1
|
Aggarwal PR, Mehanathan M, Choudhary P. Exploring genetics and genomics trends to understand the link between secondary metabolic genes and agronomic traits in cereals under stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154379. [PMID: 39549316 DOI: 10.1016/j.jplph.2024.154379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
The plant metabolome is considered an important interface between the genome and its phenome, where it plays a significant role in regulating plant growth in response to various environmental cues. A wide array of specialized metabolites is produced by plants, which are essential for mediating environmental interactions and their adaptation. Notably, enhanced accumulation of these specialized metabolites, particularly plant secondary metabolites (PSMs), is a part of the chemical defense response that is directly linked to improved stress tolerance. Therefore, exploring the genetic diversity underlying the immense variation of the secondary metabolite pool could unravel the adaptation mechanisms in plants against different environmental stresses. The post-genomic profiling platforms have enabled the exploration of the link between metabolic diversity and important agronomic traits. The current review focuses on the major achievements and future challenges associated with plant secondary metabolite (PSM) research in graminaceous crops using advanced omics approaches. Given this, we briefly summarize different strategies adopted to explore the genetic diversity and evolution of PSMs in cereal crops. Further, we have discussed the recent technological advancements to integrate multi-omics approaches linking the metabolome diversity with the genome, transcriptome, and proteome of these crops under stress. Combining these data with phenomics (the omics of phenotypes) provides a holistic view of how plants respond to stress. Next, we outlined the genetic manipulation studies performed so far in cereals to engineer secondary metabolic pathways for enhanced stress tolerance. In summary, our review provides new insight into developing genetic and genomic trends in exploring the secondary metabolite diversity in graminaceous crops and discusses how this information can be utilized in designing strategies to generate future stress-resilient crops.
Collapse
Affiliation(s)
- Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Muthamilarasan Mehanathan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
2
|
Wajid MA, Sharma P, Majeed A, Bhat S, Angmo T, Fayaz M, Pal K, Andotra S, Bhat WW, Misra P. Transcriptome-wide investigation and functional characterization reveal a terpene synthase involved in γ-terpinene biosynthesis in Monarda citriodora. Funct Integr Genomics 2024; 24:222. [PMID: 39589550 DOI: 10.1007/s10142-024-01491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
Monarda citriodora Cerv. ex Lag. is a rich source of industrially important compounds like γ-terpinene, carvacrol, thymol and thymoquinone. Understanding the regulation of γ-terpinene biosynthesis, a precursor for other monoterpenes, could facilitate upscaling of these metabolites in M. citriodora. Therefore, the present study aimed to unravel and characterize the terpene synthase (TPS) involved in γ-terpinene biosynthesis. Homology searches revealed 33 TPS members in the transcriptome assembly of M. citriodora. Based on the correlation of expression patterns and phytochemical profile, McTPS22 emerged as the putative TPS for γ-terpinene biosynthesis. Molecular docking suggested geranyl diphosphate (GPP) as a potential substrate for McTPS22. Heterologous expression in Escherichia coli and Nicotiana benthamiana confirmed the role of McTPS22 in γ-terpinene biosynthesis. Both in-silico prediction and confocal microscopy indicated plastidial localization of the McTPS22. Gene co-expression network analysis revealed 507 genes interacting with McTPS22, including 80 transcription factors (TFs). Of these, 46 TFs had binding sites in the McTPS22 promoter, and 36 showed significant correlations with γ-terpinene accumulation, suggesting they may be potential regulators. Promoter analysis indicated regulation by phytohormones and abiotic factors, confirmed by phytohormone elicitation and QRT-PCR. The histochemical GUS staining suggested that McTPS22 is primarily active in the glandular trichomes of M. citriodora. The present work provides insights into the molecular regulation of biosynthesis of γ-terpinene in M. citriodora.
