1
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
2
|
Nguyen HH, Song Y, Maret EL, Silori Y, Willow R, Yocum CF, Ogilvie JP. Charge separation in the photosystem II reaction center resolved by multispectral two-dimensional electronic spectroscopy. SCIENCE ADVANCES 2023; 9:eade7190. [PMID: 37134172 PMCID: PMC10156117 DOI: 10.1126/sciadv.ade7190] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The photosystem II reaction center (PSII RC) performs the primary energy conversion steps of oxygenic photosynthesis. While the PSII RC has been studied extensively, the similar time scales of energy transfer and charge separation and the severely overlapping pigment transitions in the Qy region have led to multiple models of its charge separation mechanism and excitonic structure. Here, we combine two-dimensional electronic spectroscopy (2DES) with a continuum probe and two-dimensional electronic vibrational spectroscopy (2DEV) to study the cyt b559-D1D2 PSII RC at 77 K. This multispectral combination correlates the overlapping Qy excitons with distinct anion and pigment-specific Qx and mid-infrared transitions to resolve the charge separation mechanism and excitonic structure. Through extensive simultaneous analysis of the multispectral 2D data, we find that charge separation proceeds on multiple time scales from a delocalized excited state via a single pathway in which PheoD1 is the primary electron acceptor, while ChlD1 and PD1 act in concert as the primary electron donor.
Collapse
Affiliation(s)
- Hoang H Nguyen
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| | - Yin Song
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
- School of Optics and Photonics, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Elizabeth L Maret
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| | - Yogita Silori
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| | - Rhiannon Willow
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| | - Charles F Yocum
- Department of Molecular, Cellular and Developmental Biology and Department of Chemistry, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Structure of the Acidobacteria homodimeric reaction center bound with cytochrome c. Nat Commun 2022; 13:7745. [PMID: 36517472 PMCID: PMC9751088 DOI: 10.1038/s41467-022-35460-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Photosynthesis converts light energy to chemical energy to fuel life on earth. Light energy is harvested by antenna pigments and transferred to reaction centers (RCs) to drive the electron transfer (ET) reactions. Here, we present cryo-electron microscopy (cryo-EM) structures of two forms of the RC from the microaerophilic Chloracidobacterium thermophilum (CabRC): one containing 10 subunits, including two different cytochromes; and the other possessing two additional subunits, PscB and PscZ. The larger form contained 2 Zn-bacteriochlorophylls, 16 bacteriochlorophylls, 10 chlorophylls, 2 lycopenes, 2 hemes, 3 Fe4S4 clusters, 12 lipids, 2 Ca2+ ions and 6 water molecules, revealing a type I RC with an ET chain involving two hemes and a hybrid antenna containing bacteriochlorophylls and chlorophylls. Our results provide a structural basis for understanding the excitation energy and ET within the CabRC and offer evolutionary insights into the origin and adaptation of photosynthetic RCs.
Collapse
|
4
|
Phylogenomic Analyses and Molecular Signatures Elucidating the Evolutionary Relationships amongst the Chlorobia and Ignavibacteria Species: Robust Demarcation of Two Family-Level Clades within the Order Chlorobiales and Proposal for the Family Chloroherpetonaceae fam. nov. Microorganisms 2022; 10:microorganisms10071312. [PMID: 35889031 PMCID: PMC9318685 DOI: 10.3390/microorganisms10071312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
Evolutionary relationships amongst Chlorobia and Ignavibacteria species/strains were examined using phylogenomic and comparative analyses of genome sequences. In a phylogenomic tree based on 282 conserved proteins, the named Chlorobia species formed a monophyletic clade containing two distinct subclades. One clade, encompassing the genera Chlorobaculum, Chlorobium, Pelodictyon, and Prosthecochloris, corresponds to the family Chlorobiaceae, whereas another clade, harboring Chloroherpeton thalassium, Candidatus Thermochlorobacter aerophilum, Candidatus Thermochlorobacteriaceae bacterium GBChlB, and Chlorobium sp. 445, is now proposed as a new family (Chloroherpetonaceae fam. nov). In parallel, our comparative genomic analyses have identified 47 conserved signature indels (CSIs) in diverse proteins that are exclusively present in members of the class Chlorobia or its two families, providing reliable means for identification. Two known Ignavibacteria species in our phylogenomic tree are found to group within a larger clade containing several Candidatus species and uncultured Chlorobi strains. A CSI in the SecY protein is uniquely shared by the species/strains from this “larger Ignavibacteria clade”. Two additional CSIs, which are commonly shared by Chlorobia species and the “larger Ignavibacteria clade”, support a specific relationship between these two groups. The newly identified molecular markers provide novel tools for genetic and biochemical studies and identification of these organisms.
