1
|
Li S, Li L, Tao Z, Lin S, Huang X. Efficient and sustained photosynthetic hydrogen production by algae under high light intensity. Trends Biotechnol 2025:S0167-7799(25)00116-7. [PMID: 40345897 DOI: 10.1016/j.tibtech.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 05/11/2025]
Abstract
Cleaner, lower carbon energy is needed for more sustainable development. Algal production of hydrogen directly from water and sunlight is a promising route toward such sustainable energy. However, algae can only produce hydrogen continuously in weak light. We developed a hybrid system using a designed thermosensitive material, poly(N-isopropylacrylamide)-co-poly(butyl acrylate) (PNIPAM-BA), and a photothermal material, graphene oxide (GO), to dynamically sense light intensity. This system regulates the entry of incident light to protect the activity of algal hydrogenase, which enables algae to efficiently produce hydrogen through photosynthesis across a range of light intensities (100-2000 μmol photons·m-2·s-1). Even under the standard maximum solar intensity of 2000 μmol photons·m-2·s-1, we achieved continuous hydrogen production over 25 days with an average hydrogen production rate of 17.53 μmol H2 (mg chlorophyll)-1 h-1. Thus, this study addresses the challenge of continuous hydrogen production by algae under high light intensity, greatly advancing prospects for large-scale outdoor hydrogen production.
Collapse
Affiliation(s)
- Shangsong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Luxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhengyu Tao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Song Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
2
|
Das S, Behera M, Ranjan Das S, Charan Behera K, Singh L. Green Seaweeds as a Potential Source of Biomolecules and Bioactive Peptides: Recent Progress and Applications - A Review. Chem Biodivers 2025; 22:e202401695. [PMID: 39343749 DOI: 10.1002/cbdv.202401695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Over the past few decades, seaweed has been explored as a sustainable source in biotechnological and biomedical industries because of its multiple biopotential actions. However, the composition of biomolecules such as carbohydrates, lipids, fatty acids, free amino acids, ash, minerals, vitamins, and especially protein in green seaweeds varies from species to species based on their growth stage and the environmental conditions. Specifically, seaweed-derived bioactive proteins and peptides have the potential for several health benefits. They serve as a balanced diet. Protein which is an extensive macronutrient in human nutrition, should be explored to avoid using animal-sourced protein, which is expensive to consume. Bioactive peptides that are isolated from marine algae consist of various kinds of functional properties. In the food industry, seaweeds are novel molecules for being used in both nutritional foods and nutraceuticals. In both in vitro and In vivo conditions, various seaweed-derived bioactive compounds have shown a broad range of biological activities including anti-cancer and immunomodulatory, anti-hypertensive, and anti-coagulant activities. Hence, this review paper discusses the screening of seaweed-derived biochemicals with a special focus on their proteins, peptide contents, and nutra-pharmaceutical values.
Collapse
Affiliation(s)
- Sasmita Das
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Odisha, Bhubaneswar, 751003, India
| | - Maheswari Behera
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Odisha, Bhubaneswar, 751003, India
| | - Smruti Ranjan Das
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | - Lakshmi Singh
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Odisha, Bhubaneswar, 751003, India
| |
Collapse
|
3
|
Li S, Xu Z, Lin S, Li L, Huang Y, Qiao X, Huang X. Temperature modulated sustainable on/off photosynthesis switching of microalgae towards hydrogen evolution. Chem Sci 2024; 15:6141-6150. [PMID: 38665525 PMCID: PMC11040640 DOI: 10.1039/d4sc00128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Despite great progress in the active interfacing between various abiotic materials and living organisms, the development of a smart polymer matrix with modulated functionality of algae towards the application of green bioenergy is still rare. Herein, we design a thermally sensitive poly(N-isopropylacrylamide)-co-poly(butyl acrylate) with an LCST (ca. 25 °C) as a chassis, which could co-assemble with algal cells based on hydrophobic interaction to generate a new type of robust hybrid hydrogel living material. By modulating the temperature to 30 °C, the volume of the polymer matrix is shrunk by 9 times, which allows the formation of physical shading and metabolism changing of the algae, and then triggers the functionality switching of the algae from photosynthetic oxygen production to hydrogen production. By contrast, by decreasing the temperature to 20 °C, the hybrid living materials go into a sol state where the algae behave normally with photosynthetic oxygen production. In particular, due to the proliferation of the algae in living materials, a long-term and exponential enhancement in the amount of hydrogen produced is achieved. Overall, it is anticipated that our investigations could provide a new paradigm for the development of polymer/living organism-based hybrid living materials with synergistic functionality boosting green biomanufacturing.
