1
|
Teodor AH, Monge S, Aguilar D, Tames A, Nunez R, Gonzalez E, Rodríguez JJM, Bergkamp JJ, Starbird R, Renugopalakrishnan V, Bruce BD, Villarreal C. PEDOT-Carbon Nanotube Counter Electrodes and Bipyridine Cobalt (II/III) Mediators as Universally Compatible Components in Bio-Sensitized Solar Cells Using Photosystem I and Bacteriorhodopsin. Int J Mol Sci 2022; 23:3865. [PMID: 35409224 PMCID: PMC8998335 DOI: 10.3390/ijms23073865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
In nature, solar energy is captured by different types of light harvesting protein-pigment complexes. Two of these photoactivatable proteins are bacteriorhodopsin (bR), which utilizes a retinal moiety to function as a proton pump, and photosystem I (PSI), which uses a chlorophyll antenna to catalyze unidirectional electron transfer. Both PSI and bR are well characterized biochemically and have been integrated into solar photovoltaic (PV) devices built from sustainable materials. Both PSI and bR are some of the best performing photosensitizers in the bio-sensitized PV field, yet relatively little attention has been devoted to the development of more sustainable, biocompatible alternative counter electrodes and electrolytes for bio-sensitized solar cells. Careful selection of the electrolyte and counter electrode components is critical to designing bio-sensitized solar cells with more sustainable materials and improved device performance. This work explores the use of poly (3,4-ethylenedioxythiophene) (PEDOT) modified with multi-walled carbon nanotubes (PEDOT/CNT) as counter electrodes and aqueous-soluble bipyridine cobaltII/III complexes as direct redox mediators for both PSI and bR devices. We report a unique counter electrode and redox mediator system that can perform remarkably well for both bio-photosensitizers that have independently evolved over millions of years. The compatibility of disparate proteins with common mediators and counter electrodes may further the improvement of bio-sensitized PV design in a way that is more universally biocompatible for device outputs and longevity.
Collapse
Affiliation(s)
- Alexandra H. Teodor
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA;
| | - Stephanie Monge
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (S.M.); (D.A.); (A.T.)
- Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
- Maestría Ingeniería en Dispositivos Médicos, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Dariana Aguilar
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (S.M.); (D.A.); (A.T.)
- Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Alexandra Tames
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (S.M.); (D.A.); (A.T.)
- Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Roger Nunez
- Department of Chemistry and Biochemistry, California State University Bakersfield, Bakersfield, CA 93311, USA; (R.N.); (E.G.); (J.J.B.)
| | - Elaine Gonzalez
- Department of Chemistry and Biochemistry, California State University Bakersfield, Bakersfield, CA 93311, USA; (R.N.); (E.G.); (J.J.B.)
| | | | - Jesse J. Bergkamp
- Department of Chemistry and Biochemistry, California State University Bakersfield, Bakersfield, CA 93311, USA; (R.N.); (E.G.); (J.J.B.)
| | - Ricardo Starbird
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica;
- Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Venkatesan Renugopalakrishnan
- Children’s Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA;
- Department of Chemistry and Chemical Biology, Center for Renewable Energy Technology, Northeastern University, 317 Egan Center, Boston, MA 02138, USA
| | - Barry D. Bruce
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
- Chemical and Biomolecular Engineering Department, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Claudia Villarreal
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (S.M.); (D.A.); (A.T.)
- Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| |
Collapse
|
2
|
Lewis CM, Flory JD, Moore TA, Moore AL, Rittmann BE, Vermaas WFJ, Torres CI, Fromme P. Electrochemically Driven Photosynthetic Electron Transport in Cyanobacteria Lacking Photosystem II. J Am Chem Soc 2022; 144:2933-2942. [PMID: 35157427 DOI: 10.1021/jacs.1c09291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Light-activated photosystem II (PSII) carries out the critical step of splitting water in photosynthesis. However, PSII is susceptible to light-induced damage. Here, results are presented from a novel microbial electro-photosynthetic system (MEPS) that uses redox mediators in conjunction with an electrode to drive electron transport in live Synechocystis (ΔpsbB) cells lacking PSII. MEPS-generated, light-dependent current increased with light intensity up to 2050 μmol photons m-2 s-1, which yielded a delivery rate of 113 μmol electrons h-1 mg-chl-1 and an average current density of 150 A m-2 s-1 mg-chl-1. P700+ re-reduction kinetics demonstrated that initial rates exceeded wildtype PSII-driven electron delivery. The electron delivery occurs ahead of the cytochrome b6f complex to enable both NADPH and ATP production. This work demonstrates an electrochemical system that can drive photosynthetic electron transport, provides a platform for photosynthetic foundational studies, and has the potential for improving photosynthetic performance at high light intensities.