Collapse
|
5
|
Ai J, Guo J, Li Y, Zhong X, Lv Y, Li J, Yang A. The diversity of microbes and prediction of their functions in karst caves under the influence of human tourism activities-a case study of Zhijin Cave in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25858-25868. [PMID: 34854002 DOI: 10.1007/s11356-021-17783-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms, sensitive to the surrounding environment changes, show how the cave environment can be impacted by human activities. Zhijin Cave, featured with the most well-developed karst landform in China, has been open to tourists for more than 30 years. This study explored the microbial diversity in a karst cave and the impacts of tourism activities on the microbial communities and the community structures of bacteria and archaea in three niches in Zhijin Cave, including the mixture of bacteria and cyanobacteria on the rock wall, the aquatic sediments, and the surface sediments, using 16S rRNA high-throughput sequencing technology. It was found that Actinobacteriota and Proteobacteria were the dominant bacteria in the cave and Crenarchaeota and Thermoplasmatota were the dominant archaea. The correlation between microorganisms and environmental variables in the cave showed that archaea were more affected by pH and ORP than bacteria and F-, Cl-, NO3-, and SO42- were all positively relevant to the distribution of most bacteria and archaea in the cave. PICRUSt's prediction of microbial functions also indicated that abundance of the bacteria's functions was higher than that of the archaea. The intention of this study was to improve the understanding, development, and protection of microbial resources in caves.
Collapse
Affiliation(s)
- Jia Ai
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
| | - Jianeng Guo
- Management Office of Zhijin Cave Scenic Area, Bijie, 552100, Guizhou, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China.
| | - Xiong Zhong
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
| | - Yang Lv
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
| |
Collapse
|
6
|
Excitonic structure and charge separation in the heliobacterial reaction center probed by multispectral multidimensional spectroscopy. Nat Commun 2021; 12:2801. [PMID: 33990569 PMCID: PMC8121816 DOI: 10.1038/s41467-021-23060-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
Photochemical reaction centers are the engines that drive photosynthesis. The reaction center from heliobacteria (HbRC) has been proposed to most closely resemble the common ancestor of photosynthetic reaction centers, motivating a detailed understanding of its structure-function relationship. The recent elucidation of the HbRC crystal structure motivates advanced spectroscopic studies of its excitonic structure and charge separation mechanism. We perform multispectral two-dimensional electronic spectroscopy of the HbRC and corresponding numerical simulations, resolving the electronic structure and testing and refining recent excitonic models. Through extensive examination of the kinetic data by lifetime density analysis and global target analysis, we reveal that charge separation proceeds via a single pathway in which the distinct A0 chlorophyll a pigment is the primary electron acceptor. In addition, we find strong delocalization of the charge separation intermediate. Our findings have general implications for the understanding of photosynthetic charge separation mechanisms, and how they might be tuned to achieve different functional goals. The primary energy conversion step in photosynthesis, charge separation, takes place in the reaction center. Here the authors investigate the heliobacterial reaction center using multispectral two-dimensional electronic spectroscopy, identifying the primary electron acceptor and revealing the charge separation mechanism.