Collapse
Affiliation(s)
- Shangsong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology China
| | - Song Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology China
| | - Luxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology China
| | - Yan Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology China
| |
Collapse
|
4
|
Danial AW, Abdel-Basset R, Abdel-Kader HAA. Tuning photosynthetic oxygen for hydrogen evolution in synergistically integrated, sulfur deprived consortia of Coccomyxa chodatii and Rhodobium gokarnense at dim and high light. PHOTOSYNTHESIS RESEARCH 2023; 155:203-218. [PMID: 36418759 PMCID: PMC9879849 DOI: 10.1007/s11120-022-00961-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
In this work, tuning oxygen tension was targeted to improve hydrogen evolution. To achieve such target, various consortia of the chlorophyte Coccomyxa chodatii with a newly isolated photosynthetic purple non-sulfur bacterium (PNSB) strain Rhodobium gokarnense were set up, sulfur replete/deprived, malate/acetate fed, bicarbonate/sulfur added at dim/high light. C. chodatii and R. gokarnense are newly introduced to biohydrogen studies for the first time. Dim light was applied to avoid the inhibitory drawbacks of photosynthetic oxygen evolution, values of hydrogen are comparable with high light or even more and thus economically feasible to eliminate the costs of artificial illumination. Particularly, the consortium of 2n- (n = 1.9 × 105 cell/ml, sulfur deprived) demonstrated its perfection for the target, i.e., the highest possible cumulative hydrogen. This consortium exhibited negative photosynthesis, i.e., oxygen uptake in the light. Most hydrogen in consortia is from bacterial origin, although algae evolved much more hydrogen than bacteria on per cell basis, but for only one day (the second 24 h), as kinetics revealed. The higher hydrogen in unibacterial culture or consortia results from higher bacterial cell density (20 times). Consortia evolved more hydrogen than their respective separate cultures, further enhanced when bicarbonate and sulfur were supplemented at higher light. The share of algae relatively increased as bicarbonate or sulfur were added at higher light intensity, i.e., PSII activity partially recovered, resulting in a transient autotrophic hydrogen evolution. The addition of acetic acid in mixture with malic acid significantly enhanced the cumulative hydrogen levels, mostly decreased cellular ascorbic acid indicating less oxidative stress and relief of PSII, relative to malic acid alone. Starch, however, decreased, indicating the specificity of acetic acid. Exudates (reducing sugars, amino acids, and soluble proteins) were detected, indicating mutual utilization. Yet, hydrogen evolution is limited; tuning PSII activity remains a target for sustainable hydrogen production.
Collapse
Affiliation(s)
- Amal W Danial
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - R Abdel-Basset
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | - Huwida A A Abdel-Kader
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Li S, Li F, Zhu X, Liao Q, Chang JS, Ho SH. Biohydrogen production from microalgae for environmental sustainability. CHEMOSPHERE 2022; 291:132717. [PMID: 34757051 DOI: 10.1016/j.chemosphere.2021.132717] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen as a clean energy that is conducive to energy and environmental sustainability, playing a significant role in the alleviation of global climate change and energy crisis. Biohydrogen generation from microalgae has been reported as a highly attractive approach that can produce a benign clean energy carrier to achieve carbon neutrality and bioenergy sustainability. Thus, this review explored the mechanism of biohydrogen production from microalgae containing direct biophotolysis, indirect biophotolysis, photo fermentation, and dark fermentation. In general, dark fermentation of microalgae for biohydrogen production is relatively better than photo fermentation, biophotolysis, and microbial electrolysis, because it is able to consecutively generate hydrogen and is not reliant on energy supplied by natural sunlight. Besides, this review summarized potential algal strains for hydrogen production focusing on green microalgae and cyanobacteria. Moreover, a thorough review process was conducted to present hydrogen-producing enzymes targeting biosynthesis and localization of enzymes in microalgae. Notably, the most powerful hydrogen-producing enzymes are [Fe-Fe]-hydrogenases, which have an activity nearly 10-100 times better than [Ni-Fe]-hydrogenases and 1000 times better than nitrogenases. In addition, this work highlighted the major factors affecting low energy conversion efficiency and oxygen sensitivity of hydrogen-producing enzymes. Noting that the most practical pathway of biohydrogen generation was sulfur-deprivation compared with phosphorus, nitrogen, and magnesium deficiency. Further discussions in this work summarized the recent advancement in biohydrogen production from microalgae such as genetic engineering, microalgae-bacteria consortium, electro-bio-hydrogenation, and nanomaterials for developing enzyme stability and hydrolytic efficiency. More importantly, this review provided a summary of current limitations and future perspectives on the sustainable production of biohydrogen from microalgae.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan, ROC; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan, ROC