Collapse
Affiliation(s)
- Christine M Lewis
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Institute Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Institute Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Justin D Flory
- Biodesign Institute Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States.,Engineering Center for Negative Carbon Emmisions, at Arizona State University, Tempe, Arizona 85281, United States
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Julie Ann Wrigley Global Institute of Sustainability and Innovation, Arizona State University, Tempe Arizona 85287, United States
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Julie Ann Wrigley Global Institute of Sustainability and Innovation, Arizona State University, Tempe Arizona 85287, United States
| | - Bruce E Rittmann
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Institute Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Wim F J Vermaas
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - César I Torres
- Biodesign Institute Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States.,School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Institute Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Teodor AH, Ooi EJ, Medina J, Alarcon M, Vaughn MD, Bruce BD, Bergkamp JJ. Aqueous-soluble bipyridine cobalt(ii/iii) complexes act as direct redox mediators in photosystem I-based biophotovoltaic devices. RSC Adv 2021; 11:10434-10450. [PMID: 35423559 PMCID: PMC8695705 DOI: 10.1039/d0ra10221k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/28/2021] [Indexed: 01/13/2023] Open
Abstract
Sustainable energy production is critical for meeting growing worldwide energy demands. Due to its stability and reduction potential, photosystem I (PSI) is attractive as the photosensitizer in biophotovoltaic devices. Herein, we characterize aqueous and organic solvent soluble synthetic bipyridine-based cobalt complexes as redox mediators for PSI-based biophotovoltaics applications. Cobalt-based complexes are not destructive to protein and have appropriate midpoint potentials for electron donation to PSI. We report on PSI stability in organic solvents commonly used in biophotovoltaics. We also show the effects of a mixed organic solvent phase on PSI reduction kinetics, slowing reduction rates approximately 8–38 fold as compared to fully aqueous systems, with implications for dye regeneration rates in PSI-based biophotovoltaics. Further, we show evidence of direct electron transfer from cobalt complexes to PSI. Finally, we report on photocurrent generation from Co mediator-PSI biophotovoltaic devices. Taken together, we discuss the development of novel Co complexes and our ability to fine-tune their characteristics via functional groups and counteranion choice to drive interaction with a biological electron acceptor on multiple levels from redox midpoints, spectral overlap, and solvent requirements, among others. This work suggests that fine-tuning of redox active species for interaction with a biological partner is possible for the creation and improvement of low cost, carbon-neutral energy production in the future. Sustainable energy production is critical for meeting growing worldwide energy demands.![]()
Collapse
Affiliation(s)
- Alexandra H Teodor
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville and Oak Ridge National Laboratory USA
| | - Eu-Jee Ooi
- Department of Chemistry and Biochemistry, California State University Bakersfield USA
| | - Jackeline Medina
- Department of Chemistry and Biochemistry, California State University Bakersfield USA
| | - Miguel Alarcon
- Department of Chemistry and Biochemistry, California State University Bakersfield USA
| | | | - Barry D Bruce
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville and Oak Ridge National Laboratory USA .,Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville USA.,Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville USA
| | - Jesse J Bergkamp
- Department of Chemistry and Biochemistry, California State University Bakersfield USA
| |
Collapse
|
4
|
Teodor AH, Bruce BD. Putting Photosystem I to Work: Truly Green Energy. Trends Biotechnol 2020; 38:1329-1342. [PMID: 32448469 DOI: 10.1016/j.tibtech.2020.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Meeting growing energy demands sustainably is one of the greatest challenges facing the world. The sun strikes the Earth with sufficient energy in 1.5 h to meet annual world energy demands, likely making solar energy conversion part of future sustainable energy production plans. Photosynthetic organisms have been evolving solar energy utilization strategies for nearly 3.5 billion years, making reaction centers including the remarkably stable Photosystem I (PSI) especially interesting for biophotovoltaic device integration. Although these biohybrid devices have steadily improved, their output remains low compared with traditional photovoltaics. We discuss strategies and methods to improve PSI-based biophotovoltaics, focusing on PSI-surface interaction enhancement, electrolytes, and light-harvesting enhancement capabilities. Desirable features and current drawbacks to PSI-based devices are also discussed.
