. [PMID: 37430480 DOI: 10.1094/pdis-08-22-1959-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The drought-resilient crop sorghum (Sorghum bicolor [L.] Moench) is grown worldwide for multiple uses, including forage or potential lignocellulosic bioenergy feedstock. A major impediment to biomass yield and quality are the pathogens Fusarium thapsinum and Macrophomina phaseolina, which cause Fusarium stalk rot and charcoal rot, respectively. These fungi are more virulent with abiotic stresses such as drought. Monolignol biosynthesis plays a critical role in plant defense. The genes Brown midrib (Bmr)6, Bmr12, and Bmr2 encode the monolignol biosynthesis enzymes cinnamyl alcohol dehydrogenase, caffeic acid O-methyltransferase, and 4-coumarate:CoA ligase, respectively. Plant stalks from lines overexpressing these genes and containing bmr mutations were screened for pathogen responses with controlled adequate or deficit watering. Additionally, near-isogenic bmr12 and wild-type lines in five backgrounds were screened for response to F. thapsinum with adequate and deficit watering. All mutant and overexpression lines were no more susceptible than corresponding wild-type under both watering conditions. The bmr2 and bmr12 lines, near-isogenic to wild-type, had significantly shorter mean lesion lengths (were more resistant) than RTx430 wild-type when inoculated with F. thapsinum under water deficit. Additionally, bmr2 plants grown under water deficit had significantly smaller mean lesions when inoculated with M. phaseolina than under adequate-water conditions. When well-watered, bmr12 in cultivar Wheatland and one of two Bmr2 overexpression lines in RTx430 had shorter mean lesion lengths than corresponding wild-type lines. This research demonstrates that modifying monolignol biosynthesis for increased usability may not impair plant defenses but can even enhance resistance to stalk pathogens under drought conditions.
Collapse
Affiliation(s)
- Deanna L Funnell-Harris
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln (UNL), Lincoln, NE 68583
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Agronomy and Horticulture, UNL, Lincoln, NE 68583
| | - Patrick M O'Neill
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln (UNL), Lincoln, NE 68583
| | - Tammy Gries
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Agronomy and Horticulture, UNL, Lincoln, NE 68583
| | - Zhengxiang Ge
- Department of Agronomy and Horticulture, UNL, Lincoln, NE 68583
| | | |
Collapse
|
9
|
Mishra A, Mishra TK, Nanda S, Mohanty MK, Dash M. A comprehensive review on genetic modification of plant cell wall for improved saccharification efficiency. Mol Biol Rep 2023; 50:10509-10524. [PMID: 37921982 DOI: 10.1007/s11033-023-08886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
The focus is now on harnessing energy from green sources through sustainable technology to minimize environmental pollution. Several crop residues including rice and wheat straw are having enormous potential to be used as lignocellulosic source material for bioenergy production. The lignocellulosic feedstock is primarily composed of cellulose, hemicellulose, and lignin cell wall polymers. The hemicellulose and lignin polymers induce crosslinks in the cell wall, by firmly associating with cellulose microfibrils, and thereby, denying considerable access of cellulose to cellulase enzymes. This issue has been addressed by various researchers through downregulating several genes associated in monolignol biosynthesis in Arabidopsis, Poplar, Rice and Switchgrass to increase ethanol recovery. Similarly, xylan biosynthetic genes are also targeted to genetically culminate its accumulation in the secondary cell walls. Regulation of cellulose synthases (CesA) proves to be an effective tool in addressing the negative impact of these two factors. Modification in the expression of cellulose synthase aids in reducing cellulose crystallinity as well as polymerisation degree which in turn increases ethanol recovery. The engineered bioenergy crops and various fungal strains with state of art biomass processing techniques presents the most recent integrative biotechnology model for cost effective green fuels generation along with production of key value-added products with minuscule disturbances in the environment. Plant breeding strategies utilizing the existing variability for biomass traits will be key in developing dual purpose varieties. For this purpose, reorientation of conventional breeding techniques for incorporating useful biomass traits will be effective.
