1
|
Lü XP, Lü ZL, Zhang YM, Li YH, Li JL, Shao KZ, Ren W, Rensing C, Zhang H, Zhang JL. Lignin synthesis plays an essential role in the adaptation of Haloxylon ammodendron to adverse environments. Int J Biol Macromol 2025; 308:142321. [PMID: 40139589 DOI: 10.1016/j.ijbiomac.2025.142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Haloxylon ammodendron is a desert shrub exhibiting remarkable tolerance to adverse environments, making it an excellent model for studying the mechanisms by which plants adapt to harsh environmental conditions. Lignin, a crucial component of plants, has been shown to play an important role in the adaptation of H. ammodendron to osmotic and salt stress. Therefore, this study was focused on the role of lignin synthesis by H. ammodendron in its adaptation to osmotic and salt stress (imposed by 0.4 % sorbitol and 350 mM NaCl, respectively). We investigated lignin deposition, the polymerization of lignin monomers, water content and adjustment of osmotic potential in assimilating branches of H. ammodendron, as well as gene expression and small molecules related to lignin biosynthesis. The results indicated that osmotic and salt stress induced the activity of peroxidase (POD) and laccase (LAC), while H2O2 concentration also increased. The genes encoding functions associated with lignin biosynthesis in both shoots and roots were upregulated and lignin accumulation in H. ammodendron increased, thereby maintaining osmotic potential and shoot water content under stress. These results showed that osmotic and salt stresses significantly increased lignin production in H. ammodendron, polymerization of lignin monomers, and the expression of genes encoding functions correlated to lignin synthesis. In addition, under osmotic stress, phenylalanine and p-coumaric acid increased in the shoots and roots, as did coniferyl alcohol and sinapyl alcohol. Overall, this study confirmed the role of lignin biosynthesis in the stress resistance of H. ammodendron, providing further insights into its adaptive strategies to adversity, and suggesting new ideas for improving the resistance of cultivated plants.
Collapse
Affiliation(s)
- Xin-Pei Lü
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhao-Long Lü
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Yu-Ming Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yuan-Hong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Jia-Lü Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Kun-Zhong Shao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Wei Ren
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Christopher Rensing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China; Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, PR China
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Li H, Wang HR, Wei SY, Wang RQ, Zhao JJ, Xiang X, Yang P, Li J, Wang T, Huang JL, Yang HB, Wan XQ, Chen LH, He F. Trimethylamine-N-oxide enhances drought tolerance in Eucalyptus by increasing photosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109768. [PMID: 40080968 DOI: 10.1016/j.plaphy.2025.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Drought stress significantly reduces agricultural productivity, threatening global food security and timber production. Although trimethylamine-N-oxide (TMAO) has been shown to enhance drought tolerance in plants such as Arabidopsis thaliana and tomato, the physiological and molecular mechanisms by which it regulates drought tolerance in plants remain unclear. In this study, we investigated the physiological and transcriptomic changes in Eucalyptus under drought stress following exogenous TMAO treatment. Physiological analyses showed that TMAO treatment improved the drought resistance of Eucalyptus, and the optimal application concentration was 10 mM. Under drought stress, exogenous TMAO reduced the malondialdehyde content and electrolyte leakage in Eucalyptus leaves, and maintained the stability of the cell membrane. At the same time, TMAO maintained the stability of the photosynthetic electron transport chain and regulates stomatal aperture, which results in a 59% increase in the net photosynthetic efficiency of Eucalyptus under drought. Transcriptomic analysis revealed that TMAO activated pathways for phenylpropanoid biosynthesis, photosynthesis, and carbon metabolism, and influenced the drought resistance of Eucalyptus by regulating the expression of genes such as Phenylalanine ammonia-lyase (PAL), photosystem II reaction center PSB28 protein (Psb28), and FTSH protease 1 (FTSH1), thereby mediating the growth and development of Eucalyptus and its adaptation to adverse conditions. The findings of this study provide an important theoretical basis for using exogenous substances to alleviate plant stress under drought conditions and lay the foundation for exploring the use of exogenous substances in forestry and agriculture.
Collapse
Affiliation(s)
- Hao Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Hong-Rui Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shu-Ying Wei
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui-Quan Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jiu-Jiu Zhao
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiang Xiang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Peng Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jing Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Ting Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jin Liang Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Han Bo Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xue-Qin Wan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Liang-Hua Chen
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Fang He
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Ma Y, Zhao S, Ma X, Dong G, Liu C, Ding Y, Hou B. A high temperature responsive UDP-glucosyltransferase gene OsUGT72F1 enhances heat tolerance in rice and Arabidopsis. PLANT CELL REPORTS 2025; 44:48. [PMID: 39900733 DOI: 10.1007/s00299-025-03438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025]
Abstract
KEY MESSAGE OsUGT72F1 enhances heat tolerance in plants by improving ROS scavenging and modifying multiple metabolic pathways, under the regulation of transcription factors OsHSFA3 and OsHSFA4a. High temperature is one of the most critical environmental constraints affecting plant growth and development, ultimately leading to yield losses in crops such as rice (Oryza sativa L.). UDP (uridine diphosphate)-dependent glycosyltransferases (UGTs) are believed to play crucial roles in coping with environmental stresses. However, the functions for the vast majority of UGTs under high temperature stress remain largely unknown. In this study, we isolated and characterized a high temperature responsive UDP-glycosyltransferase gene OsUGT72F1 in rice. Our findings demonstrated that overexpression of OsUGT72F1 enhanced heat-stress tolerance, while the mutant plants displayed a sensitive phenotype under the same stress conditions. Ectopic expression of OsUGT72F1 in Arabidopsis thaliana also conferred improved heat tolerance to the plants. Further investigation revealed that OsUGT72F1 reduced the generation of reactive oxygen species (ROS) and boosted the activity of antioxidant enzymes, thereby alleviating oxidative damage under heat-stress conditions. Moreover, transcriptomic analysis indicated that the action of OsUGT72F1 leads to the upregulation of multiple metabolic pathways including phenylpropanoid biosynthesis, zeatin biosynthesis, and flavonoid biosynthesis. In addition, the upstream regulatory mechanism of the OsUGT72F1 gene has been identified. We found that the transcription factors OsHSFA3 and OsHSFA4a can bind to the OsUGT72F1 promoter and enhance its transcription level. Together, this study revealed that the glycosyltransferase gene OsUGT72F1 plays a vital role in the adaptive adjustment of high temperature stress in plants, revealing a new heat tolerance pathway and providing a promising gene candidate for the breeding of heat-resistant crop varieties.
Collapse
Affiliation(s)
- Yuqing Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shuman Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xinmei Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Guangrui Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chonglin Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yi Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bingkai Hou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Li J, Yang X, Tian B, Tian T, Meng Y, Liu F. Analysis of the MYB gene family in tartary buckwheat and functional investigation of FtPinG0005108900.01 in response to drought. BMC PLANT BIOLOGY 2025; 25:25. [PMID: 39773440 PMCID: PMC11706168 DOI: 10.1186/s12870-024-06019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is an important crop used for edible food and medicinal usage. Drought annually brings reduction in crop yield and quality, causing enormous economic losses. Transcription factors are often involved in the regulation of plant responses to environmental stresses. In this study, we identified 233 MYB transcription factors in tartary buckwheat and classified them into 13 groups, including 1R, R2R3, 3R, 4R types. Gene structure and conserved motifs of these 233 FtMYBs suggested the relative conservation of these FtMYBs within each group. There is strong collinearity within the genomes of F. tataricum, with identifying syntenic gene pairs of FtMYB. Further, the expansion of FtMYB genes was attributed to whole genome duplication. The enrichment analysis of cis-acting elements in the FtMYB genes indicated that FtMYBs may participate in abiotic stress responses. The transcriptional changes of FtMYB genes in tartary buckwheat were then investigated using public data and qPCR. A number of FtMYB genes exhibited apparent transcript levels in the detected tissues and most of them disturbed their expression after the treatment of PEG6000 or natural treatment of tartary buckwheat seedlings. Some of the FtMYB genes showed a similar expression trend with qPCR validation. FtMYB gene FtPinG0005108900.01 were shown to activated by PEG6000 and natural drought treatment, and its encoded protein localizes to nucleus, revealing it as a typical transcription factor. Overexpression of FtPinG0005108900.01 increase the drought tolerance, and transcriptome analysis indicated that lignin synthesis other than flavonoid biosynthesis pathway was activated in the overexpressing plants following drought treatment. Our results provided detailed evolution and comparative genomic information of FtMYBs in tartary buckwheat and dissected the function of a FtMYB gene FtPinG0005108900.01 in response to drought.
Collapse
Affiliation(s)
- Jinbo Li
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Xin Yang
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bianling Tian
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Tian Tian
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu Meng
- College of Landscape and Travel, Hebei Agricultural University, Baoding, 071001, China.
| | - Fei Liu
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
5
|
Wang P, Wu X, Li N, Nie H, Ma Y, Wu J, Zhang Z, Ma Y. The StbHLH47 transcription factor negatively regulates drought tolerance in potato (Solanum tuberosum L.). BMC PLANT BIOLOGY 2025; 25:14. [PMID: 39754033 PMCID: PMC11699788 DOI: 10.1186/s12870-024-06010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms. The bHLH transcription factors involved play crucial roles not only in plant development and growth but also in responsesresponse to abiotic stress. RESULTS In this study, the StbHLH47 gene, which is highly expressed in potato leaves, was cloned and isolated. Subcellular localization assays revealed that the gene StbHLH47 performs transcriptional functions in the nucleus, as evidenced by increased malondialdehyde (MDA) content and relative conductivity under drought stress. These findings indicate that overexpressing plants are more sensitive to drought stress. Differential gene expression analysis of wild-type plants (WT) and plants overexpressing StbHLH47 (OE-StbHLH47) under drought stress revealed that the significantly differentially expressed genes were enriched in metabolic pathways, biosynthesis of various plant secondary metabolites, biosynthesis of metabolites, plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signalling pathway-plant, phenylpropanoid biosynthesis, and plant‒pathogen interactions. Among these pathways, the phenylalanine and abscisic acid (ABA) signal transduction pathways were enriched in a greater number of differentially expressed genes, and the expression trends of these differentially expressed genes (DEGs) were significantly different between WT and OE-StbHLH47. Therefore, it is speculated that StbHLH47 may regulate drought resistance mainly through these two pathways. Additionally, RT‒qPCR was used for fluorescence quantification of the expression of StNCED1 and StERD11, which are known for their drought resistance, and the results revealed that the expression levels were much lower in OE-StbHLH47 than in WT plants. CONCLUSION RNA-seq, RT‒qPCR, and physiological index analyses under drought conditions revealed that overexpression of the StbHLH47 gene increased the sensitivity of potato plants to drought stress, indicating that StbHLH47 negatively regulates drought tolerance in potato plants. In summary, our results indicate that StbHLH47 is a negative regulator of drought tolerance and provide a theoretical basis for further studies on the molecular mechanism involved.