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
6
|
Yu Q, He J, Zhao Q, Wang X, Zhi Y, Li X, Li X, Li L, Ge B. Regulation of nitrogen source for enhanced photobiological H2 production by co-culture of Chlamydomonas reinhardtii and Mesorhizobium sangaii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Xiong D, Happe T, Hankamer B, Ross IL. Inducible high level expression of a variant ΔD19A,D58A-ferredoxin-hydrogenase fusion increases photohydrogen production efficiency in the green alga Chlamydomonas reinhardtii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Sun Y, Deng T, Zhang A, Moore MJ, Landis JB, Lin N, Zhang H, Zhang X, Huang J, Zhang X, Sun H, Wang H. Genome Sequencing of the Endangered Kingdonia uniflora (Circaeasteraceae, Ranunculales) Reveals Potential Mechanisms of Evolutionary Specialization. iScience 2020; 23:101124. [PMID: 32428861 PMCID: PMC7232092 DOI: 10.1016/j.isci.2020.101124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/20/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Kingdonia uniflora, an alpine herb, has an extremely narrow distribution and represents a model for studying evolutionary mechanisms of species that have adapted to undisturbed environments for evolutionarily long periods of time. We assembled a 1,004.7-Mb draft genome (encoding 43,301 genes) of K. uniflora and found significant overrepresentation in gene families associated with DNA repair, underrepresentation in gene families associated with stress response, and loss of most plastid ndh genes. During the evolutionary process, the overrepresentation of gene families involved in DNA repair could help asexual K. uniflora reduce the accumulation of deleterious mutations, while reducing genetic diversity, which is important in responding to environment fluctuations. The underrepresentation of gene families related to stress response and functional loss of ndh genes could be due to lack or loss of ability to respond to environmental changes caused by long-term adaptation to a relatively stable ecological environment.
Collapse
Affiliation(s)
- Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Aidi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | | | - Jacob B Landis
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA; School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| | - Nan Lin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Xiujun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Abstract
The current fossil fuel reserves are not sufficient to meet the increasing demand and very soon will become exhausted. Pollution, global warming, and inflated oil prices have led the quest for renewable energy sources. Algal biofuels represent a potential source of renewable energy. Algae, as the third generation feedstock, are suitable for biodiesel and bioethanol production due to their quick growth, excellent biomass yield, and high lipid and carbohydrate contents. With their huge potential, algae are expected to surpass the first and second generation feedstocks. Only a few thousand algal species have been investigated as possible biofuel sources, and none of them was ideal. This review summarizes the current status of algal biofuels, important steps of algal biofuel production, and the major commercial production challenges.
Collapse
|
10
|
Antal T, Konyukhov I, Volgusheva A, Plyusnina T, Khruschev S, Kukarskikh G, Goryachev S, Rubin A. Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. PHYSIOLOGIA PLANTARUM 2019; 165:476-486. [PMID: 29345315 DOI: 10.1111/ppl.12693] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
The development of high-performance photobioreactors equipped with automatic systems for non-invasive real-time monitoring of cultivation conditions and photosynthetic parameters is a challenge in algae biotechnology. Therefore, we developed a chlorophyll (Chl) fluorescence measuring system for the online recording of the light-induced fluorescence rise and the dark relaxation of the flash-induced fluorescence yield (Qa- - re-oxidation kinetics) in photobioreactors. This system provides automatic measurements in a broad range of Chl concentrations at high frequency of gas-tight sampling, and advanced data analysis. The performance of this new technique was tested on the green microalgae Chlamydomonas reinhardtii subjected to a sulfur deficiency stress and to long-term dark anaerobic conditions. More than thousand fluorescence kinetic curves were recorded and analyzed during aerobic and anaerobic stages of incubation. Lifetime and amplitude values of kinetic components were determined, and their dynamics plotted on heatmaps. Out of these data, stress-sensitive kinetic parameters were specified. This implemented apparatus can therefore be useful for the continuous real-time monitoring of algal photosynthesis in photobioreactors.