Collapse
Affiliation(s)
- Abinash Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Tapas Kumar Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Spandan Nanda
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mahendra Kumar Mohanty
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
10
|
Jia S, Liu X, Li X, Sun C, Cao X, Liu W, Guo G, Bi C. Modification of lignin composition by ectopic expressing wheat TaF5H1 led to decreased salt tolerance in transgenic Arabidopsis plants. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:153997. [PMID: 37302354 DOI: 10.1016/j.jplph.2023.153997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Lignin is an important cell wall component that provides plants with mechanical support and improved tolerance to pathogen attacks. Previous studies have shown that plants rich in S-lignin content or with a higher S/G ratio always exhibit higher efficiency in the utilization of lignocellulosic biomass. Ferulate 5-hydroxylase, or coniferaldehyde 5-hydroxylase (F5H, or CAld5H), is the critical enzyme in syringyl lignin biosynthesis. Some F5Hs have been characterized in several plant species, e.g., Arabidopsis, rice, and poplar. However, information about F5Hs in wheat remains unclear. In this study, a wheat F5H gene, TaF5H1, together with its native promoter (pTaF5H1), was functionally characterized in transgenic Arabidopsis. Gus staining results showed that TaF5H1 could be expressed predominantly in the highly lignified tissues in transgenic Arabidopsis plants carrying pTaF5H1:Gus. qRT-PCR results showed that TaF5H1 was significantly inhibited by NaCl treatment. Ectopic expression of TaF5H1 driven by pTaF5H1 (i.e., pTaF5H1:TaF5H1) could increase the biomass yield, S-lignin content, and S/G ratio in transgenic Arabidopsis plants, which could also restore the traces of S-lignin in fah1-2, the Arabidopsis F5H mutant, to an even higher level than the wild type (WT), suggesting that TaF5H1 is a critical enzyme in S lignin biosynthesis, and pTaF5H1:TaF5H1 module has potential in the manipulation of S-lignin composition without any compromise on the biomass yield. However, expression of pTaF5H1:TaF5H1 also led to decreased salt tolerance compared with the WT. RNA-seq analysis showed that many stress-responsive genes and genes responsible for the biosynthesis of cell walls were differentially expressed between the seedlings harboring pTaF5H1:TaF5H1 and the WT, hinting that manipulation of the cell wall components targeting F5H may also affect the stress adaptability of the modified plants due to the interference to the cell wall integrity. In summary, this study demonstrated that the wheat pTaF5H1: TaF5H1 cassette has the potential to modulate S-lignin composition without any compromise in biomass yield in future engineering practice. Still, its negative effect on stress adaptability to transgenic plants should also be considered.
Collapse
Affiliation(s)
- Shuzhen Jia
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Xiaojun Liu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Xiaoyue Li
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Chen Sun
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Xiaohong Cao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Wei Liu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Guangyan Guo
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| | - Caili Bi
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| |
Collapse
|
11
|
Balk M, Sofia P, Neffe AT, Tirelli N. Lignin, the Lignification Process, and Advanced, Lignin-Based Materials. Int J Mol Sci 2023; 24:11668. [PMID: 37511430 PMCID: PMC10380785 DOI: 10.3390/ijms241411668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
At a time when environmental considerations are increasingly pushing for the application of circular economy concepts in materials science, lignin stands out as an under-used but promising and environmentally benign building block. This review focuses (A) on understanding what we mean with lignin, i.e., where it can be found and how it is produced in plants, devoting particular attention to the identity of lignols (including ferulates that are instrumental for integrating lignin with cell wall polysaccharides) and to the details of their coupling reactions and (B) on providing an overview how lignin can actually be employed as a component of materials in healthcare and energy applications, finally paying specific attention to the use of lignin in the development of organic shape-memory materials.