Collapse
Affiliation(s)
- Peijie Wang
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Xiaojuan Wu
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Nan Li
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Hushuai Nie
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Yu Ma
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Juan Wu
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Zhicheng Zhang
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Institute of Ulanqab Agricultural and Forestry Sciences, Ulanqab, 012000, China
| | - Yanhong Ma
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
| |
Collapse
|
6
|
Fu WW, Wang ZY, Liusui YH, Zhang X, Han AX, Zhong XY, Zhang JB, Guo YJ. Genome-wide analysis of the cotton COBRA-like gene family and functional characterization of GhCOBL22 in relation to drought tolerance. BMC PLANT BIOLOGY 2024; 24:1242. [PMID: 39716062 DOI: 10.1186/s12870-024-05965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND The COBRA-like (COBL) gene family is a crucial glycosylphosphatidylinositol (GPI)-anchored proteins that participate in various biological processes in plants by regulating the arrangement of cell wall microfibrils. While the functions of COBL genes have been analyzed in several plant species, their roles in cotton's response to abiotic stress remain unexplored. RESULTS This study identified and characterized the COBL gene family in Gossypium hirsutum, revealing a total of 39 COBL family members classified into five subgroups. Transcriptome analysis indicated that the transcription levels of several GhCOBL genes were upregulated following PEG treatment, with GhCOBL22 being significantly induced. Further silencing of the GhCOBL22 gene through virus-induced gene silencing (VIGS) technology demonstrated that this gene's silencing reduced cotton's drought stress tolerance. Under drought stress conditions, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzymes, along with proline (PRO) content, were lower in GhCOBL22-silenced plants compared to control plants, while the accumulation of malondialdehyde (MDA) was significantly higher. Moreover, silencing the GhCOBL22 gene also led to reductions in the levels of cellulose, hemicellulose, and lignin content in cotton leaves. CONCLUSION A systematic survey of gene structure, motif composition, and evolutionary relationships of the COBL gene family was conducted in Gossypium hirsutum. Subsequent expression and functional studies indicated that GhCOBL22 plays a significant role in cotton's drought tolerance. These findings enhance our understanding of the biological functions of the COBL family and highlight the critical role of the GhCOBL22 gene in cotton's response to drought stress.
Collapse
Affiliation(s)
- Wan-Wan Fu
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China
| | - Zi-Yu Wang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China
| | - Yun-Hao Liusui
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China
| | - Xin Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China
| | - Ai-Xia Han
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China
| | - Xing-Yue Zhong
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China
| | - Jing-Bo Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China.
| | - Yan-Jun Guo
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China.
| |
Collapse
|
7
|
Lv Y, Yun L, Jia M, Mu Y, Zhang Z. Exploring the mechanism of seed shattering in Psathyrostachys juncea through histological analysis and comparative transcriptomics. BMC PLANT BIOLOGY 2024; 24:1179. [PMID: 39695364 DOI: 10.1186/s12870-024-05881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Seed shattering (SS) negatively impacts seed yield in Psathyrostachys juncea. Understanding and improving the SS trait requires elucidating the regulatory mechanisms of SS and identifying the key genes involved. RESULTS This study presents a comprehensive analysis of the abscission zone (AZ) structures at four developmental stages in two P. juncea genotypes. High-SS P. juncea (H) exhibited a significantly higher SS rate than low-SS P. juncea (L) at all four developmental stages. Anatomical analysis revealed that the degree of lignification in the AZ cell walls is related to the integrity of the abscission structure. The degradation of the AZ in H occurred earlier and was more severe compared to L. At different developmental stages of the AZ, H exhibited higher cellulase and polygalacturonase activities and higher abscisic acid contents compared to L. Conversely, L showed higher lignin, cytokinin, auxin, and gibberellin contents than H. Transcriptomic analysis identified key metabolic pathways related to SS in P. juncea, such as phenylpropanoid biosynthesis, fructose and mannose metabolism, galactose metabolism, and pentose and glucuronate interconversions. The integration of morphological, histological, physiochemical, and metabolic data led to the identification of critical genes, including AUX1, CKX, ABF, GH3, 4CL, CCoAOMT, BGAL, Gal, and PG. The roles of these genes were involved in the regulation of plant hormones and in the synthesis and degradation of cell walls within the AZ. CONCLUSIONS This study provides an in-depth understanding of the regulatory mechanisms of SS in P. juncea through comparative transcriptomic analysis. The SS in P. juncea may result from the degradation of the cell wall regulated by cell wall hydrolases genes. The genes identified in this study provide a basis for the genetic improvement of SS traits and serve as a reference for research on other grass species.
Collapse
Affiliation(s)
- Yuru Lv
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lan Yun
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Grassland Resources of the Ministry of Education and Processing and High Efficient Utilization of the Ministry of Agriculture, Hohhot, Inner Mongolia, China.
| | - Miaomiao Jia
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yixin Mu
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhiqiang Zhang
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Grassland Resources of the Ministry of Education and Processing and High Efficient Utilization of the Ministry of Agriculture, Hohhot, Inner Mongolia, China
| |
Collapse
|
8
|
Yang Y, Cai Q, Yang Y, Wang X, Li L, Sun Z, Li W. Transcriptomics and Metabolomics Reveal Biosynthetic Pathways and Regulatory Mechanisms of Phenylpropanes in Different Ploidy of Capsicum frutescens. PLANTS (BASEL, SWITZERLAND) 2024; 13:3393. [PMID: 39683186 DOI: 10.3390/plants13233393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Pepper is a significant cash crop, and Capsicum frutescens is an exemplary variety of pepper cultivated for its distinctive flavor and substantial nutritional value. Polyploidization of plants often leads to an increase in their biomass and improved stress tolerance, and thus has important applications in plant breeding and improvement. In this study, germplasm innovation was carried out by polyploidy induction of C. frutescens by colchicine. To investigate the effects of polyploidization on C. frutescens, we conducted transcriptomic and metabolomic analyses of diploids and homotetraploids of C. frutescens to gain insights into the mechanisms of metabolite composition and molecular regulation of C. frutescens by polyploidization. Based on the analysis of metabolomics and transcriptomics data, a total of 551 differential metabolites were identified in the leaves of C. frutescens of different ploidy and 634 genes were significantly differentially expressed. In comparison, 241 differential metabolites and 454 genes were significantly differentially expressed in the mature fruits of C. frutescens of different ploidy. Analysis of KEGG enrichment of differentially expressed genes and differential metabolites revealed that both differential metabolites and differentially expressed genes were highly enriched in the phenylalanine metabolic pathway. It is worth noting that phenylpropanoids are highly correlated with capsaicin synthesis and also have an effect on fruit development. Therefore, we comprehensively analyzed the phenylalanine metabolic pathway and found that chromosome doubling significantly down-regulated the expression of genes upstream of phenylalanine (PAL, 4CL), which promoted lignin accumulation, and we suggested that this might have led to the enlargement of polyploid C. frutescens fruits. This study provides some references for further research on the phenotypic traits of different ploidy of C. frutescens, cloning of key regulatory genes, and using genetic engineering techniques in C. frutescens breeding for germplasm improvement.
Collapse
Affiliation(s)
- Yinxin Yang
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Qihang Cai
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Yanbo Yang
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Xuan Wang
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Liping Li
- College of Geography and Ecotourism, Southwest Forestry University, Kunming 650224, China
| | - Zhenghai Sun
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Weiwei Li
- Yunnan International Joint Center of Urban Biodiversity, Kunming 650223, China
| |
Collapse
|
9
|
Xiao J, Sui X, Xu Z, Liang L, Tang W, Tang Y, Sun B, Lai Y, Huang Z, Zheng Y, Li H. CaNAC76 enhances lignin content and cold resistance in pepper by regulating CaCAD1. Int J Biol Macromol 2024; 285:138271. [PMID: 39631584 DOI: 10.1016/j.ijbiomac.2024.138271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Low temperature restricts the growth, development, and yield of peppers, significantly limiting the development of the pepper industry. NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are implicated in plant responses to cold stress, but their specific mechanisms in peppers are unclear. In this study, we isolated a cold-induced NAC transcription factor, CaNAC76, from pepper (Capsicum annuum L.). CaNAC76 is localized in the nucleus and cytoplasm and exhibits transcriptional activation activity. Silencing CaNAC76 expression reduced the activities of superoxide dismutase, peroxidase, and catalase enzymes, resulting in decreased cold tolerance in peppers. Conversely, overexpressing CaNAC76 increased the activities of antioxidant enzymes and the expression of cold stress-responsive genes (ICE-CBF-COR) in Arabidopsis, enhancing the plant's freezing tolerance. Transcriptional regulation analysis showed that CaNAC76 directly binds to the promoter region of CaCAD1 and induces its expression. Similarly, low temperatures induced the expression of CaCAD1. Ectopic expression of CaCAD1 improved Arabidopsis freezing tolerance, whereas silencing CaCAD1 expression increased sensitivity to low temperatures. Furthermore, we observed that CaNAC76 overexpression enhanced CAD activity and lignin content in Arabidopsis, leading to lignin deposition in the xylem and interfascicular fibers. In summary, the results demonstrate that CaNAC76 can enhance cold tolerance in peppers by affecting both CBF-dependent (ICE-CBF-COR) and CBF-independent pathways (promoting CaCAD1 expression).
Collapse
Affiliation(s)
- Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiyu Sui
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zeping Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Mayobre C, Garcia-Mas J, Pujol M. A matter of smell: The complex regulation of aroma production in melon. Food Chem 2024; 460:140640. [PMID: 39096801 DOI: 10.1016/j.foodchem.2024.140640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Melon fruit flavor is one of the most valuable traits for consumers. Aroma, formed by volatile organic compounds (VOCs), is a major component of flavor but has been neglected in breeding programs because of its complex regulation. Although the genetic regulation of VOCs biosynthesis is not fully understood, several advances have been recently achieved. VOCs originate from the degradation of fatty acids, aminoacids and terpenes, and the role of newly described enzymes, transcription factors and putative regulators is here discussed. Furthermore, ethylene plays a key role in fruit aroma production in melon, triggering the conversion of green-flavored aldehydes into fruity-flavored esters. A current challenge is to understand the ethylene-independent regulation of VOCs formation. Environmental conditions and human processing can also shape the melon volatile profile, and future research should focus on studying the effect of climate change in aroma formation.
Collapse
Affiliation(s)
- Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
11
|
Zhang H, Wang Y, Ma B, Bu X, Dang Z, Wang Y. Transcriptional Profiling Analysis Providing Insights into the Harsh Environments Tolerance Mechanisms of Krascheninnikovia arborescens. Int J Mol Sci 2024; 25:11891. [PMID: 39595960 PMCID: PMC11594238 DOI: 10.3390/ijms252211891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Krascheninnikovia arborescens, an endemic shrub in China, thrives in desertification-prone environments due to its robust biomass, hairy leaves, and extensive root system. It is vital for ecological restoration and serves as a valuable forage plant. This study explored the molecular mechanisms underlying K. arborescens' adaptation to desert conditions, focusing on its physiological, biochemical, and transcriptomic responses to drought, salt, and alkali stresses. The results revealed that the three stresses have significant impacts on the photosynthetic, antioxidant, and ion balance systems of the plants, with the alkali stress inducing the most pronounced changes and differential gene expression. The clustering and functional enrichment analyses of differentially expressed genes (DEGs) highlighted the enrichment of the induced genes in pathways related to plant hormone signaling, phenylpropanoid biosynthesis, and transcription factors following stress treatments. In these pathways, the synthesis and signal transduction of abscisic acid (ABA) and ethylene, as well as the flavonoid and lignin synthesis pathways, and transcription factors such as MYB, AP2/ERF, bHLH, NAC, and WRKY responded actively to the stress and played pivotal roles. Through the WGCNA analysis, 10 key modules were identified, with the yellow module demonstrating a high correlation with the ABA and anthocyanin contents, while the turquoise module was enriched in the majority of genes related to hormone and phenylpropanoid pathways. The analysis of hub genes in these modules highlighted the significant roles of the bHLH and MYB transcription factors. These findings could offer new insights into the molecular mechanisms that enable the adaptation of K. arborescens to desert environments, enhancing our understanding of how other desert plants adapt to harsh conditions. These insights are crucial for exploring and utilizing high-quality forage plant germplasm resources and ecological development, with the identified candidate genes serving as valuable targets for further research on stress-resistant genes.