Collapse
Affiliation(s)
- Taras Antal
- Faculty of Biology, Department of Biophysics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ivan Konyukhov
- Faculty of Biology, Department of Biophysics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alena Volgusheva
- Faculty of Biology, Department of Biophysics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatyana Plyusnina
- Faculty of Biology, Department of Biophysics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergei Khruschev
- Faculty of Biology, Department of Biophysics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Galina Kukarskikh
- Faculty of Biology, Department of Biophysics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey Goryachev
- Faculty of Biology, Department of Biophysics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey Rubin
- Faculty of Biology, Department of Biophysics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
11
|
Wirth R, Lakatos G, Böjti T, Maróti G, Bagi Z, Rákhely G, Kovács KL. Anaerobic gaseous biofuel production using microalgal biomass – A review. Anaerobe 2018; 52:1-8. [DOI: 10.1016/j.anaerobe.2018.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
|
12
|
Nagy V, Vidal-Meireles A, Podmaniczki A, Szentmihályi K, Rákhely G, Zsigmond L, Kovács L, Tóth SZ. The mechanism of photosystem-II inactivation during sulphur deprivation-induced H 2 production in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:548-561. [PMID: 29474754 DOI: 10.1111/tpj.13878] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 05/11/2023]
Abstract
Sulphur limitation may restrain cell growth and viability. In the green alga Chlamydomonas reinhardtii, sulphur limitation may induce H2 production lasting for several days, which can be exploited as a renewable energy source. Sulphur limitation causes a large number of physiological changes, including the inactivation of photosystem II (PSII), leading to the establishment of hypoxia, essential for the increase in hydrogenase expression and activity. The inactivation of PSII has long been assumed to be caused by the sulphur-limited turnover of its reaction center protein PsbA. Here we reinvestigated this issue in detail and show that: (i) upon transferring Chlamydomonas cells to sulphur-free media, the cellular sulphur content decreases only by about 25%; (ii) as demonstrated by lincomycin treatments, PsbA has a significant turnover, and other photosynthetic subunits, namely RbcL and CP43, are degraded more rapidly than PsbA. On the other hand, sulphur limitation imposes oxidative stress early on, most probably involving the formation of singlet oxygen in PSII, which leads to an increase in the expression of GDP-L-galactose phosphorylase, playing an essential role in ascorbate biosynthesis. When accumulated to the millimolar concentration range, ascorbate may inactivate the oxygen-evolving complex and provide electrons to PSII, albeit at a low rate. In the absence of a functional donor side and sufficient electron transport, PSII reaction centers are inactivated and degraded. We therefore demonstrate that the inactivation of PSII is a complex and multistep process, which may serve to mitigate the damaging effects of sulphur limitation.
Collapse
Affiliation(s)
- Valéria Nagy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Anna Podmaniczki
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Klára Szentmihályi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
13
|
Vargas SR, Santos PVD, Giraldi LA, Zaiat M, Calijuri MDC. Anaerobic phototrophic processes of hydrogen production by different strains of microalgae Chlamydomonas sp. FEMS Microbiol Lett 2018; 365:4953416. [DOI: 10.1093/femsle/fny073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/23/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sarah Regina Vargas
- Department of Hydraulic and Sanitation, Universidade de São Paulo Escola de Engenharia de São Carlos, Av. Trabalhador São-carlense, 400, Arnold Schimidt, São Carlos 13566-590, Brazil
| | - Paulo Vagner dos Santos
- Department of Hydraulic and Sanitation, Universidade de São Paulo Escola de Engenharia de São Carlos, Av. Trabalhador São-carlense, 400, Arnold Schimidt, São Carlos 13566-590, Brazil
| | - Laís Albuquerque Giraldi
- Department of Hydraulic and Sanitation, Universidade de São Paulo Escola de Engenharia de São Carlos, Av. Trabalhador São-carlense, 400, Arnold Schimidt, São Carlos 13566-590, Brazil
| | - Marcelo Zaiat
- Department of Hydraulic and Sanitation, Universidade de São Paulo Escola de Engenharia de São Carlos, Av. João Dagnone, 1100, Santa Angelina, São Carlos-SP, 13563-120, Brazil
| | - Maria do Carmo Calijuri
- Department of Hydraulic and Sanitation, Universidade de São Paulo Escola de Engenharia de São Carlos, Av. Trabalhador São-carlense, 400, Arnold Schimidt, São Carlos 13566-590, Brazil
| |
Collapse
|
14
|