Collapse
Affiliation(s)
- Mir Abdul Wajid
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Sharma
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aasim Majeed
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
| | - Sheetal Bhat
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tsering Angmo
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Fayaz
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koushik Pal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonali Andotra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Wajid Waheed Bhat
- Division of Basic Sciences and Humanities, SKUAST-Kashmir, Shalimar, 190025, Srinagar, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Barkman TJ. Applications of ancestral sequence reconstruction for understanding the evolution of plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230348. [PMID: 39343033 PMCID: PMC11439504 DOI: 10.1098/rstb.2023.0348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 10/01/2024] Open
Abstract
Studies of enzymes in modern-day plants have documented the diversity of metabolic activities retained by species today but only provide limited insight into how those properties evolved. Ancestral sequence reconstruction (ASR) is an approach that provides statistical estimates of ancient plant enzyme sequences which can then be resurrected to test hypotheses about the evolution of catalytic activities and pathway assembly. Here, I review the insights that have been obtained using ASR to study plant metabolism and highlight important methodological aspects. Overall, studies of resurrected plant enzymes show that (i) exaptation is widespread such that even low or undetectable levels of ancestral activity with a substrate can later become the apparent primary activity of descendant enzymes, (ii) intramolecular epistasis may or may not limit evolutionary paths towards catalytic or substrate preference switches, and (iii) ancient pathway flux often differs from modern-day metabolic networks. These and other insights gained from ASR would not have been possible using only modern-day sequences. Future ASR studies characterizing entire ancestral metabolic networks as well as those that link ancient structures with enzymatic properties should continue to provide novel insights into how the chemical diversity of plants evolved. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Todd J. Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI49008, USA
| |
Collapse
|
4
|
Köllner TG, Gershenzon J, Peters RJ, Zerbe P, Schmelz EA. The terpene synthase gene family in maize - a clarification of existing community nomenclature. BMC Genomics 2023; 24:744. [PMID: 38057721 PMCID: PMC10699003 DOI: 10.1186/s12864-023-09856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Affiliation(s)
- Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0380, USA
| |
Collapse
|
5
|
Bhargav P, Chaurasia S, Kumar A, Srivastava G, Pant Y, Chanotiya CS, Ghosh S. Unraveling the terpene synthase family and characterization of BsTPS2 contributing to (S)-( +)-linalool biosynthesis in Boswellia. PLANT MOLECULAR BIOLOGY 2023; 113:219-236. [PMID: 37898975 DOI: 10.1007/s11103-023-01384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Boswellia tree bark exudes oleo-gum resin in response to wounding, which is rich in terpene volatiles. But, the molecular and biochemical basis of wound-induced formation of resin volatiles remains poorly understood. Here, we combined RNA-sequencing (RNA-seq) and metabolite analysis to unravel the terpene synthase (TPS) family contributing to wound-induced biosynthesis of resin volatiles in B. serrata, an economically-important Boswellia species. The analysis of large-scale RNA-seq data of bark and leaf samples representing more than 600 million sequencing reads led to the identification of 32 TPSs, which were classified based on phylogenetic relationship into various TPSs families found in angiosperm species such as TPS-a, b, c, e/f, and g. Moreover, RNA-seq analysis of bark samples collected at 0-24 h post-wounding shortlisted 14 BsTPSs that showed wound-induced transcriptional upregulation in bark, suggesting their important role in wound-induced biosynthesis of resin volatiles. Biochemical characterization of a bark preferentially-expressed and wound-inducible TPS (BsTPS2) in vitro and in planta assays revealed its involvement in resin terpene biosynthesis. Bacterially-expressed recombinant BsTPS2 catalyzed the conversion of GPP and FPP into (S)-( +)-linalool and (E)-(-)-nerolidol, respectively, in vitro assays. However, BsTPS2 expression in Nicotiana benthamiana found that BsTPS2 is a plastidial linalool synthase. In contrast, cytosolic expression of BsTPS2 did not form any product. Overall, the present work unraveled a suite of TPSs that potentially contributed to the biosynthesis of resin volatiles in Boswellia and biochemically characterized BsTPS2, which is involved in wound-induced biosynthesis of (S)-( +)-linalool, a monoterpene resin volatile with a known role in plant defense.