Collapse
Affiliation(s)
- Hongyi Zhang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Yingnan Wang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Binjie Ma
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiangqi Bu
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China
| | - Yingchun Wang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| |
Collapse
|
12
|
Liu W, Jiang Y, Lv Y, Zhang L, Liu S, Wang Z, He M, Zhang J. CmPYL7 positively regulates the cold tolerance via interacting with CmPP2C24-like in oriental melon. PHYSIOLOGIA PLANTARUM 2024; 176:e14628. [PMID: 39563615 DOI: 10.1111/ppl.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024]
Abstract
Pyrabactin or Actin Resistance1/PYR1-Like/Regulatory Components of abscisic acid (ABA) Receptors (PYR/PYL/RCARs, referred to as PYLs) are direct receptors of ABA that function pivotally in the ABA-signaling pathway. Previously, we discovered that CmPYL7 was strongly upregulated by cold stress in oriental melon (Cucumis melo). In this study, we demonstrated that CmPYL7 was strongly induced by cold treatment (Cold), Cold+ABA, and Cold+fluridone (Flu, an ABA inhibitor) treatments, while the expression level of CmPYL7 under Cold+Flu is lower than that of cold treatment. Silencing CmPYL7 in oriental melon seedlings significantly decreased cold tolerance due to the reduced activities of antioxidant enzymes [superoxide dismutase (SOD); catalase (CAT), and ascorbate peroxidase (APX)] and the accumulation of H2O2, accompanied by higher electrolyte leakage and MDA content, but lower proline and soluble sugar content. In contrast, overexpressing CmPYL7 in Arabidopsis plants significantly increased cold tolerance owing to the enhanced activities of antioxidant enzymes (SOD, CAT, and APX) and limited H2O2, accompanied by lower electrolyte leakage and MDA content, but higher proline and soluble sugar contents. CmPYL7 was found to interact with CmPP2C24-like in vivo and in vitro, whose expression is downregulated under cold stress. Furthermore, silenced CmPP2C24-like in oriental melon plants significantly increased cold tolerance, exhibiting lower electrolyte leakage and MDA content and higher proline and soluble sugar contents. The activities of SOD, CAT, and APX were further enhanced and contents of H2O2 were significantly limited from increasing in TRV-CmPP2C24-like seedlings. These results demonstrated that CmPYL7 functions positively in the ABA-signaling pathway to regulate cold tolerance by interacting with CmPP2C24-like protein.
Collapse
Affiliation(s)
- Wei Liu
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Yun Jiang
- Flower Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Yanling Lv
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Lili Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Shilei Liu
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Zailiang Wang
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Ming He
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Jiawang Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| |
Collapse
|
13
|
Wu L, Chen J, Yan T, Fu B, Wu D, Kuang L. Multi-omics analysis unveils early molecular responses to aluminum toxicity in barley root tip. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109209. [PMID: 39437666 DOI: 10.1016/j.plaphy.2024.109209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Barley (Hordeum vulgare L.) is widely cultivated across diverse soil types, including acidic soils where aluminum (Al) toxicity is the major limiting factor. The relative Al sensitivity of barley highlights the need for a deeper understanding of early molecular responses in root tip (the primary target of Al toxicity) to develop Al-tolerant cultivars. Integrative N6-methyladenosine (m6A) modification, transcriptomic, and metabolomic analyses revealed that elevated auxin and jasmonic acid (JA) levels modulated Al-induced root growth inhibition by repressing genes involved in cell elongation and proliferation. Additionally, these pathways promoted pectin demethylation via up-regulation of genes encoding pectin methylesterases (PMEs). The up-regulation of citrate efflux transporter genes including Al-activated citrate transporter 1 (HvAACT1), and ATP-binding cassette (ABC) transporters like HvABCB25, facilitated Al exclusion and vacuolar sequestration. Enhanced activity within the phenylpropanoid pathway supported antioxidant defenses and internal chelation through the production of specific flavonoids and altered cell wall composition via lignin unit modulation. Notably, several Al-responsive genes, including HvABCB25 and transcription factors (TFs), exhibited m6A modification changes, with two microtubule associated protein 65 (MAP65) members displaying opposing regulatory patterns at both transcriptional and m6A levels, underscoring the crucial role of m6A modification in gene expression regulation. This comprehensive study provides valuable insights into the epitranscriptomic regulation of gene expression and metabolite accumulation in barley root tip under Al stress.
Collapse
Affiliation(s)
- Liyuan Wu
- Department of Architectural Engineering, Yuanpei College, Shaoxing University, Shaoxing, 312000, China
| | - Jian Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Baixiang Fu
- Department of Architectural Engineering, Yuanpei College, Shaoxing University, Shaoxing, 312000, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
14
|
Wei M, Wang B, Li C, Li X, He C, Li Y. Integrated PacBio SMRT and Illumina sequencing uncovers transcriptional and physiological responses to drought stress in whole-plant Nitraria tangutorum. Front Genet 2024; 15:1474259. [PMID: 39411372 PMCID: PMC11473341 DOI: 10.3389/fgene.2024.1474259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Nitraria tangutorum Bobr., a prominent xerophytic shrub, exhibits remarkable adaptability to harsh environment and plays a significant part in preventing desertification in northwest China owing to its exceptional drought and salinity tolerance. Methods To investigate the drought-resistant mechanism underlying N. tangutorum, we treated 8-week-old seedlings with polyethylene glycol (PEG)-6000 (20%, m/m) to induce drought stress. 27 samples from different tissues (leaves, roots and stems) of N. tangutorum at 0, 6 and 24 h after drought stress treatment were sequenced using PacBio single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing to obtain a comprehensive transcriptome. Results The PacBio SMRT sequencing generated 44,829 non-redundant transcripts and provided valuable reference gene information. In leaves, roots and stems, we identified 1162, 2024 and 232 differentially expressed genes (DEGs), respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that plant hormone signaling and mitogen-activated protein kinase (MAPK) cascade played a pivotal role in transmitting stress signals throughout the whole N. tangutorum plant following drought stress. The interconversion of starch and sucrose, as well as the biosynthesis of amino acid and lignin, may represent adaptive strategies employed by N. tangutorum to effectively cope with drought. Transcription factor analysis showed that AP2/ERF-ERF, WRKY, bHLH, NAC and MYB families were mainly involved in the regulation of drought response genes. Furthermore, eight physiological indexes, including content of proline, hydrogen peroxide (H2O2), malondialdehyde (MDA), total amino acid and soluble sugar, and activities of three antioxidant enzymes were all investigate after PEG treatment, elucidating the drought tolerance mechanism from physiological perspective. The weighted gene co-expression network analysis (WGCNA) identified several hub genes serve as key regulator in response to drought through hormone participation, ROS cleavage, glycolysis, TF regulation in N. tangutorum. Discussion These findings enlarge genomic resources and facilitate research in the discovery of novel genes research in N. tangutorum, thereby establishing a foundation for investigating the drought resistance mechanism of xerophyte.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Liu W, Lv Y, Zhang L, Jiang Y, Liu S, Wang Z, Zhang J, He M. The gene CmPYL6 strongly contributes to cold tolerance in oriental melon. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1033-1046. [PMID: 39032145 DOI: 10.1111/plb.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
The current simple and crude facilities make melon production more susceptible to cold stress during off-season cultivation in China. The ABA signalling pathway is an important target for breeding cold-tolerant melon. Cold-tolerant No. 330 and cold-sensitive No. 410 oriental melon genotypes were used to analyse the relationship between ABA and cold tolerance. 12 CmPYLs, ABA receptors, were identified from the melon genome database according to sequence alignment and phylogenetic analysis. Gene function of CmPYL6 in cold tolerance was analysed using VIGS in No. 330 and overexpression in Arabidopsis WT. A total of 12 CmPYL members contain the representative domain and conserved sites. Under cold treatment, No.330 seedlings had lower electrolyte leakage and MDA content, higher ABA content and CmPYL6 expression than seedlings of No. 410. Exogenous application of ABA upregulated expression of CmPYL6 and enhanced cold tolerance of both genotypes, while inhibiting ABA accumulation reduced expression of CmPYL6 and cold tolerance of both genotypes. CmPYL6-silenced No. 330 seedlings had reduced cold tolerance, increased electrolyte leakage and MDA content as well as limited proline and soluble sugar content, while CmPYL6 overexpressed transgenic Arabidopsis plants had enhanced cold tolerance, with limited electrolyte leakage and MDA content, as well as increased proline and soluble sugar content. The CmPYL6 gene is probably an important ABA receptor in regulating cold tolerance of oriental melon. Our study provides a direction for improving breeding of cold tolerance of oriental melon.
Collapse
Affiliation(s)
- W Liu
- Liaoning Academy of Agricultural Sciences, Vegetable Research Institute, Shenyang, Liaoning, China
| | - Y Lv
- Liaoning Academy of Agricultural Sciences, Vegetable Research Institute, Shenyang, Liaoning, China
| | - L Zhang
- Liaoning Academy of Agricultural Sciences, Vegetable Research Institute, Shenyang, Liaoning, China
| | - Y Jiang
- Liaoning Academy of Agricultural Sciences, Flower Research Institute, Shenyang, Liaoning, China
| | - S Liu
- Liaoning Academy of Agricultural Sciences, Vegetable Research Institute, Shenyang, Liaoning, China
| | - Z Wang
- Liaoning Academy of Agricultural Sciences, Institute of Agricultural Quality Standards and Testing Technology, Shenyang, Liaoning, China
| | - J Zhang
- Liaoning Academy of Agricultural Sciences, Vegetable Research Institute, Shenyang, Liaoning, China
| | - M He
- Liaoning Academy of Agricultural Sciences, Vegetable Research Institute, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Zhang H, Li Z, Wang M, Yang Y, Wang Y, Nie Q, Liang F, Qin H, Zhang Z. The chromosome-level genome assembly of Fraxinus americana provides insights into the evolution of Oleaceae plants. Int J Biol Macromol 2023; 253:127132. [PMID: 37778585 DOI: 10.1016/j.ijbiomac.2023.127132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
White ash (Fraxinus americana linn.) originates from the southeastern United States. It is a tall and fast-growing tree species with strong salt-alkali resistance and cold tolerance, making it an important reforestation species and widely planted worldwide. Here, we completed the chromosome-level reference genome assembly of F. americana based on Illumina, PacBio, and Hi-C reads, with a genome size of 878.98 Mb, an N50 of 3.27 Mb, and a heterozygosity rate of 0.3 %. Based on de novo prediction, transcriptome prediction, and homology-based protein prediction, we obtained 39,538 genes. Approximately 843.21 Mb of the assembly genome was composed of 37,928 annotated protein-coding genes, with a gene function annotation rate of 95.93 %. 99.94 % of the overlap clusters (877.44 Mb) were anchored to 23 chromosomes. Synteny analysis of F. americana and other Oleaceae plants showed that F. americana underwent frequent chromosome rearrangements. The amplification of the Ale transposons effectively promoted the genome size of F. americana. Compared with other Oleaceae plants, the Glutathione S-transferase (GST) gene family in the F. americana genome has undergone significant expansion, which may help F. americana cope with adverse natural environments. Furthermore, we found that key enzyme-coding gene families related to lignin biosynthesis were expanded and highly expressed in F. americana leaves. These key genes drive lignin synthesis and benefit F. americana in fast-growing, as well as resisting biotic and abiotic stress. Overall, the F. americana genome assembly provides insights into the evolution of Oleaceae plants and provides abundant resources for breeding and germplasm conservation of white ash.