Collapse
Affiliation(s)
- Maria Balk
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| | - Pietro Sofia
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- The Open University Affiliated Research Centre at the Istituto Italiano di Tecnologia (ARC@IIT), Via Morego 30, 16163 Genova, Italy
| | - Axel T Neffe
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| | - Nicola Tirelli
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
12
|
Cas9/gRNA-Mediated Mutations in PtrFLA40 and PtrFLA45 Reveal Redundant Roles in Modulating Wood Cell Size and SCW Synthesis in Poplar. Int J Mol Sci 2022; 24:ijms24010427. [PMID: 36613871 PMCID: PMC9820481 DOI: 10.3390/ijms24010427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Fasciclin-like arabinogalactan proteins (FLAs) play an important role in plant development and adaptation to the environment. However, the roles of FLAs in wood formation remain poorly understood. Here, we identified a total of 50 PtrFLA genes in poplar. They were classified into four groups: A to D, among which group A was the largest group with 28 members clustered into four branches. Most PtrFLAs of group A were dominantly expressed in developing xylem based on microarray and RT-qPCR data. The roles of PtrFLA40 and PtrFLA45 in group A were investigated via the Cas9/gRNA-induced mutation lines. Loss of PtrFLA40 and PtrFLA45 increased stem length and diameter in ptrfla40ptrfla45 double mutants, but not in ptrfla40 or ptrfla45 single mutants. Further, our findings indicated that the ptrfla40ptrfla45 mutants enlarged the cell size of xylem fibers and vessels, suggesting a negative modulation in stem xylem cell size. In addition, wood lignin content in the ptrfla40fla45 mutants was increased by nearly 9%, and the lignin biosynthesis-related genes were significantly up-regulated in the ptrfla40fla45 mutants, in agreement with the increase in wood lignin content. Overall, Cas9/gRNA-mediated mutations in PtrFLA40 and PtrFLA45 reveal redundant roles in modulating wood cell size and secondary cell wall (SCW) synthesis in poplar.
Collapse
|
13
|
Rivai RR, Miyamoto T, Awano T, Yoshinaga A, Chen S, Sugiyama J, Tobimatsu Y, Umezawa T, Kobayashi M. Limiting silicon supply alters lignin content and structures of sorghum seedling cell walls. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111325. [PMID: 35696925 DOI: 10.1016/j.plantsci.2022.111325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Sorghum has been recognized as a promising energy crop. The composition and structure of lignin in the cell wall are important factors that affect the quality of plant biomass as a bioenergy feedstock. Silicon (Si) supply may affect the lignin content and structure, as both Si and lignin are possibly involved in plant mechanical strength. However, our understanding regarding the interaction between Si and lignin in sorghum is limited. Therefore, in this study, we analyzed the lignin in the cell walls of sorghum seedlings cultured hydroponically with or without Si supplementation. Limiting the Si supply significantly increased the thioglycolic acid lignin content and thioacidolysis-derived syringyl/guaiacyl monomer ratio. At least part of the modification may be attributable to the change in gene expression, as suggested by the upregulation of phenylpropanoid biosynthesis-related genes under -Si conditions. The cell walls of the -Si plants had a higher mechanical strength and calorific value than those of the +Si plants. These results provide some insights into the enhancement of the value of sorghum biomass as a feedstock for energy production by limiting Si uptake.