Collapse
Affiliation(s)
- Alexandra H Teodor
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Barry D Bruce
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
5
|
Brady NG, Li M, Ma Y, Gumbart JC, Bruce BD. Non-detergent isolation of a cyanobacterial photosystem I using styrene maleic acid alternating copolymers. RSC Adv 2019; 9:31781-31796. [PMID: 35527920 PMCID: PMC9072662 DOI: 10.1039/c9ra04619d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/02/2019] [Indexed: 11/21/2022] Open
Abstract
Trimeric Photosystem I (PSI) from the thermophilic cyanobacteriumThermosynechococcus elongatus(Te) is the largest membrane protein complex to be encapsulated within a SMALP to date.
Collapse
Affiliation(s)
- Nathan G. Brady
- Department of Biochemistry & Cellular and Molecular Biology
- University of Tennessee at Knoxville
- Knoxville
- USA
| | - Meng Li
- Department of Biochemistry & Cellular and Molecular Biology
- University of Tennessee at Knoxville
- Knoxville
- USA
- Bredesen Center for Interdisciplinary Research and Education
| | - Yue Ma
- Department of Biochemistry & Cellular and Molecular Biology
- University of Tennessee at Knoxville
- Knoxville
- USA
| | | | - Barry D. Bruce
- Department of Biochemistry & Cellular and Molecular Biology
- University of Tennessee at Knoxville
- Knoxville
- USA
- Bredesen Center for Interdisciplinary Research and Education
| |
Collapse
|
6
|
Kölsch A, Hejazi M, Stieger KR, Feifel SC, Kern JF, Müh F, Lisdat F, Lokstein H, Zouni A. Insights into the binding behavior of native and non-native cytochromes to photosystem I from Thermosynechococcus elongatus. J Biol Chem 2018; 293:9090-9100. [PMID: 29695502 DOI: 10.1074/jbc.ra117.000953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/18/2018] [Indexed: 01/09/2023] Open
Abstract
The binding of photosystem I (PS I) from Thermosynechococcus elongatus to the native cytochrome (cyt) c6 and cyt c from horse heart (cyt cHH) was analyzed by oxygen consumption measurements, isothermal titration calorimetry (ITC), and rigid body docking combined with electrostatic computations of binding energies. Although PS I has a higher affinity for cyt cHH than for cyt c6, the influence of ionic strength and pH on binding is different in the two cases. ITC and theoretical computations revealed the existence of unspecific binding sites for cyt cHH besides one specific binding site close to P700 Binding to PS I was found to be the same for reduced and oxidized cyt cHH Based on this information, suitable conditions for cocrystallization of cyt cHH with PS I were found, resulting in crystals with a PS I:cyt cHH ratio of 1:1. A crystal structure at 3.4-Å resolution was obtained, but cyt cHH cannot be identified in the electron density map because of unspecific binding sites and/or high flexibility at the specific binding site. Modeling the binding of cyt c6 to PS I revealed a specific binding site where the distance and orientation of cyt c6 relative to P700 are comparable with cyt c2 from purple bacteria relative to P870 This work provides new insights into the binding modes of different cytochromes to PS I, thus facilitating steps toward solving the PS I-cyt c costructure and a more detailed understanding of natural electron transport processes.
Collapse
Affiliation(s)
- Adrian Kölsch
- From the Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany,
| | - Mahdi Hejazi
- From the Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Kai R Stieger
- Biosystems Technology, Institute for Applied Life Sciences, University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Sven C Feifel
- Biosystems Technology, Institute for Applied Life Sciences, University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Jan F Kern
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria, and
| | - Fred Lisdat
- Biosystems Technology, Institute for Applied Life Sciences, University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, CZ-121 16 Praha 2, Czech Republic
| | - Athina Zouni
- From the Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany,
| |
Collapse
|