Collapse
Affiliation(s)
- Hua Zhang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China.
| | - Zhiqi Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572024, China
| | - Maoliang Wang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Yipeng Yang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Yongge Wang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Qiufeng Nie
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Fang Liang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Helan Qin
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572024, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China.
| |
Collapse
|
17
|
Yang Z, Lin M, Yang X, Zhu C, Wu D, Chen K. Mechanisms of the response of apple fruit to postharvest compression damage analyzed by integrated transcriptome and metabolome. Food Chem X 2023; 20:100972. [PMID: 38144847 PMCID: PMC10740140 DOI: 10.1016/j.fochx.2023.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 12/26/2023] Open
Abstract
Apple fruit is susceptible to compression damage within the postharvest supply chain given its thin peels and brittle texture, which can result in decay and deterioration and have a substantial impact on its marketability and competitiveness. Thorough bioinformatics investigations are lacking on postharvest compression damage stress-induced alterations in genes and metabolic regulatory networks in fruits. In the present study, a comprehensive analysis of both the transcriptome and metabolome was conducted on 'Red Fuji' apples experiencing compression-induced damage. During the storage after damage has occurred, the gene expression of MdOFUT19, MdWRKY48, MdCBP60E, MdCYP450 and MdSM-like of the damaged apples was consistently higher than that of the control group. The damaged apples also had higher contents of some metabolites such as procyanidin A1, Dl-2-Aminooctanoic acid, 5-O-p-Coumaroyl shikimic acid and 5,7-Dihydroxy-3',4',5'-trimethoxyflavone. Analysis of genes and metabolites with distinct expressions on the common annotation pathway suggested that the fruit may respond to compression stress by promoting volatile ester and lignin synthesis. The above results can deepen the comprehension of the response mechanisms in apple fruits undergoing compression-induced damage.
Collapse
Affiliation(s)
- Zhichao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Menghua Lin
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/ Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| | - Xiangzheng Yang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/ Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, PR China
| | - Changqing Zhu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/ Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| | - Di Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/ Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/ Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
18
|
Xie W, Hao Z, Zhou J, Fu W, Guo L, Zhang X, Chen B. Integrated transcriptomics and metabolomics reveal specific phenolic and flavonoid accumulation in licorice (Glycyrrhiza uralensis Fisch.) induced by arbuscular mycorrhiza symbiosis under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108173. [PMID: 37984021 DOI: 10.1016/j.plaphy.2023.108173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis can strengthen plant defense against abiotic stress, such as drought, through multiple mechanisms; however, the specialized chemical defenses induced by AM symbiosis are largely unknown. In a pot experiment, licorice (Glycyrrhiza uralensis Fisch.) inoculated with and without arbuscular mycorrhizal fungus Rhizophagus irregularis Schenck & Smith were grown under well-watered or water deficit conditions. Transcriptomic and metabolomic analyses were combined to investigate licorice root specialized metabolism induced by AM symbiosis under drought stress. Results showed that mycorrhizal plants had few dead leaves, less biomass reduction, and less differentially expressed genes and metabolite features in response to drought compared with nonmycorrhizal plants. Transcriptomic and metabolomic data revealed that mycorrhizal roots generally accumulated lignin regardless of the water regime; however, the expression of genes involved in lignin biosynthesis was significantly downregulated by drought stress in mycorrhizal plants. By contrast, AM inoculation significantly decreased specialized metabolites accumulation, including phenolics and flavonoids under well-watered conditions, whereas these decreases turned to be nonsignificant under drought stress. Moreover, these specific phenolics and flavonoids showed significant drought-induced accumulation pattern in mycorrhizal roots. These results highlight that accumulation of specific root phenolics and flavonoids may support the drought tolerance of mycorrhizal plants.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jun Zhou
- Chrono-Environment UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000, Besançon, France
| | - Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Cui X, Wang B, Chen Z, Guo J, Zhang T, Zhang W, Shi L. Comprehensive physiological, transcriptomic, and metabolomic analysis of the key metabolic pathways in millet seedling adaptation to drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14122. [PMID: 38148213 DOI: 10.1111/ppl.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Drought is one of the leading environmental constraints that affect the growth and development of plants and, ultimately, their yield and quality. Foxtail millet (Setaria italica) is a natural stress-resistant plant and an ideal model for studying plant drought resistance. In this study, two varieties of foxtail millet with different levels of drought resistance were used as the experimental material. The soil weighing method was used to simulate drought stress, and the differences in growth, photosynthetic physiology, metabolite metabolism, and gene transcriptional expression under drought stress were compared and analyzed. We aimed to determine the physiological and key metabolic regulation pathways of the drought-tolerant millet in resistance to drought stress. The results showed that drought-tolerant millet exhibited relatively stable growth and photosynthetic parameters under drought stress while maintaining a relatively stable level of photosynthetic pigments. The metabolomic, transcriptomic, and gene co-expression network analysis confirmed that the key to adaptation to drought by millet was to enhance lignin metabolism, promote the metabolism of fatty acids to be transformed into cutin and wax, and improve ascorbic acid circulation. These findings provided new insights into the metabolic regulatory network of millet adaptation to drought stress.
Collapse
Affiliation(s)
- Xiaomeng Cui
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Bianyin Wang
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Zhaoyang Chen
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Jixun Guo
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Tao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Wenying Zhang
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Lianxuan Shi
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
20
|
Bai Y, Zhao X, Yao X, Yao Y, Li X, Hou L, An L, Wu K, Wang Z. Comparative transcriptome analysis of major lodging resistant factors in hulless barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1230792. [PMID: 37905169 PMCID: PMC10613528 DOI: 10.3389/fpls.2023.1230792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/28/2023] [Indexed: 11/02/2023]
Abstract
Hulless barley (Hordeum vulgare L. var. nudum Hook. f.), belonging to the genus Gramineae, has high and steady output and thus considered as a principal food crop by Tibetan people. Hulless barley grain can be used for food, brewing, and functional health product development, while its straw serves as an essential supplementary forage and is a crucial cereal crop. Lodging can reduce the yield and quality of barley grain and straw, and it hinders mechanical harvesting. It is a significant factor affecting high and stable yields of barley. Unlike other Poaceae plants (such as rice, wheat), hulless barley is mainly grown in high-altitude regions, where it is susceptible to low temperatures, strong winds, and heavy rainfall. As a result, its stem lodging resistance is relatively weak, making it prone to lodging during the growth period. In this study, we observed that the lignin concentration and the contents of lignin monomers (H, S, and G), and neutral detergent fibre of the lodging-resistant variety Kunlun14 were substantially greater than those of the lodging-sensitive variety Menyuanlianglan. We performed the weighted gene co-expression network analysis (WGCNA) and Short Time-series Expression Miner (STEM) analysis of both the lodging-resistant and lodging-sensitive varieties. Through transcriptome sequencing analysis at different developmental stages, combined with the previously annotated genes related to lodging resistance, a total of 72 DEGs were identified. Among these DEGs, 17 genes were related to lignin, cellulose, and hemicellulose synthesis or regulation, including five transcription factors about NAC, MYB and WRKY. Our results provide a basis for further exploring the molecular mechanism of stem lodging resistance in hulless barley and provide valuable gene resources for stem lodging resistance molecular breeding.
Collapse
Affiliation(s)
- Yixiong Bai
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Shaanxi, China
| | - Xiaohong Zhao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Good Agricultural Practices Research Center of Traditional, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - Xiaohua Yao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
| | - Youhua Yao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
| | - Xin Li
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
| | - Lu Hou
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
| | - Likun An
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
| | - Kunlun Wu
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Shaanxi, China
| |
Collapse
|
21
|
Zhu N, Duan B, Zheng H, Mu R, Zhao Y, Ke L, Sun Y. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107648. [PMID: 37001303 DOI: 10.1016/j.plaphy.2023.107648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
MYB transcription factors are one of the largest TF families involved in plant growth and development as well as biotic and abiotic stresses. In this study, we report the identification and functional characterization of a stress-responsive MYB gene (GhMYB3) from drought stress related transcriptome of upland cotton. GhMYB3, belonging to the R2R3-type, has high sequence similarity with AtMYB3 and was localized in the nucleus. Silence of GhMYB3 enhanced the drought tolerance of cotton seedlings and plants, reduced the water loss rate, and enhanced stomatal closure. In addition, GhMYB3i lines exhibited less ROS accumulation, as well as higher antioxidant enzyme activity and increased content of anthocyanins and proanthocyanidins than WT plants after drought stress. The expression level of flavonoid biosynthesis- and stress-related genes were up-regulated in GhMYB3i lines under drought stress condition. These results demonstrated that GhMYB3 acted as a negative regulator in upland cotton response to drought stress by regulating stomatal closure and ROS accumulation.
Collapse
Affiliation(s)
- Ning Zhu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Bailin Duan
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Rongrong Mu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
22
|
Fang T, Qian C, Daoura BG, Yan X, Fan X, Zhao P, Liao Y, Shi L, Chang Y, Ma XF. A novel TF molecular switch-mechanism found in two contrasting ecotypes of a psammophyte, Agriophyllum squarrosum, in regulating transcriptional drought memory. BMC PLANT BIOLOGY 2023; 23:167. [PMID: 36997861 PMCID: PMC10061855 DOI: 10.1186/s12870-023-04154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Prior drought stress may change plants response patterns and subsequently increase their tolerance to the same condition, which can be referred to as "drought memory" and proved essential for plants well-being. However, the mechanism of transcriptional drought memory in psammophytes remains unclear. Agriophyllum squarrosum, a pioneer species on mobile dunes, is widely spread in Northern China's vast desert areas with outstanding ability of water use efficiency. Here we conducted dehydration-rehydration treatment on A. squarrosum semi-arid land ecotype AEX and arid land ecotype WW to dissect the drought memory mechanism of A. squarrosum, and to determine the discrepancy in drought memory of two contrasting ecotypes that had long adapted to water heterogeneity. RESULT Physiological traits monitoring unveiled the stronger ability and longer duration in drought memory of WW than that of AEX. A total of 1,642 and 1,339 drought memory genes (DMGs) were identified in ecotype AEX and WW, respectively. Furthermore, shared DMGs among A. squarrosum and the previously studied species depicted that drought memory commonalities in higher plants embraced pathways like primary and secondary metabolisms; while drought memory characteristics in A. squarrosum were mainly related to response to heat, high light intensity, hydrogen peroxide, and dehydration, which might be due to local adaptation to desert circumstances. Heat shock proteins (HSPs) occupied the center of the protein-protein interaction (PPI) network in drought memory transcription factors (TF), thus playing a key regulatory role in A. squarrosum drought memory. Co-expression analysis of drought memory TFs and DMGs uncovered a novel regulating module, whereby pairs of TFs might function as molecular switches in regulating DMG transforming between high and low expression levels, thus promoting drought memory reset. CONCLUSION Based on the co-expression analysis, protein-protein interaction prediction, and drought memory metabolic network construction, a novel regulatory module of transcriptional drought memory in A. squarrosum was hypothesized here, whereby recurrent drought signal is activated by primary TF switches, then amplified by secondary amplifiers, and thus regulates downstream complicated metabolic networks. The present research provided valuable molecular resources on plants' stress-resistance basis and shed light on drought memory in A. squarrosum.