Collapse
Affiliation(s)
- Reza Ramdan Rivai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan; National Research and Innovation Agency of the Republic of Indonesia, Bogor, Indonesia
| | - Takuji Miyamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Tatsuya Awano
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Arata Yoshinaga
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shuoye Chen
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Junji Sugiyama
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Masaru Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
Zhang B, Munske GR, Timokhin VI, Ralph J, Davydov DR, Vermerris W, Sattler SE, Kang C. Functional and structural insight into the flexibility of cytochrome P450 reductases from Sorghum bicolor and its implications for lignin composition. J Biol Chem 2022; 298:101761. [PMID: 35202651 PMCID: PMC8942828 DOI: 10.1016/j.jbc.2022.101761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Plant NADPH-dependent cytochrome P450 reductase (CPR) is a multidomain enzyme that donates electrons for hydroxylation reactions catalyzed by class II cytochrome P450 monooxygenases involved in the synthesis of many primary and secondary metabolites. These P450 enzymes include trans-cinnamate-4-hydroxylase, p-coumarate-3′-hydroxylase, and ferulate-5-hydroxylase involved in monolignol biosynthesis. Because of its role in monolignol biosynthesis, alterations in CPR activity could change the composition and overall output of lignin. Therefore, to understand the structure and function of three CPR subunits from sorghum, recombinant subunits SbCPR2a, SbCPR2b, and SbCPR2c were subjected to X-ray crystallography and kinetic assays. Steady-state kinetic analyses demonstrated that all three CPR subunits supported the oxidation reactions catalyzed by SbC4H1 (CYP73A33) and SbC3′H (CYP98A1). Furthermore, comparing the SbCPR2b structure with the well-investigated CPRs from mammals enabled us to identify critical residues of functional importance and suggested that the plant flavin mononucleotide–binding domain might be more flexible than mammalian homologs. In addition, the elucidated structure of SbCPR2b included the first observation of NADP+ in a native CPR. Overall, we conclude that the connecting domain of SbCPR2, especially its hinge region, could serve as a target to alter biomass composition in bioenergy and forage sorghums through protein engineering.
Collapse
Affiliation(s)
- Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Gerhard R Munske
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Vitaliy I Timokhin
- Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - John Ralph
- Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Scott E Sattler
- U.S. Department of Agriculture - Agricultural Research Service, Wheat, Sorghum and Forage Research Unit, Lincoln, Nebraska, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
15
|
Rivai RR, Miyamoto T, Awano T, Takada R, Tobimatsu Y, Umezawa T, Kobayashi M. Nitrogen deficiency results in changes to cell wall composition of sorghum seedlings. Sci Rep 2021; 11:23309. [PMID: 34857783 PMCID: PMC8640004 DOI: 10.1038/s41598-021-02570-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022] Open
Abstract
Sorghum [Sorghum bicolor (L.) Moench] has been gaining attention as a feedstock for biomass energy production. While it is obvious that nitrogen (N) supply significantly affects sorghum growth and biomass accumulation, our knowledge is still limited regarding the effect of N on the biomass quality of sorghum, such as the contents and structures of lignin and other cell wall components. Therefore, in this study, we investigated the effects of N supply on the structure and composition of sorghum cell walls. The cell walls of hydroponically cultured sorghum seedlings grown under sufficient or deficient N conditions were analyzed using chemical, two-dimensional nuclear magnetic resonance, gene expression, and immunohistochemical methods. We found that the level of N supply considerably affected the cell wall structure and composition of sorghum seedlings. Limitation of N led to a decrease in the syringyl/guaiacyl lignin unit ratio and an increase in the amount and alteration of tissue distribution of several hemicelluloses, including mixed linkage (1 → 3), (1 → 4)-β-d-glucan, and arabinoxylan. At least some of these cell wall alterations could be associated with changes in gene expression. Nitrogen status is thus one of the factors affecting the cell wall properties of sorghum seedlings.
