1
|
Newton AC, Creissen HE, Erreguerena IA, Havis ND. Disease Management in Regenerative Cropping in the Context of Climate Change and Regulatory Restrictions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:337-356. [PMID: 38950449 DOI: 10.1146/annurev-phyto-121423-042037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Regenerative agriculture as a term and concept has gained much traction over recent years. Many farmers are convinced that by adopting these principles they will be able to address the triple crisis of biodiversity loss, climate change, and food security. However, the impact of regenerative agriculture practices on crop pathogens and their management has received little attention from the scientific community. Significant changes to cropping systems may result in certain diseases presenting more or less of a threat. Shifts in major diseases may have significant implications regarding optimal integrated pest management (IPM) strategies that aim to improve profitability and productivity in an environmentally sensitive manner. In particular, many aspects of regenerative agriculture change risk levels and risk management in ways that are central to effective IPM. This review outlines some of the challenges, gaps, and opportunities in our understanding of appropriate approaches for managing crop diseases in regenerative cropping systems.
Collapse
Affiliation(s)
- A C Newton
- Ecological Sciences, James Hutton Institute, Invergowrie, Dundee, United Kingdom;
| | - H E Creissen
- Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | - I A Erreguerena
- National Institute of Agricultural Technology (INTA Manfredi), Manfredi, Córdoba, Argentina
| | - N D Havis
- Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
2
|
Parveen N, Mondal P, Vanapalli KR, Das A, Goel S. Phytotoxicity of trihalomethanes and trichloroacetic acid on Vigna radiata and Allium cepa plant models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5100-5115. [PMID: 38110686 DOI: 10.1007/s11356-023-31419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Disinfection by-products (DBPs) are a concern due to their presence in chlorinated wastewater, sewage treatment plant discharge, and surface water, and their potential for environmental toxicity. Despite some attention to their ecotoxicity, little is known about the phytotoxicity of DBPs. This study aimed to evaluate the individual and combined phytotoxicity of four trihalomethanes (THMs: trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM) and their mixture (THM4)), and trichloroacetic acid (TCAA) using genotoxic and cytotoxic assays. The analysis included seed germination tests using Vigna radiata and root growth tests, mitosis studies, oxidative stress response, chromosomal aberrations (CA), and DNA laddering using Allium cepa. The results showed a progressive increase in root growth inhibition for both plant species as the concentration of DBPs increased. High concentrations of mixtures of four THMs resulted in significant (p < 0.05) antagonistic interactions. The effective concentration (EC50) value for V. radiata was 5655, 3145, 2690, 1465, 3570, and 725 mg/L for TCM, BDCM, DBCM, TBM, THM4, and TCAA, respectively. For A. cepa, the EC50 for the same contaminants was 700, 400, 350, 250, 450, and 105 mg/L, respectively. DBP cytotoxicity was observed through CAs, including C-metaphase, unseparated anaphase, lagging chromosome, sticky metaphase, and bridging. Mitotic depression (MD) increased with dose, reaching up to 54.4% for TCAA (50-500 mg/L). The electrophoresis assay showed DNA fragmentation and shearing, suggesting genotoxicity for some DBPs. The order of phytotoxicity for the tested DBPs was TCAA > TBM > DBCM > BDCM > THM4 > TCM. These findings underscore the need for further research on the phytotoxicity of DBPs, especially given their common use in agricultural practices such as irrigation and the use of sludge as manure.
Collapse
Affiliation(s)
- Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India
| | - Papiya Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Kumar Raja Vanapalli
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India.
| | - Abhijit Das
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
3
|
Ramoneda J, Le Roux J, Stadelmann S, Frossard E, Frey B, Gamper HA. Soil microbial community coalescence and fertilization interact to drive the functioning of the legume–rhizobium symbiosis. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Josep Ramoneda
- Group of Plant Nutrition Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Johannes Le Roux
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| | - Stefanie Stadelmann
- Group of Plant Nutrition Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Emmanuel Frossard
- Group of Plant Nutrition Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Beat Frey
- Rhizosphere Processes Group Swiss Federal Research Institute WSL Birmensdorf Switzerland
| | - Hannes Andres Gamper
- Group of Plant Nutrition Department of Environmental Systems Science ETH Zurich Zurich Switzerland
- Faculty of Science and Technology Free University of Bozen‐Bolzano Bolzano Italy
| |
Collapse
|
4
|
Wubs ERJ, Melchers PD, Bezemer TM. Potential for synergy in soil inoculation for nature restoration by mixing inocula from different successional stages. PLANT AND SOIL 2018; 433:147-156. [PMID: 30930494 PMCID: PMC6405189 DOI: 10.1007/s11104-018-3825-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/18/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Soil inoculation is a powerful tool for the restoration of terrestrial ecosystems. However, the origin of the donor material may differentially influence early- and late-successional plant species. Donor soil from late-succession stages may benefit target plant species due to a higher abundance of soil-borne mutualists. Arable soils, on the other hand, may suppress ruderals as they support more root herbivores that preferentially attack ruderal plant species, while mid-succession soils may be intermediate in their effects on ruderals and target species performance. We hypothesized that a mixture of arable and late-succession inocula may outperform pure late-successional inocula for restoration, by promoting late-successional target plants, while simultaneously reducing ruderal species' performance. METHODS We conducted a glasshouse experiment and tested the growth of ruderal and target plant species on pure and mixed inocula. The inocula were derived from arable fields, mid-succession grasslands and late-succession heathlands and we created a replacement series testing different pairwise mixitures for each of these inocula types (ratios: 100:0, 75:25, 50:50, 25:75, 0:100 of inoculum A and B respectively). RESULTS In general, we found that a higher proportion of heathland material led to a higher aboveground biomass of target plant species, while responses of ruderal species were variable. We found synergistic effects when specific inocula were mixed. In particular, a 50:50 mixture of heathland and arable soil in the inoculum led to a significant reduction in ruderal species biomass relative to the two respective pure inocula. The overall response was driven by Myosotis arvensis, since the other two ruderal species were not significantly affected. CONCLUSIONS Mixing inocula from different successional stages can lead to synergistic effects on restoration, but this highly depends on the specific combination of inocula, the mixing ratio and plant species. This suggest that specific inocula may need to be developed in order to rapidly restore different plant communities.
Collapse
Affiliation(s)
- E. R. Jasper Wubs
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University and Research (WUR), P.O. Box 8123, 6700 ES Wageningen, The Netherlands
| | - Pauline D. Melchers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - T. Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|