Collapse
Affiliation(s)
- Tingzhou Fang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chaoju Qian
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
| | - Bachir Goudia Daoura
- Department of Biology, Faculty of Sciences and Technology, Dan Dicko Dankoulodo University, POBox 465, Maradi, Niger
| | - Xia Yan
- Key Laboratory of Eco-hydrology of Inland River Basin, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000 China
| | - Xingke Fan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
| | - Pengshu Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuqiu Liao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Liang Shi
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Science, Shenzhen, 518000 China
| | - Xiao-Fei Ma
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
| |
Collapse
|
23
|
Luo D, Mei D, Wei W, Liu J. Identification and Phylogenetic Analysis of the R2R3-MYB Subfamily in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040886. [PMID: 36840234 PMCID: PMC9962269 DOI: 10.3390/plants12040886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 05/22/2023]
Abstract
The R2R3-MYB sub-family proteins are composed of most members of MYB (v-Myb avian myeloblastosis viral oncogene homolog) protein, a plant-specific transcription factor (TF) that is classified into four classes depending on the number of MYB repeats. R2R3-MYB TFs are involved in physiological and biochemical processes. However, the functions of the Brassica napus R2R3-MYB genes are still mainly unknown. In this study, 35 Brassica napus MYB (BnaMYB) genes were screened in the genome of Brassica napus, and details about their physical and chemical characteristics, evolutionary relationships, chromosome locations, gene structures, three-dimensional protein structures, cis-acting promoter elements, and gene duplications were uncovered. The BnaMYB genes have undergone segmental duplications and positive selection pressure, according to evolutionary studies. The same subfamilies have similar intron-exon patterns and motifs, according to the genes' structure and conserved motifs. Additionally, through cis-element analysis, many drought-responsive and other stress-responsive cis-elements have been found in the promoter regions of the BnaMYB genes. The expression of the BnaMYB gene displays a variety of tissue-specific patterns. Ten lignin-related genes were chosen for drought treatment. Our research screened four genes that showed significant upregulation under drought stress, and thus may be important drought-responsive genes. The findings lay a new foundation for understanding the complex mechanisms of BnaMYB in multiple developmental stages and pathways related to drought stress in rapeseed.
Collapse
Affiliation(s)
- Dingfan Luo
- College of Agriculture, Yangtze University, Jingzhou 434023, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Rd., Wuhan 430062, China
| | - Desheng Mei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Rd., Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou 434023, China
- Correspondence: (W.W.); (J.L.)
| | - Jia Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Rd., Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Correspondence: (W.W.); (J.L.)
| |
Collapse
|
24
|
Wang J, Sun Z, Wang X, Tang Y, Li X, Ren C, Ren J, Wang X, Jiang C, Zhong C, Zhao S, Zhang H, Liu X, Kang S, Zhao X, Yu H. Transcriptome-based analysis of key pathways relating to yield formation stage of foxtail millet under different drought stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 13:1110910. [PMID: 36816479 PMCID: PMC9937063 DOI: 10.3389/fpls.2022.1110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Although foxtail millet, as small Panicoid crop, is of drought resilient, drought stress has a significant effect on panicle of foxtail millet at the yield formation stage. In this study, the changes of panicle morphology, photosynthesis, antioxidant protective enzyme system, reactive oxygen species (ROS) system, and osmotic regulatory substance and RNA-seq of functional leaves under light drought stress (LD), heavy drought stress (HD), light drought control (LDCK) and heavy drought control (HDCK) were studied to get a snap-shot of specific panicle morphological changes, physiological responses and related molecular mechanisms. The results showed that the length and weight of panicle had decreased, but with increased empty abortive rate, and then yield dropped off 14.9% and 36.9%, respectively. The photosynthesis of millet was significantly decreased, like net photosynthesis rate, stomatal conductance and transpiration rate, especially under HD treatment with reluctant recovery from rehydration. Under LD and HD treatment, the peroxidase (POD) was increased by 34% and 14% and the same as H2O2 by 34.7% and 17.2% compared with LDCK and HDCK. The ability to produce and inhibit O2- free radicals under LD treatment was higher than HD. The content of soluble sugar was higher under LD treatment but the proline was higher under HD treatment. Through RNA-seq analysis, there were 2,393 and 3,078 different genes expressed under LD and HD treatment. According to the correlation analysis between weighted gene coexpression network analysis (WGCNA) and physiological traits, the co-expression network of several modules with high correlation was constructed, and some hub genes of millet in response to drought stress were found. The expression changes relating to carbon fixation, sucrose and starch synthesis, lignin synthesis, gibberellin synthesis, and proline synthesis of millet were specifically analyzed. These findings provide a full perspective on how drought affects the yield formation of foxtail millet by constructing one work model thereby providing theoretical foundation for hub genes exploration and drought resistance breeding of foxtail millet.
Collapse
|
25
|
Choi SJ, Lee Z, Kim S, Jeong E, Shim JS. Modulation of lignin biosynthesis for drought tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1116426. [PMID: 37152118 PMCID: PMC10157170 DOI: 10.3389/fpls.2023.1116426] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Lignin is a complex polymer that is embedded in plant cell walls to provide physical support and water protection. For these reasons, the production of lignin is closely linked with plant adaptation to terrestrial regions. In response to developmental cues and external environmental conditions, plants use an elaborate regulatory network to determine the timing and location of lignin biosynthesis. In this review, we summarize the canonical lignin biosynthetic pathway and transcriptional regulatory network of lignin biosynthesis, consisting of NAC and MYB transcription factors, to explain how plants regulate lignin deposition under drought stress. Moreover, we discuss how the transcriptional network can be applied to the development of drought tolerant plants.
Collapse
|
26
|
De Meester B, Van Acker R, Wouters M, Traversari S, Steenackers M, Neukermans J, Van Breusegem F, Déjardin A, Pilate G, Boerjan W. Field and saccharification performances of poplars severely downregulated in CAD1. THE NEW PHYTOLOGIST 2022; 236:2075-2090. [PMID: 35808905 DOI: 10.1111/nph.18366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Lignin is one of the main factors causing lignocellulosic biomass recalcitrance to enzymatic hydrolysis. Glasshouse-grown poplars severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE 1 (CAD1), the enzyme catalysing the last step in the monolignol-specific branch of lignin biosynthesis, have increased saccharification yields and normal growth. Here, we assess the performance of these hpCAD poplars in the field under short rotation coppice culture for two consecutive rotations of 1 yr and 3 yr. While 1-yr-old hpCAD wood had 10% less lignin, 3-yr-old hpCAD wood had wild-type lignin levels. Because of their altered cell wall composition, including elevated levels of cinnamaldehydes, both 1-yr-old and 3-yr-old hpCAD wood showed enhanced saccharification yields upon harsh alkaline pretreatments (up to +85% and +77%, respectively). In contrast with previous field trials with poplars less severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD), the hpCAD poplars displayed leaning phenotypes, early bud set, early flowering and yield penalties. Moreover, hpCAD wood had enlarged vessels, decreased wood density and reduced relative and free water contents. Our data show that the phenotypes of CAD-deficient poplars are strongly dependent on the environment and underpin the importance of field trials in translating basic research towards applications.
Collapse
Affiliation(s)
- Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Marlies Wouters
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Silvia Traversari
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Research Institute on Terrestrial Ecosytems (IRET-CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Marijke Steenackers
- Research Institute for Nature and Forest (INBO), Gaverstraat 4, 9500, Geraardsbergen, Belgium
| | - Jenny Neukermans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Annabelle Déjardin
- INRAE, ONF, BioForA Orléans, 2163 Avenue de la pomme de pin, 45075, Ardon, France
| | - Gilles Pilate
- INRAE, ONF, BioForA Orléans, 2163 Avenue de la pomme de pin, 45075, Ardon, France
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| |
Collapse
|
27
|
Wang P, Guo L, Morgan J, Dudareva N, Chapple C. Transcript and metabolite network perturbations in lignin biosynthetic mutants of Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2828-2846. [PMID: 35880844 PMCID: PMC9706439 DOI: 10.1093/plphys/kiac344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/24/2022] [Indexed: 06/01/2023]
Abstract
Lignin, one of the most abundant polymers in plants, is derived from the phenylpropanoid pathway, which also gives rise to an array of metabolites that are essential for plant fitness. Genetic engineering of lignification can cause drastic changes in transcription and metabolite accumulation with or without an accompanying development phenotype. To understand the impact of lignin perturbation, we analyzed transcriptome and metabolite data from the rapidly lignifying stem tissue in 13 selected phenylpropanoid mutants and wild-type Arabidopsis (Arabidopsis thaliana). Our dataset contains 20,974 expressed genes, of which over 26% had altered transcript levels in at least one mutant, and 18 targeted metabolites, all of which displayed altered accumulation in at least one mutant. We found that lignin biosynthesis and phenylalanine supply via the shikimate pathway are tightly co-regulated at the transcriptional level. The hierarchical clustering analysis of differentially expressed genes (DEGs) grouped the 13 mutants into 5 subgroups with similar profiles of mis-regulated genes. Functional analysis of the DEGs in these mutants and correlation between gene expression and metabolite accumulation revealed system-wide effects on transcripts involved in multiple biological processes.
Collapse
Affiliation(s)
- Peng Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Longyun Guo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - John Morgan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
28
|
Wu Q, Yang L, Liang H, Yin L, Chen D, Shen P. Integrated analyses reveal the response of peanut to phosphorus deficiency on phenotype, transcriptome and metabolome. BMC PLANT BIOLOGY 2022; 22:524. [PMID: 36372886 PMCID: PMC9661748 DOI: 10.1186/s12870-022-03867-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phosphorus (P) is one of the most essential macronutrients for crops. The growth and yield of peanut (Arachis hypogaea L.) are always limited by P deficiency. However, the transcriptional and metabolic regulatory mechanisms were less studied. In this study, valuable phenotype, transcriptome and metabolome data were analyzed to illustrate the regulatory mechanisms of peanut under P deficiency stress. RESULT In present study, two treatments of P level in deficiency with no P application (-P) and in sufficiency with 0.6 mM P application (+ P) were used to investigate the response of peanut on morphology, physiology, transcriptome, microRNAs (miRNAs), and metabolome characterizations. The growth and development of plants were significantly inhibited under -P treatment. A total of 6088 differentially expressed genes (DEGs) were identified including several transcription factor family genes, phosphate transporter genes, hormone metabolism related genes and antioxidant enzyme related genes that highly related to P deficiency stress. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that 117 genes were annotated in the phenylpropanoid biosynthesis pathway under P deficiency stress. A total of 6 miRNAs have been identified significantly differential expression between + P and -P group by high-throughput sequencing of miRNAs, including two up-regulated miRNAs (ahy-miR160-5p and ahy-miR3518) and four down-regulated miRNAs (ahy-miR408-5p, ahy-miR408-3p, ahy-miR398, and ahy-miR3515). Further, the predicted 22 target genes for 6 miRNAs and cis-elements in 2000 bp promoter region of miRNA genes were analyzed. A total of 439 differentially accumulated metabolites (DAMs) showed obviously differences in two experimental conditions. CONCLUSIONS According to the result of transcripome and metabolome analyses, we can draw a conclusion that by increasing the content of lignin, amino acids, and levan combining with decreasing the content of LPC, cell reduced permeability, maintained stability, raised the antioxidant capacity, and increased the P uptake in struggling for survival under P deficiency stress.