Nagy V, Podmaniczki A, Vidal-Meireles A, Tengölics R, Kovács L, Rákhely G, Scoma A, Tóth SZ. Water-splitting-based, sustainable and efficient H 2 production in green algae as achieved by substrate limitation of the Calvin-Benson-Bassham cycle. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:69. [PMID: 29560024 PMCID: PMC5858145 DOI: 10.1186/s13068-018-1069-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/07/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Photobiological H2 production has the potential of becoming a carbon-free renewable energy source, because upon the combustion of H2, only water is produced. The [Fe-Fe]-type hydrogenases of green algae are highly active, although extremely O2-sensitive. Sulphur deprivation is a common way to induce H2 production, which, however, relies substantially on organic substrates and imposes a severe stress effect resulting in the degradation of the photosynthetic apparatus. RESULTS We report on the establishment of an alternative H2 production method by green algae that is based on a short anaerobic induction, keeping the Calvin-Benson-Bassham cycle inactive by substrate limitation and preserving hydrogenase activity by applying a simple catalyst to remove the evolved O2. Cultures remain photosynthetically active for several days, with the electrons feeding the hydrogenases mostly derived from water. The amount of H2 produced is higher as compared to the sulphur-deprivation procedure and the process is photoautotrophic. CONCLUSION Our protocol demonstrates that it is possible to sustainably use algal cells as whole-cell catalysts for H2 production, which enables industrial application of algal biohydrogen production.
Collapse
Affiliation(s)
- Valéria Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Anna Podmaniczki
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Roland Tengölics
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Alberto Scoma
- Center for Geomicrobiology, Aarhus University, Ny Munkegade 116, 8000 Aarhus, Denmark
| | - Szilvia Z. Tóth
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| |
Collapse
|
15
|
Evaluation of light energy to H 2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Volgusheva AA, Jokel M, Allahverdiyeva Y, Kukarskikh GP, Lukashev EP, Lambreva MD, Krendeleva TE, Antal TK. Comparative analyses of H 2 photoproduction in magnesium- and sulfur-starved Chlamydomonas reinhardtii cultures. PHYSIOLOGIA PLANTARUM 2017; 161:124-137. [PMID: 28386962 DOI: 10.1111/ppl.12576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/09/2017] [Accepted: 02/27/2017] [Indexed: 05/27/2023]
Abstract
Magnesium (Mg)-deprived Chlamydomonas reinhardtii cells are capable to sustain hydrogen (H2 ) photoproduction at relatively high photosystem II (PSII) activity levels for an extended time period as compared with sulfur (S)-deprived cells. Herein, we present a comparative study of H2 photoproduction induced by Mg and S shortage to unravel the specific rearrangements of the photosynthetic machinery and cell metabolism occurring under the two deprivation protocols. The exhaustive analysis of photosynthetic activity and regulatory pathways, respiration and starch metabolism revealed the specific rearrangements of the photosynthetic machinery and cellular metabolism, which occur under the two deprivation conditions. The obtained results allowed us to conclude that the expanded time period of H2 production upon Mg-deprivation is due to the less harmful effects that Mg-depletion has on viability and metabolic performance of the cells. Unlike S-deprivation, the photosynthetic light and dark reactions in Mg-deprived cells remained active over the whole H2 production period. However, the elevated PSII activity in Mg-deprived cells was counteracted by the operation of pathways for O2 consumption that maintain anaerobic conditions in the presence of active water splitting.
Collapse
Affiliation(s)
- Alena A Volgusheva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Martina Jokel
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| | - Galina P Kukarskikh
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eugeni P Lukashev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maya D Lambreva
- Institute of Crystallography, National Research Council of Italy, Rome, Italy
| | - Tatayana E Krendeleva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Taras K Antal
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
17
|
Antal TK, Kukarskikh GP, Volgusheva AA, Krendeleva TE, Tyystjärvi E, Rubin AB. Hydrogen photoproduction by immobilized S-deprived Chlamydomonas reinhardtii : Effect of light intensity and spectrum, and initial medium pH. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Fan X, Wang H, Guo R, Yang D, Zhang Y, Yuan X, Qiu Y, Yang Z, Zhao X. Comparative study of the oxygen tolerance of Chlorella pyrenoidosa and Chlamydomonas reinhardtii CC124 in photobiological hydrogen production. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|