Collapse
Affiliation(s)
- Reza Ramdan Rivai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.,Indonesian Institute of Sciences, Bogor, 16003, Indonesia
| | - Takuji Miyamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Sakeology Center, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Tatsuya Awano
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Rie Takada
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masaru Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
16
|
Saluja M, Zhu F, Yu H, Walia H, Sattler SE. Loss of COMT activity reduces lateral root formation and alters the response to water limitation in sorghum brown midrib (bmr) 12 mutant. THE NEW PHYTOLOGIST 2021; 229:2780-2794. [PMID: 33124063 DOI: 10.1111/nph.17051] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Lignin is a key target for modifying lignocellulosic biomass for efficient biofuel production. Brown midrib 12 (bmr12) encodes the sorghum caffeic acid O-methyltransferase (COMT) and is one of the key enzymes in monolignol biosynthesis. Loss of function mutations in COMT reduces syringyl (S) lignin subunits and improves biofuel conversion rate. Although lignin plays an important role in maintaining cell wall integrity of xylem vessels, physiological and molecular consequences due to loss of COMT on root growth and adaptation to water deficit remain unexplored. We addressed this gap by evaluating the root morphology, anatomy and transcriptome of bmr12 mutant. The mutant had reduced lateral root density (LRD) and altered root anatomy and response to water limitation. The wild-type exhibits similar phenotypes under water stress, suggesting that bmr12 may be in a water deficit responsive state even in well-watered conditions. bmr12 had increased transcript abundance of genes involved in (a)biotic stress response, gibberellic acid (GA) biosynthesis and signaling. We show that bmr12 is more sensitive to exogenous GA application and present evidence for the role of GA in regulating reduced LRD in bmr12. These findings elucidate the phenotypic and molecular consequences of COMT deficiency under optimal and water stress environments in grasses.
Collapse
Affiliation(s)
- Manny Saluja
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Feiyu Zhu
- Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Hongfeng Yu
- Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Scott E Sattler
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| |
Collapse
|
17
|
Simpson JP, Olson J, Dilkes B, Chapple C. Identification of the Tyrosine- and Phenylalanine-Derived Soluble Metabolomes of Sorghum. FRONTIERS IN PLANT SCIENCE 2021; 12:714164. [PMID: 34594350 PMCID: PMC8476951 DOI: 10.3389/fpls.2021.714164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/23/2021] [Indexed: 05/16/2023]
Abstract
The synthesis of small organic molecules, known as specialized or secondary metabolites, is one mechanism by which plants resist and tolerate biotic and abiotic stress. Many specialized metabolites are derived from the aromatic amino acids phenylalanine (Phe) and tyrosine (Tyr). In addition, the improved characterization of compounds derived from these amino acids could inform strategies for developing crops with greater resilience and improved traits for the biorefinery. Sorghum and other grasses possess phenylalanine ammonia-lyase (PAL) enzymes that generate cinnamic acid from Phe and bifunctional phenylalanine/tyrosine ammonia-lyase (PTAL) enzymes that generate cinnamic acid and p-coumaric acid from Phe and Tyr, respectively. Cinnamic acid can, in turn, be converted into p-coumaric acid by cinnamate 4-hydroxylase. Thus, Phe and Tyr are both precursors of common downstream products. Not all derivatives of Phe and Tyr are shared, however, and each can act as a precursor for unique metabolites. In this study, 13C isotopic-labeled precursors and the recently developed Precursor of Origin Determination in Untargeted Metabolomics (PODIUM) mass spectrometry (MS) analytical pipeline were used to identify over 600 MS features derived from Phe and Tyr in sorghum. These features comprised 20% of the MS signal collected by reverse-phase chromatography and detected through negative-ionization. Ninety percent of the labeled mass features were derived from both Phe and Tyr, although the proportional contribution of each precursor varied. In addition, the relative incorporation of Phe and Tyr varied between metabolites and tissues, suggesting the existence of multiple pools of p-coumaric acid that are fed by the two amino acids. Furthermore, Phe incorporation was greater for many known hydroxycinnamate esters and flavonoid glycosides. In contrast, mass features derived exclusively from Tyr were the most abundant in every tissue. The Phe- and Tyr-derived metabolite library was also utilized to retrospectively annotate soluble MS features in two brown midrib mutants (bmr6 and bmr12) identifying several MS features that change significantly in each mutant.
Collapse
Affiliation(s)
- Jeffrey P. Simpson
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Jacob Olson
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Plant Biology, West Lafayette, IN, United States
- *Correspondence: Brian Dilkes
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Plant Biology, West Lafayette, IN, United States
- Clint Chapple
| |
Collapse
|