Collapse
Affiliation(s)
- Qi Wu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liyu Yang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Haiyan Liang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liang Yin
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Dianxu Chen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Pu Shen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| |
Collapse
|
29
|
Jiao P, Ma R, Wang C, Chen N, Liu S, Qu J, Guan S, Ma Y. Integration of mRNA and microRNA analysis reveals the molecular mechanisms underlying drought stress tolerance in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:932667. [PMID: 36247625 PMCID: PMC9557922 DOI: 10.3389/fpls.2022.932667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/02/2022] [Indexed: 05/24/2023]
Abstract
Drought is among the most serious environmental issue globally, and seriously affects the development, growth, and yield of crops. Maize (Zea mays L.), an important crop and industrial raw material, is planted on a large scale worldwide and drought can lead to large-scale reductions in maize corn production; however, few studies have focused on the maize root system mechanisms underlying drought resistance. In this study, miRNA-mRNA analysis was performed to deeply analyze the molecular mechanisms involved in drought response in the maize root system under drought stress. Furthermore, preliminary investigation of the biological function of miR408a in the maize root system was also conducted. The morphological, physiological, and transcriptomic changes in the maize variety "M8186" at the seedling stage under 12% PEG 6000 drought treatment (0, 7, and 24 h) were analyzed. With prolonged drought stress, seedlings gradually withered, the root system grew significantly, and abscisic acid, brassinolide, lignin, glutathione, and trehalose content in the root system gradually increased. Furthermore, peroxidase activity increased, while gibberellic acid and jasmonic acid gradually decreased. Moreover, 32 differentially expressed miRNAs (DEMIRs), namely, 25 known miRNAs and 7 new miRNAs, and 3,765 differentially expressed mRNAs (DEMRs), were identified in maize root under drought stress by miRNA-seq and mRNA-seq analysis, respectively. Through combined miRNA-mRNA analysis, 16 miRNA-target gene pairs, comprising 9 DEMIRs and 15 DEMRs, were obtained. In addition, four metabolic pathways, namely, "plant hormone signal transduction", "phenylpropane biosynthesis", "glutathione metabolism", and "starch and sucrose metabolism", were predicted to have important roles in the response of the maize root system to drought. MiRNA and mRNA expression results were verified by real-time quantitative PCR. Finally, miR408a was selected for functional analysis and demonstrated to be a negative regulator of drought response, mainly through regulation of reactive oxygen species accumulation in the maize root system. This study helps to elaborate the regulatory response mechanisms of the maize root system under drought stress and predicts the biological functions of candidate miRNAs and mRNAs, providing strategies for subsequent mining for, and biological breeding to select for, drought-responsive genes in the maize root system.
Collapse
Affiliation(s)
- Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ruiqi Ma
- College of Plant Science, Jilin University, Changchun, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jing Qu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
30
|
Chao N, Huang S, Kang X, Yidilisi K, Dai M, Liu L. Systematic functional characterization of cinnamyl alcohol dehydrogenase family members revealed their functional divergence in lignin biosynthesis and stress responses in mulberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:145-156. [PMID: 35849944 DOI: 10.1016/j.plaphy.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Mulberry (Morus) is used as a feed additive and biofuel materials. Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.95) catalyzes the final step of monolignol biosynthesis and is responsible for various monolignols. Five MaCADs from Morus alba were cloned and functionally characterized in the present study. These MaCADs encoded proteins with 357-364 amino acids, and the putative protein sequences conservatively possessed two Zn2+ binding motifs and an NADP(H) cofactor binding motif. However, MaCAD1, 2, and 5 shared similar amino acids at substrate binding positions that differed from those possessed by bona fide CADs. MaCAD3 and 4 had conservative substrate binding sites, and both phylogenetic and expression profile analysis indicated they were bona fide CADs involved in lignin biosynthesis. The enzymatic assay showed that MaCAD1 and 5 had a high affinity to p-coumaryl aldehyde. MaCAD4 preferentially used coniferyl aldehyde and sinapyl aldehyde as substrates. His-72 and Tyr-124 in MaCAD1 stabilized p-coumaryl aldehyde, and may have resulted in the substrate preference for p-coumaryl aldehyde. Down-regulation of MaCADs in mulberry showed that MaCAD3/4 were dominant CADs that functioned in monolignol biosynthesis, and decreased MaCAD3/4 resulted in significant decreases of lignin content in both stems and leaves. MaCADs exhibited different expression patterns in response to various stresses, indicating their possible diverse roles. MaCAD2 and MaCAD5 may play positive roles in response to drought and cold stresses, respectively. These results provide a systematic functional analysis of MaCADs in mulberry and an important foundation for the genetic modification of the monolignol pathway in mulberry.
Collapse
Affiliation(s)
- Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Shuai Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Xiaoru Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Keermula Yidilisi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Mingjie Dai
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
31
|
Yang F, Lv G. Characterization of the gene expression profile response to drought stress in Haloxylon using PacBio single-molecule real-time and Illumina sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:981029. [PMID: 36051288 PMCID: PMC9424927 DOI: 10.3389/fpls.2022.981029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Haloxylon ammodendron and Haloxylon persicum are important drought-tolerant plants in northwest China. The whole-genome sequencing of H. ammodendron and H. persicum grown in their natural environment is incomplete, and their transcriptional regulatory network in response to drought environment remains unclear. To reveal the transcriptional responses of H. ammodendron and H. persicum to an arid environment, we performed single-molecule real-time (SMRT) and Illumina RNA sequencing. In total, 20,246,576 and 908,053 subreads and 435,938 and 210,334 circular consensus sequencing (CCS) reads were identified by SMRT sequencing of H. ammodendron and H. persicum, and 15,238 and 10,135 unigenes, respectively, were successfully obtained. In addition, 9,794 and 7,330 simple sequence repeats (SSRs) and 838 and 71 long non-coding RNAs were identified. In an arid environment, the growth of H. ammodendron was restricted; plant height decreased significantly; basal and branch diameters became thinner and hydrogen peroxide (H2O2) content and peroxidase (POD) activity were increased. Under dry and wet conditions, 11,803 and 15,217 differentially expressed genes (DEGs) were identified in H. ammodendron and H. persicum, respectively. There were 319 and 415 DEGs in the signal transduction pathways related to drought stress signal perception and transmission, including the Ca2+ signal pathway, the ABA signal pathway, and the MAPK signal cascade. In addition, 217 transcription factors (TFs) and 398 TFs of H. ammodendron and H. persicum were differentially expressed, including FAR1, MYB, and AP2/ERF. Bioinformatic analysis showed that under drought stress, the expression patterns of genes related to active oxygen [reactive oxygen species (ROS)] scavenging, functional proteins, lignin biosynthesis, and glucose metabolism pathways were altered. Thisis the first full-length transcriptome report concerning the responses of H. ammodendron and H. persicum to drought stress. The results provide a foundation for further study of the adaptation to drought stress. The full-length transcriptome can be used in genetic engineering research.
Collapse
Affiliation(s)
- Fang Yang
- School of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Ürümqi, China
| | - Guanghui Lv
- School of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Ürümqi, China
| |
Collapse
|
32
|
Genome-wide analysis of the CAD gene family reveals two bona fide CAD genes in oil palm. 3 Biotech 2022; 12:149. [PMID: 35747504 PMCID: PMC9209623 DOI: 10.1007/s13205-022-03208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/21/2022] [Indexed: 11/01/2022] Open
Abstract
Cinnamyl alcohol dehydrogenase (CAD) is the key enzyme for lignin biosynthesis in plants. In this study, genome-wide analysis was performed to identify CAD genes in oil palm (Elaeis guineensis). Phylogenetic analysis was then conducted to select the bona fide EgCADs. The bona fide EgCAD genes and their respective 5' flanking regions were cloned and analysed. Their expression profiles were evaluated in various organs using RT-PCR. Seven EgCAD genes (EgCAD1-7) were identified and divided into four phylogenetic groups. EgCAD1 and EgCAD2 display high sequence similarities with other bona fide CADs and possess all the signature motifs of the bona fide CAD. They also display similar 3D protein structures. Gene expression analysis showed that EgCAD1 was expressed most abundantly in the root tissues, while EgCAD2 was expressed constitutively in all the tissues studied. EgCAD1 possesses only one transcription start site, while EgCAD2 has five. Interestingly, a TC microsatellite was found in the 5' flanking region of EgCAD2. The 5' flanking regions of EgCAD1 and EgCAD2 contain lignin-associated regulatory elements i.e. AC-elements, and other defence-related motifs, including W-box, GT-1 motif and CGTCA-motif. Altogether, these results imply that EgCAD1 and EgCAD2 are bona fide CAD involved in lignin biosynthesis during the normal development of oil palm and in response to stresses. Our findings shed some light on the roles of the bona fide CAD genes in oil palm and pave the way for manipulating lignin content in oil palm through a genetic approach. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03208-0.
Collapse
|
33
|
Chen Z, Peng Z, Liu S, Leng H, Luo J, Wang F, Yi Y, Resco de Dios V, Lucas GR, Yao Y, Gao Y. Overexpression of PeNAC122 gene promotes wood formation and tolerance to osmotic stress in poplars. PHYSIOLOGIA PLANTARUM 2022; 174:e13751. [PMID: 36004736 DOI: 10.1111/ppl.13751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Finding the adequate balance between wood formation and abiotic stress resistance is still an important challenge for industrial woody crops. In this study, PeNAC122, a member of the NAC transcription factor (TF) family highly expressed in xylem, was cloned from Populus euphratica. Tissue expression and β-glucuronidase (GUS) staining showed that PeNAC122 was exclusively expressed in phloem fiber and secondary xylem of stems. Subcellular and yeast transactivation assays confirmed that PeNAC122 protein existed in the nucleus and did not have transcriptional activation and inhibitory activity. Overexpression of PeNAC122 poplar lines exhibited reduced plant height, thickened xylem, and accumulated lignin content in stems, and also upregulates the expression of secondary cell wall biosynthetic genes. Moreover, overexpression of PeNAC122 lines displayed more tolerance to PEG6000-induced osmotic stress, with stronger photosynthetic performance, higher antioxidant enzyme activity, and less accumulation of reactive oxygen species in leaves, and higher expression levels of stress response genes DREB2A, RD29, and NCED3. These results indicate that PeNAC122 plays a crucial role in wood formation and abiotic stress tolerance, which, in addition to potential use in improving wood quality, provides further insight into the role of NAC family TFs in balancing wood development and abiotic stress resistance.
Collapse
Affiliation(s)
- Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Zhuoxi Peng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Siqin Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Haiqin Leng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Jianxun Luo
- Institute of Forestry, Sichuan Academy of Forestry, Chengdu, People's Republic of China
| | - Fei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yuanyuan Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Gutiérrez Rodríguez Lucas
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| |
Collapse
|
34
|
Xu W, Dou Y, Geng H, Fu J, Dan Z, Liang T, Cheng M, Zhao W, Zeng Y, Hu Z, Huang W. OsGRP3 Enhances Drought Resistance by Altering Phenylpropanoid Biosynthesis Pathway in Rice ( Oryza sativa L.). Int J Mol Sci 2022; 23:ijms23137045. [PMID: 35806050 PMCID: PMC9266740 DOI: 10.3390/ijms23137045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
As a sessile organism, rice often faces various kinds of abiotic stresses, such as drought stress. Drought stress seriously harms plant growth and damages crop yield every year. Therefore, it is urgent to elucidate the mechanisms of drought resistance in rice. In this study, we identified a glycine-rich RNA-binding protein, OsGRP3, in rice. Evolutionary analysis showed that it was closely related to OsGR-RBP4, which was involved in various abiotic stresses. The expression of OsGRP3 was shown to be induced by several abiotic stress treatments and phytohormone treatments. Then, the drought tolerance tests of transgenic plants confirmed that OsGRP3 enhanced drought resistance in rice. Meanwhile, the yeast two-hybrid assay, bimolecular luminescence complementation assay and bimolecular fluorescence complementation assay demonstrated that OsGRP3 bound with itself may affect the RNA chaperone function. Subsequently, the RNA-seq analysis, physiological experiments and histochemical staining showed that OsGRP3 influenced the phenylpropanoid biosynthesis pathway and further modulated lignin accumulation. Herein, our findings suggested that OsGRP3 enhanced drought resistance in rice by altering the phenylpropanoid biosynthesis pathway and further increasing lignin accumulation.