Collapse
Affiliation(s)
- Pravesh Bhargav
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Seema Chaurasia
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Aashish Kumar
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Gaurav Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Yatish Pant
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Han T, Shao Y, Gao R, Gao J, Jiang Y, Yang Y, Wang Y, Yang S, Gao X, Wang L, Li Y. Functional Characterization of a ( E)-β-Ocimene Synthase Gene Contributing to the Defense against Spodoptera litura. Int J Mol Sci 2023; 24:ijms24087182. [PMID: 37108345 PMCID: PMC10139113 DOI: 10.3390/ijms24087182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Soybean is a worldwide crop that offers valuable proteins, fatty acids, and phytonutrients to humans but is always damaged by insect pests or pathogens. Plants have captured sophisticated defense mechanisms in resisting the attack of insects and pathogens. How to protect soybean in an environment- or human-friendly way or how to develop plant-based pest control is a hotpot. Herbivore-induced plant volatiles that are released by multiple plant species have been assessed in multi-systems against various insects, of which (E)-β-ocimene has been reported to show anti-insect function in a variety of plants, including soybean. However, the responsible gene in soybean is unknown, and its mechanism of synthesis and anti-insect properties lacks comprehensive assessment. In this study, (E)-β-ocimene was confirmed to be induced by Spodoptera litura treatment. A plastidic localized monoterpene synthase gene, designated as GmOCS, was identified to be responsible for the biosynthesis of (E)-β-ocimene through genome-wide gene family screening and in vitro and in vivo assays. Results from transgenic soybean and tobacco confirmed that (E)-β-ocimene catalyzed by GmOCS had pivotal roles in repelling a S. litura attack. This study advances the understanding of (E)-β-ocimene synthesis and its function in crops, as well as provides a good candidate for further anti-insect soybean improvement.
Collapse
Affiliation(s)
- Taotao Han
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yan Shao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Ruifang Gao
- College of Plant Science, Jilin University, Changchun 130024, China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yu Jiang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yue Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanan Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Siqi Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
7
|
Saldivar EV, Ding Y, Poretsky E, Bird S, Block AK, Huffaker A, Schmelz EA. Maize Terpene Synthase 8 (ZmTPS8) Contributes to a Complex Blend of Fungal-Elicited Antibiotics. PLANTS (BASEL, SWITZERLAND) 2023; 12:1111. [PMID: 36903970 PMCID: PMC10005556 DOI: 10.3390/plants12051111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
In maize (Zea mays), fungal-elicited immune responses include the accumulation of terpene synthase (TPS) and cytochrome P450 monooxygenases (CYP) enzymes resulting in complex antibiotic arrays of sesquiterpenoids and diterpenoids, including α/β-selinene derivatives, zealexins, kauralexins and dolabralexins. To uncover additional antibiotic families, we conducted metabolic profiling of elicited stem tissues in mapping populations, which included B73 × M162W recombinant inbred lines and the Goodman diversity panel. Five candidate sesquiterpenoids associated with a chromosome 1 locus spanning the location of ZmTPS27 and ZmTPS8. Heterologous enzyme co-expression studies of ZmTPS27 in Nicotiana benthamiana resulted in geraniol production while ZmTPS8 yielded α-copaene, δ-cadinene and sesquiterpene alcohols consistent with epi-cubebol, cubebol, copan-3-ol and copaborneol matching the association mapping efforts. ZmTPS8 is an established multiproduct α-copaene synthase; however, ZmTPS8-derived sesquiterpene alcohols are rarely encountered in maize tissues. A genome wide association study further linked an unknown sesquiterpene acid to ZmTPS8 and combined ZmTPS8-ZmCYP71Z19 heterologous enzyme co-expression studies yielded the same product. To consider defensive roles for ZmTPS8, in vitro bioassays with cubebol demonstrated significant antifungal activity against both Fusarium graminearum and Aspergillus parasiticus. As a genetically variable biochemical trait, ZmTPS8 contributes to the cocktail of terpenoid antibiotics present following complex interactions between wounding and fungal elicitation.
Collapse
Affiliation(s)
- Evan V. Saldivar
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford University, Palo Alto, CA 94305, USA
| | - Yezhang Ding
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Elly Poretsky
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
| | - Skylar Bird
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
| | - Anna K. Block
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Alisa Huffaker
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
| | - Eric A. Schmelz
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
| |
Collapse
|
8
|
Effect of Developmental Stages on Genes Involved in Middle and Downstream Pathway of Volatile Terpene Biosynthesis in Rose Petals. Genes (Basel) 2022; 13:genes13071177. [PMID: 35885960 PMCID: PMC9320630 DOI: 10.3390/genes13071177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Terpenoids are economically and ecologically important compounds, and they are vital constituents in rose flower fragrance and rose essential oil. The terpene synthase genes (TPSs), trans-prenyltransferases genes (TPTs), NUDX1 are involved in middle and downstream pathway of volatile terpene biosynthesis in rose flowers. We identified 7 complete RcTPTs, 49 complete RcTPSs, and 9 RcNUDX1 genes in the genome of Rosachinensis. During the flower opening process of butterfly rose (Rosachinensis ‘Mutabilis’, MU), nine RcTPSs expressed in the petals of opening MU flowers exhibited two main expression trends, namely high and low, in old and fresh petals. Five short-chain petal-expressed RcTPTs showed expression patterns corresponding to RcTPSs. Analysis of differential volatile terpenes and differential expressed genes indicated that higher emission of geraniol from old MU petals might be related to the RcGPPS expression. Comprehensive analysis of volatile emission, sequence structure, micro-synteny and gene expression suggested that RcTPS18 may encode (E,E)-α-farnesene synthase. These findings may be useful for elucidating the molecular mechanism of terpenoid metabolism in rose and are vital for future studies on terpene regulation.