Collapse
Affiliation(s)
- Wuwu Xu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yangfan Dou
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Han Geng
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinmei Fu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiwu Dan
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting Liang
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weibo Zhao
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yafei Zeng
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
35
|
Bang SW, Choi S, Jin X, Jung SE, Choi JW, Seo JS, Kim J. Transcriptional activation of rice CINNAMOYL-CoA REDUCTASE 10 by OsNAC5, contributes to drought tolerance by modulating lignin accumulation in roots. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:736-747. [PMID: 34786790 PMCID: PMC8989508 DOI: 10.1111/pbi.13752] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 05/17/2023]
Abstract
Drought is a common abiotic stress for terrestrial plants and often affects crop development and yield. Recent studies have suggested that lignin plays a crucial role in plant drought tolerance; however, the underlying molecular mechanisms are still largely unknown. Here, we report that the rice (Oryza sativa) gene CINNAMOYL-CoA REDUCTASE 10 (OsCCR10) is directly activated by the OsNAC5 transcription factor, which mediates drought tolerance through regulating lignin accumulation. CCR is the first committed enzyme in the monolignol synthesis pathway, and the expression of 26 CCR genes was observed to be induced in rice roots under drought. Subcellular localisation assays revealed that OsCCR10 is a catalytically active enzyme that is localised in the cytoplasm. The OsCCR10 transcript levels were found to increase in response to abiotic stresses, such as drought, high salinity, and abscisic acid (ABA), and transcripts were detected in roots at all developmental stages. In vitro enzyme activity and in vivo lignin composition assay suggested that OsCCR10 is involved in H- and G-lignin biosynthesis. Transgenic rice plants overexpressing OsCCR10 showed improved drought tolerance at the vegetative stages of growth, as well as higher photosynthetic efficiency, lower water loss rates, and higher lignin content in roots compared to non-transgenic (NT) controls. In contrast, CRISPR/Cas9-mediated OsCCR10 knock-out mutants exhibited reduced lignin accumulation in roots and less drought tolerance. Notably, transgenic rice plants with root-preferential overexpression of OsCCR10 exhibited higher grain yield than NT controls plants under field drought conditions, indicating that lignin biosynthesis mediated by OsCCR10 contributes to drought tolerance.
Collapse
Affiliation(s)
- Seung Woon Bang
- Crop Biotechnology InstituteGreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Seowon Choi
- Crop Biotechnology InstituteGreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
- Graduate School of International Agricultural TechnologySeoul National UniversityPyeongchangKorea
| | - Xuanjun Jin
- Graduate School of International Agricultural TechnologySeoul National UniversityPyeongchangKorea
- Institute of Green Eco EngineeringGreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Se Eun Jung
- Crop Biotechnology InstituteGreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
- Graduate School of International Agricultural TechnologySeoul National UniversityPyeongchangKorea
| | - Joon Weon Choi
- Graduate School of International Agricultural TechnologySeoul National UniversityPyeongchangKorea
- Institute of Green Eco EngineeringGreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Jun Sung Seo
- Crop Biotechnology InstituteGreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Ju‐Kon Kim
- Crop Biotechnology InstituteGreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
- Graduate School of International Agricultural TechnologySeoul National UniversityPyeongchangKorea
| |
Collapse
|
36
|
Ren L, Zhang T, Wu H, Ge X, Wan H, Chen S, Li Z, Ma D, Wang A. Blocking IbmiR319a Impacts Plant Architecture and Reduces Drought Tolerance in Sweet Potato. Genes (Basel) 2022; 13:genes13030404. [PMID: 35327958 PMCID: PMC8953241 DOI: 10.3390/genes13030404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 01/15/2023] Open
Abstract
MicroRNA319 (miR319) plays a key role in plant growth, development, and multiple resistance by repressing the expression of targeted TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) genes. Two members, IbmiR319a and IbmiR319c, were discovered in the miR319 gene family in sweet potato (Ipomoea batatas [L.] Lam). Here, we focused on the biological function and potential molecular mechanism of the response of IbmiR319a to drought stress in sweet potato. Blocking IbmiR319a in transgenic sweet potato (MIM319) resulted in a slim and tender phenotype and greater sensitivity to drought stress. Microscopic observations revealed that blocking IbmiR319a decreased the cell width and increased the stomatal distribution in the adaxial leaf epidermis, and also increased the intercellular space in the leaf and petiole. We also found that the lignin content was reduced, which led to increased brittleness in MIM319. Quantitative real-time PCR showed that the expression levels of key genes in the lignin biosynthesis pathway were much lower in the MIM319 lines than in the wild type. Ectopic expression of IbmiR319a-targeted genes IbTCP11 and IbTCP17 in Arabidopsis resulted in similar phenotypes to MIM319. We also showed that the expression of IbTCP11 and IbTCP17 was largely induced by drought stress. Transcriptome analysis indicated that cell growth-related pathways, such as plant hormonal signaling, were significantly downregulated with the blocking of IbmiR319a. Taken together, our findings suggest that IbmiR319a affects plant architecture by targeting IbTCP11/17 to control the response to drought stress in sweet potato.
Collapse
Affiliation(s)
- Lei Ren
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Tingting Zhang
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Haixia Wu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xinyu Ge
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Huihui Wan
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shengyong Chen
- Zhanjiang Academy of Agricultural Sciences, Zhanjiang 524094, China;
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Daifu Ma
- Key Laboratory for Biology and Genetic Breeding of Sweetpotato (Xuzhou), Ministry of Agriculture/Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221131, China
- Correspondence: (D.M.); (A.W.); Tel.: +86-516-82189200 (D.M.); +86-516-83400033 (A.W.)
| | - Aimin Wang
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
- Correspondence: (D.M.); (A.W.); Tel.: +86-516-82189200 (D.M.); +86-516-83400033 (A.W.)
| |
Collapse
|
37
|
Li H, Zhang S, Zhao Y, Zhao X, Xie W, Guo Y, Wang Y, Li K, Guo J, Zhu QH, Zhang X, Jia KP, Miao Y. Identification and Characterization of Cinnamyl Alcohol Dehydrogenase Encoding Genes Involved in Lignin Biosynthesis and Resistance to Verticillium dahliae in Upland Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:840397. [PMID: 35574065 PMCID: PMC9096875 DOI: 10.3389/fpls.2022.840397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/10/2022] [Indexed: 05/16/2023]
Abstract
Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is one of the most devastating diseases in cotton (Gossypium spp.). Lignin in the cell wall forms a physical barrier to inhibit pathogen invasion, and defense-induced lignification reinforces secondary cell wall to prevent pathogens from further spreading. Cinnamyl alcohol dehydrogenases (CADs) catalyze the production of three main monolignols, p-coumaryl- (H), coniferyl- (G), and sinapyl-alcohols (S), which are the fundamental blocks of lignin. Here, we identified CAD genes in G. hirsutum, analyzed their expression profiles in cotton leaf, stem, and root from different developmental stages, and selected GhCAD35, GhCAD45, and GhCAD43, which were consistently induced by V. dahliae inoculation in G. hirsutum cultivars resistant or susceptible to V. dahliae. On the basis of confirmation of the in vitro enzymatic activity of the three proteins in generation of the three monolignols, we used virus-induced gene silencing (VIGS) to investigate the effects of silencing of GhCAD35, GhCAD45, or GhCAD43 on resistance to V. dahliae as well as on deposition and the composition of lignin. Silencing each of the three CADs impaired the defense-induced lignification and salicylic acid biosynthesis in stem, and compromised resistance to V. dahliae. Moreover, our study showed that silencing the three GhCADs severely affected the biosynthesis of S-lignin, leading to a decrease of the syringyl/guaiacyl (S/G) ratio. Heterogeneous overexpression of GhCAD35, GhCAD45, or GhCAD43 in Arabidopsis enhanced disease resistance. Taken together, our study demonstrates a role of the three GhCADs in defense-induced lignin biosynthesis and resistance to V. dahliae in G. hirsutum.
Collapse
Affiliation(s)
- Haipeng Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Shulin Zhang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xulong Zhao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenfei Xie
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yutao Guo
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yujie Wang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Kun Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jinggong Guo
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Kun-Peng Jia
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Kun-Peng Jia,
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- Yuchen Miao,
| |
Collapse
|
38
|
Yang T, Liu J, Li X, Amanullah S, Lu X, Zhang M, Zhang Y, Luan F, Liu H, Wang X. Transcriptomic Analysis of Fusarium oxysporum Stress-Induced Pathosystem and Screening of Fom-2 Interaction Factors in Contrasted Melon Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:961586. [PMID: 35937314 PMCID: PMC9354789 DOI: 10.3389/fpls.2022.961586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 05/03/2023]
Abstract
Fusarium wilt is one of the most destructive and less controllable diseases in melon, which is usually caused by fusarium oxysporum. In this study, transcriptome sequencing and Yeast Two-Hybrid (Y2H) methods were used for quantification of differentially expressed genes (DEGs) involved in fusarium oxysporum (f. sp. melonis race 1) stress-induced mechanisms in contrasted melon varieties (M4-45 "susceptible" and MR-1 "resistant"). The interaction factors of Fom-2 resistance genes were also explored in response to the plant-pathogen infection mechanism. Transcriptomic analysis exhibited total 1,904 new genes; however, candidate DEGs analysis revealed a total of 144 specific genes (50 upregulated and 94 downregulated) for M4-45 variety and 104 specific genes (71 upregulated and 33 downregulated) for MR-1 variety, respectively. The analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway depicted some candidate DEGs, including Phenylalanine metabolism, phenylpropane biosynthesis, plants-pathogen interaction, and signal transduction of plant hormones, which were mainly involved in disease resistance metabolic pathways. The weighted gene co-expression network analysis (WGCNA) analysis revealed a strong correlation module and exhibited the disease resistance-related genes encoding course proteins, transcription factors, protein kinase, benzene propane biosynthesis path, plants-pathogen interaction pathway, and glutathione S-transferase. Meanwhile, the resistance-related specific genes expression was relatively abundant in MR-1 compared to the M4-45, and cell wall-associated receptor kinases (MELO3C008452 and MELO3C008453), heat shock protein (Cucumis_melo_newGene_172), defensin-like protein (Cucumis_melo_newGene_5490), and disease resistance response protein (MELO3C016325), activator response protein (MELO3C021623), leucine-rich repeat receptor protein kinase (MELO3C024412), lactyl glutathione ligase (Cucumis_melo_newGene_36), and unknown protein (MELO3C007588) were persisted by exhibiting the upregulated expressions. At the transcription level, the interaction factors between the candidate genes in response to the fusarium oxysporum induced stress, and Y2H screening signified the main contribution of MYB transcription factors (MELO3C009678 and MELO3C014597), BZIP (MELO3C011839 and MELO3C019349), unknown proteins, and key enzymes in the ubiquitination process (4XM334FK014). The candidate genes were further verified in exogenously treated melon plants with f. oxysporum (Fom-2, Race 1), Abscisic acid (ABA), Methyl Jasmonite (MeJA), and Salicylic acid (SA), using the fluorescence quantitative polymerase chain reaction (qRT-PCR) analysis. The overall expression results indicated that the SA signal pathway is involved in effective regulation of the Fom-2 gene activity.
Collapse
Affiliation(s)
- Tiantian Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Jiajun Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xiaomei Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xueyan Lu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Mingchong Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yanhang Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Hongyu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- *Correspondence: Hongyu Liu,
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- Xuezheng Wang,
| |
Collapse
|
39
|
Povkhova LV, Melnikova NV, Rozhmina TA, Novakovskiy RO, Pushkova EN, Dvorianinova EM, Zhuchenko AA, Kamionskaya AM, Krasnov GS, Dmitriev AA. Genes Associated with the Flax Plant Type (Oil or Fiber) Identified Based on Genome and Transcriptome Sequencing Data. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122616. [PMID: 34961087 PMCID: PMC8707629 DOI: 10.3390/plants10122616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
As a result of the breeding process, there are two main types of flax (Linum usitatissimum L.) plants. Linseed is used for obtaining seeds, while fiber flax is used for fiber production. We aimed to identify the genes associated with the flax plant type, which could be important for the formation of agronomically valuable traits. A search for polymorphisms was performed in genes involved in the biosynthesis of cell wall components, lignans, fatty acids, and ion transport based on genome sequencing data for 191 flax varieties. For 143 of the 424 studied genes (4CL, C3'H, C4H, CAD, CCR, CCoAOMT, COMT, F5H, HCT, PAL, CTL, BGAL, ABC, HMA, DIR, PLR, UGT, TUB, CESA, RGL, FAD, SAD, and ACT families), one or more polymorphisms had a strong correlation with the flax type. Based on the transcriptome sequencing data, we evaluated the expression levels for each flax type-associated gene in a wide range of tissues and suggested genes that are important for the formation of linseed or fiber flax traits. Such genes were probably subjected to the selection press and can determine not only the traits of seeds and stems but also the characteristics of the root system or resistance to stresses at a particular stage of development, which indirectly affects the ability of flax plants to produce seeds or fiber.
Collapse
Affiliation(s)
- Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, 115598 Moscow, Russia
| | - Anastasia M. Kamionskaya
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| |
Collapse
|
40
|
Physiological and Molecular Responses of 'Dusa' Avocado Rootstock to Water Stress: Insights for Drought Adaptation. PLANTS 2021; 10:plants10102077. [PMID: 34685886 PMCID: PMC8537572 DOI: 10.3390/plants10102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
Avocado consumption is increasing year by year, and its cultivation has spread to many countries with low water availability, which threatens the sustainability and profitability of avocado orchards. However, to date, there is not much information on the behavior of commercial avocado rootstocks against drought. The aim of this research was to evaluate the physiological and molecular responses of ‘Dusa’ avocado rootstock to different levels of water stress. Plants were deficit irrigated until soil water content reached 50% (mild-WS) and 25% (severe-WS) of field capacity. Leaf water potential (Ψw), net CO2 assimilation rates (AN), transpiration rate (E), stomatal conductance (gs), and plant transpiration rates significantly decreased under both WS treatments, reaching significantly lower values in severe-WS plants. After rewatering, mild- and severe-WS plants showed a fast recovery in most physiological parameters measured. To analyze root response to different levels of drought stress, a cDNA avocado stress microarray was carried out. Plants showed a wide transcriptome response linked to the higher degree of water stress, and functional enrichment of differentially expressed genes (DEGs) revealed abundance of common sequences associated with water stress, as well as specific categories for mild-WS and severe-WS. DEGs previously linked to drought tolerance showed overexpression under both water stress levels, i.e., several transcription factors, genes related to abscisic acid (ABA) response, redox homeostasis, osmoprotection, and cell-wall organization. Taken altogether, physiological and molecular data highlight the good performance of ‘Dusa’ rootstock under low-water-availability conditions, although further water stress experiments must be carried out under field conditions.
Collapse
|
41
|
Yan Y, Wang P, Lu Y, Bai Y, Wei Y, Liu G, Shi H. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:847-860. [PMID: 34022096 DOI: 10.1111/tpj.15350] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 05/20/2023]
Abstract
Cassava, an important food and energy crop, is relatively more resistant to drought stress than other crops. However, the molecular mechanism underlying this resistance remains elusive. Herein, we report that silencing a drought stress-responsive transcription factor MeRAV5 significantly reduced drought stress resistance, with higher levels of hydrogen peroxide (H2 O2 ) and less lignin during drought stress. Yeast two-hybrid, pull down and bimolecular fluorescence complementation (BiFC) showed that MeRAV5 physically interacted with peroxidase (MePOD) and lignin-related cinnamyl alcohol dehydrogenase 15 (MeCAD15) in vitro and in vivo. MeRAV5 promoted the activities of both MePOD and MeCAD15 to affect H2 O2 and endogenous lignin accumulation respectively, which are important in drought stress resistance in cassava. When either MeCAD15 or MeRAV5 was silenced, or both were co-silenced, cassava showed lower lignin content and drought-sensitive phenotype, whereas exogenous lignin alkali treatment increased drought stress resistance and alleviated the drought-sensitive phenotype of these silenced cassava plants. This study documents that the modulation of H2 O2 and lignin by MeRAV5 is essential for drought stress resistance in cassava.
Collapse
Affiliation(s)
- Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| |
Collapse
|
42
|
The Cysteine-Rich Peptide Snakin-2 Negatively Regulates Tubers Sprouting through Modulating Lignin Biosynthesis and H 2O 2 Accumulation in Potato. Int J Mol Sci 2021; 22:ijms22052287. [PMID: 33669030 PMCID: PMC7956376 DOI: 10.3390/ijms22052287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/10/2023] Open
Abstract
Potato tuber dormancy is critical for the post-harvest quality. Snakin/Gibberellic Acid Stimulated in Arabidopsis (GASA) family genes are involved in the plants’ defense against pathogens and in growth and development, but the effect of Snakin-2 (SN2) on tuber dormancy and sprouting is largely unknown. In this study, a transgenic approach was applied to manipulate the expression level of SN2 in tubers, and it demonstrated that StSN2 significantly controlled tuber sprouting, and silencing StSN2 resulted in a release of dormancy and overexpressing tubers showed a longer dormant period than that of the control. Further analyses revealed that the decrease expression level accelerated skin cracking and water loss. Metabolite analyses revealed that StSN2 significantly down-regulated the accumulation of lignin precursors in the periderm, and the change of lignin content was documented, a finding which was consistent with the precursors’ level. Subsequently, proteomics found that cinnamyl alcohol dehydrogenase (CAD), caffeic acid O-methyltransferase (COMT) and peroxidase (Prx), the key proteins for lignin synthesis, were significantly up-regulated in silencing lines, and gene expression and enzyme activity analyses also supported this effect. Interestingly, we found that StSN2 physically interacts with three peroxidases catalyzing the oxidation and polymerization of lignin. In addition, SN2 altered the hydrogen peroxide (H2O2) content and the activities of superoxide dismutase (SOD) and catalase (CAT). These results suggest that StSN2 negatively regulates lignin biosynthesis and H2O2 accumulation, and ultimately inhibits the sprouting of potato tubers.
Collapse
|
43
|
Liu W, Jiang Y, Jin Y, Wang C, Yang J, Qi H. Drought-induced ABA, H 2O 2 and JA positively regulate CmCAD genes and lignin synthesis in melon stems. BMC PLANT BIOLOGY 2021; 21:83. [PMID: 33557758 PMCID: PMC7871556 DOI: 10.1186/s12870-021-02869-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 02/01/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Cinnamyl alcohol dehydrogenase (CAD) is an important enzyme functions at the last step in lignin monomer synthesis pathway. Our previous work found that drought induced the expressions of CmCAD genes and promoted lignin biosynthesis in melon stems. RESULTS Here we studied the effects of abscisic acid (ABA), hydrogen peroxide (H2O2) and jasmonic acid (JA) to CmCADs under drought stress. Results discovered that drought-induced ABA, H2O2 and MeJA were prevented efficiently from increasing in melon stems pretreated with fluridone (Flu, ABA inhibitor), imidazole (Imi, H2O2 scavenger) and ibuprofen (Ibu, JA inhibitor). ABA and H2O2 are involved in the positive regulations to CmCAD1, 2, 3, and 5, and JA is involved in the positive regulations to CmCAD2, 3, and 5. According to the expression profiles of lignin biosynthesis genes, ABA, H2O2 and MeJA all showed positive regulations to CmPAL2-like, CmPOD1-like, CmPOD2-like and CmLAC4-like. In addition, positive regulations were also observed with ABA to CmPAL1-like, CmC4H and CmCOMT, with H2O2 to CmPAL1-like, CmC4H, CmCCR and CmLAC17-like, and with JA to CmCCR, CmCOMT, CmLAC11-like and CmLAC17-like. As expected, the signal molecules positively regulated CAD activity and lignin biosynthesis under drought stress. Promoter::GUS assays not only further confirmed the regulations of the signal molecules to CmCAD1~3, but also revealed the important role of CmCAD3 in lignin synthesis due to the strongest staining of CmCAD3 promoter::GUS. CONCLUSIONS CmCADs but CmCAD4 are positively regulated by ABA, H2O2 and JA under drought stress and participate in lignin synthesis.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, People's Republic of China
| | - Yun Jiang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China
| | - Yazhong Jin
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Chenghui Wang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China
- College of Ecology and Garden Architecture, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Juan Yang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China.
| |
Collapse
|
44
|
Li W, Lee J, Yu S, Wang F, Lv W, Zhang X, Li C, Yang J. Characterization and analysis of the transcriptome response to drought in Larix kaempferi using PacBio full-length cDNA sequencing integrated with de novo RNA-seq reads. PLANTA 2021; 253:28. [PMID: 33423138 DOI: 10.1007/s00425-020-03555-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
A hypothetical model of drought tolerance mechanism of Larix kaempferi was established through SMRT-seq and Illumina HiSeq. Larix kaempferi is an important economic and ecological species and a major afforestation species in north-eastern China. To date, no information has been reliably derived regarding full-length cDNA sequencing information on L. kaempferi. By single-molecule long-read isoform sequencing (SMRT-seq), here we report a total of 26,153,342 subreads (21.24 Gb) and 330,371 circular consensus sequence (CCS) reads after the modification of site mismatch, and 35,414 unigenes were successfully collected. To gain deeper insights into the molecular mechanisms of L. kaempferi response to drought stress, we combined Illumina HiSeq with SMRT-seq to decode full-length transcripts. In this study, we report 27 differentially expressed genes (DEGs) involved in the perception and transmission of drought stress signals in L. kaempferi. A large number of DEGs responding to drought stress were detected in L. kaempferi, especially DEGs involved in the reactive oxygen species (ROS) scavenging, lignin biosynthesis, and sugar metabolism, and DEGs encoding drought stress proteins. We detected 73 transcription factors (TFs) under drought stress, including AP2/ERF, bZIP, TCP, and MYB. This study provides basic full sequence resources for L. kaempferi research and will help us to better understand the functions of drought-resistance genes in L. kaempferi.
Collapse
Affiliation(s)
- Wenlong Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Joobin Lee
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Sen Yu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Fude Wang
- Institute of Forestry Science of Heilongjiang Province, 134 Haping Road, Harbin, 150040, China
| | - Wanqiu Lv
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Xin Zhang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
45
|
Dong NQ, Lin HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:180-209. [PMID: 33325112 DOI: 10.1111/jipb.13054] [Citation(s) in RCA: 618] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/10/2020] [Indexed: 05/21/2023]
Abstract
Phenylpropanoid metabolism is one of the most important metabolisms in plants, yielding more than 8,000 metabolites contributing to plant development and plant-environment interplay. Phenylpropanoid metabolism materialized during the evolution of early freshwater algae that were initiating terrestrialization and land plants have evolved multiple branches of this pathway, which give rise to metabolites including lignin, flavonoids, lignans, phenylpropanoid esters, hydroxycinnamic acid amides, and sporopollenin. Recent studies have revealed that many factors participate in the regulation of phenylpropanoid metabolism, and modulate phenylpropanoid homeostasis when plants undergo successive developmental processes and are subjected to stressful environments. In this review, we summarize recent progress on elucidating the contribution of phenylpropanoid metabolism to the coordination of plant development and plant-environment interaction, and metabolic flux redirection among diverse metabolic routes. In addition, our review focuses on the regulation of phenylpropanoid metabolism at the transcriptional, post-transcriptional, post-translational, and epigenetic levels, and in response to phytohormones and biotic and abiotic stresses.
Collapse
Affiliation(s)
- Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|