Collapse
|
9
|
Zhang G. The Next Generation of Rice: Inter-Subspecific Indica- Japonica Hybrid Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:857896. [PMID: 35422822 PMCID: PMC9002350 DOI: 10.3389/fpls.2022.857896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 05/31/2023]
Abstract
Rice (Oryza sativa) is an important food crop and has two subspecies, indica and japonica. Since the last century, four generations of rice varieties have been applied to rice production. Semi-dwarf rice, intra-subspecific hybrid rice, and inter-subspecific introgression rice were developed successively by genetic modification based on the first generation of tall rice. Each generation of rice has greater yield potential than the previous generation. Due to the stronger heterosis of indica-japonica hybrids, utilization of the inter-subspecific heterosis has long been of interest. However, indica-japonica hybrid sterility hinders the utilization of heterosis. In the past decades, indica-japonica hybrid sterility has been well understood. It is found that indica-japonica hybrid sterility is mainly controlled by six loci, S5, Sa, Sb, Sc, Sd, and Se. The indica-japonica hybrid sterility can be overcome by developing indica-compatible japonica lines (ICJLs) or wide-compatible indica lines (WCILs) using genes at the loci. With the understanding of the genetic and molecular basis of indica-japonica hybrid sterility and the development of molecular breeding technology, the development of indica-japonica hybrid rice has become possible. Recently, great progress has been made in breeding indica-japonica hybrid rice. Therefore, the indica-japonica hybrid rice will be the next generation of rice. It is expected that the indica-japonica hybrid rice will be widely applied in rice production in the near future.
Collapse
Affiliation(s)
- Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Yang S, Wang N, Kimani S, Li Y, Bao T, Ning G, Li L, Liu B, Wang L, Gao X. Characterization of Terpene synthase variation in flowers of wild aquilegia species from Northeastern Asia. HORTICULTURE RESEARCH 2022; 9:uhab020. [PMID: 35039842 PMCID: PMC8771452 DOI: 10.1093/hr/uhab020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/25/2021] [Accepted: 10/02/2021] [Indexed: 05/13/2023]
Abstract
There are several causes for the great diversity in floral terpenes. The terpene products are determined by the catalytic fidelity, efficiency and plasticity of the active sites of terpene synthases (TPSs). However, the molecular mechanism of TPS in catalyzing terpene biosynthesis and its evolutionary fate in wild plant species remain largely unknown. In this study, the functionality of terpene synthases and their natural variants were assessed in two Northeastern Asia endemic columbine species and their natural hybrid. Synoptically, TPS7, TPS8, and TPS9 were highly expressed in these Aquilegia species from the Zuojia population. The in vitro and in vivo enzymatic assays revealed that TPS7 and TPS8 mainly produced (+)-limonene and β-sesquiphellandrene, respectively, whereas TPS9 produced pinene, similar to the major components released from Aquilegia flowers. Multiple sequence alignment of Aquilegia TPS7 and TPS8 in the Zuojia population revealed amino acid polymorphisms. Domain swapping and amino acid substitution assays demonstrated that 413A, 503I and 529D had impacts on TPS7 catalytic activity, whereas 420G, 538F and 545 L affected the ratio of β-sesquiphellandrene to β-bisabolene in TPS8. Moreover, these key polymorphic amino acid residues were found in Aquilegia species from the Changbai Mountain population. Interestingly, amino acid polymorphisms in TPSs were present in individuals with low expression levels, and nonsynonymous mutations could impact the catalytic activity or product specificity of these genes. The results of this study will shed new light on the function and evolution of TPS genes in wild plant species and are beneficial to the modification of plant fragrances.
Collapse
Affiliation(s)
- Song Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Ning Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Shadrack Kimani
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
- School of Pure and Applied Sciences, Karatina University, Karatina, Kenya
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Tingting Bao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Guogui Ning
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
11
|
Liang D, Li W, Yan X, Caiyin Q, Zhao G, Qiao J. Molecular and Functional Evolution of the Spermatophyte Sesquiterpene Synthases. Int J Mol Sci 2021; 22:ijms22126348. [PMID: 34198531 PMCID: PMC8232007 DOI: 10.3390/ijms22126348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022] Open
Abstract
Sesquiterpenes are important defense and signal molecules for plants to adapt to the environment, cope with stress, and communicate with the outside world, and their evolutionary history is closely related to physiological functions. In this study, the information of plant sesquiterpene synthases (STSs) with identified functions were collected and sorted to form a dataset containing about 500 members. The phylogeny of spermatophyte functional STSs was constructed based on the structural comparative analysis to reveal the sequence–structure–function relationships. We propose the evolutionary history of plant sesquiterpene skeletons, from chain structure to small rings, followed by large rings for the first time and put forward a more detailed function-driven hypothesis. Then, the evolutionary origins and history of spermatophyte STSs are also discussed. In addition, three newly identified STSs CaSTS2, CaSTS3, and CaSTS4 were analyzed in this functional evolutionary system, and their germacrene D products were consistent with the functional prediction. This demonstrates an application of the structure-based phylogeny in predicting STS function. This work will help us to understand evolutionary patterns and dynamics of plant sesquiterpenes and STSs and screen or design STSs with specific product profiles as functional elements for synthetic biology application.
Collapse
Affiliation(s)
- Dongmei Liang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (D.L.); (W.L.); (X.Y.); (Q.C.); (G.Z.)
- Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Weiguo Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (D.L.); (W.L.); (X.Y.); (Q.C.); (G.Z.)
- Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiaoguang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (D.L.); (W.L.); (X.Y.); (Q.C.); (G.Z.)
- Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Qinggele Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (D.L.); (W.L.); (X.Y.); (Q.C.); (G.Z.)
- Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (D.L.); (W.L.); (X.Y.); (Q.C.); (G.Z.)
- Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (D.L.); (W.L.); (X.Y.); (Q.C.); (G.Z.)
- Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Ministry of Education, Tianjin 300072, China
- Correspondence: ; Tel.: +86-22-8740-2107
| |
Collapse
|
12
|
Ali M, Miao L, Hou Q, Darwish DB, Alrdahe SS, Ali A, Benedito VA, Tadege M, Wang X, Zhao J. Overexpression of Terpenoid Biosynthesis Genes From Garden Sage ( Salvia officinalis) Modulates Rhizobia Interaction and Nodulation in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:783269. [PMID: 35003167 PMCID: PMC8733304 DOI: 10.3389/fpls.2021.783269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/24/2021] [Indexed: 05/17/2023]
Abstract
In legumes, many endogenous and environmental factors affect root nodule formation through several key genes, and the regulation details of the nodulation signaling pathway are yet to be fully understood. This study investigated the potential roles of terpenoids and terpene biosynthesis genes on root nodule formation in Glycine max. We characterized six terpenoid synthesis genes from Salvia officinalis by overexpressing SoTPS6, SoNEOD, SoLINS, SoSABS, SoGPS, and SoCINS in soybean hairy roots and evaluating root growth and nodulation, and the expression of strigolactone (SL) biosynthesis and early nodulation genes. Interestingly, overexpression of some of the terpenoid and terpene genes increased nodule numbers, nodule and root fresh weight, and root length, while others inhibited these phenotypes. These results suggest the potential effects of terpenoids and terpene synthesis genes on soybean root growth and nodulation. This study provides novel insights into epistatic interactions between terpenoids, root development, and nodulation in soybean root biology and open new avenues for soybean research.
Collapse
Affiliation(s)
- Mohammed Ali
- Egyptian Deserts Gene Bank, North Sinai Research Station, Department of Genetic Resources, Desert Research Center, Cairo, Egypt
| | - Long Miao
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Qiuqiang Hou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Doaa B. Darwish
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Salma Saleh Alrdahe
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed Ali
- Department of Plant Agricultural, Faculty of Agriculture Science, Al-Azhar University, Assiut, Egypt
| | - Vagner A. Benedito
- Plant and Soil Sciences Division, Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, WV, United States
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, United States
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei, China
- *Correspondence: Xiaobo Wang,
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Jian Zhao, ; orcid.org/0000-0002-4416-7334
| |
Collapse
|