Collapse
|
7
|
Wiseschart A, Mhuantong W, Tangphatsornruang S, Chantasingh D, Pootanakit K. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiol 2019; 19:144. [PMID: 31248378 PMCID: PMC6598295 DOI: 10.1186/s12866-019-1521-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Background Due to the cave oligotrophic environment, this habitat presents a challenge for microorganisms to colonize and thrive. However, it has been well documented that microorganisms play important roles in cave development. Survival of microbes in this unique habitat likely involves a broad range of adaptive capabilities. Recently, cave microbiomes all over the world are of great scientific interest. However, the majority of investigations focused mostly on small subunit ribosomal RNA (16S rRNA) gene, leaving the ecological role of the microbial community largely unknown. Here, we are particularly interested in exploring the taxonomic composition and metabolic potential of microorganisms in soil from Manao-Pee cave, a subterranean limestone cave in the western part of Thailand, by using high-throughput shotgun metagenomic sequencing. Results From taxonomic composition analysis using ribosomal RNA genes (rRNA), the results confirmed that Actinobacteria (51.2%) and Gammaproteobacteria (24.4%) were the dominant bacterial groups in the cave soil community. Metabolic potential analysis, based on six functional modules of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, revealed that functional genes involved in microbial metabolisms are highly represented in this community (40.6%). To better understand how microbes thrive under unfavorable cave condition, we focused on microbial energy metabolism. The results showed that microbial genes involved in oxidative phosphorylation were the most dominant (28.8%) in Manao-Pee cave, and were followed by methane metabolism (20.5%), carbon fixation (16.0%), nitrogen metabolism (14.7%), and sulfur metabolism (6.3%). In addition, microbial genes involved in xenobiotic biodegradation (26 pathways) and in production of secondary metabolites (27 pathways) were also identified. Conclusion In addition to providing information on microbial diversity, we also gained insights into microbial adaptations and survival strategies under cave conditions. Based on rRNA genes, the results revealed that bacteria belonging to the Actinobacteria and Gammaproteobacteria were the most abundant in this community. From metabolic potential analysis, energy and nutrient sources that sustain diverse microbial population in this community might be atmospheric gases (methane, carbon dioxide, nitrogen), inorganic sulfur, and xenobiotic compounds. In addition, the presence of biosynthetic pathways of secondary metabolites suggested that they might play important ecological roles in the cave microbiome. Electronic supplementary material The online version of this article (10.1186/s12866-019-1521-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apirak Wiseschart
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phuttamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 133 Thailand Science Park, Paholyothin Rd, Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 133 Thailand Science Park, Paholyothin Rd, Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Duriya Chantasingh
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 133 Thailand Science Park, Paholyothin Rd, Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Kusol Pootanakit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phuttamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
8
|
Khadka B, Gupta RS. Novel Molecular Signatures in the PIP4K/PIP5K Family of Proteins Specific for Different Isozymes and Subfamilies Provide Important Insights into the Evolutionary Divergence of this Protein Family. Genes (Basel) 2019; 10:genes10040312. [PMID: 31010098 PMCID: PMC6523245 DOI: 10.3390/genes10040312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
Members of the PIP4K/PIP5K family of proteins, which generate the highly important secondary messenger phosphatidylinositol-4,5-bisphosphate, play central roles in regulating diverse signaling pathways. In eukaryotic organisms, multiple isozymes and subfamilies of PIP4K/PIP5K proteins are found and it is of much interest to understand their evolution and species distribution and what unique molecular and biochemical characteristics distinguish specific isozymes and subfamilies of proteins. We report here the species distribution of different PIP4K/PIP5K family of proteins in eukaryotic organisms and phylogenetic analysis based on their protein sequences. Our results indicate that the distinct homologs of both PIP4K and PIP5K are found in different organisms belonging to the Holozoa clade of eukaryotes, which comprises of various metazoan phyla as well as their close unicellular relatives Choanoflagellates and Filasterea. In contrast, the deeper-branching eukaryotic lineages, as well as plants and fungi, contain only a single homolog of the PIP4K/PIP5K proteins. In parallel, our comparative analyses of PIP4K/PIP5K protein sequences have identified six highly-specific molecular markers consisting of conserved signature indels (CSIs) that are uniquely shared by either the PIP4K or PIP5K proteins, or both, or specific subfamilies of these proteins. Of these molecular markers, 2 CSIs are distinctive characteristics of all PIP4K homologs, 1 CSI distinguishes the PIP4K and PIP5K homologs from the Holozoa clade of species from the ancestral form of PIP4K/PIP5K found in deeper-branching eukaryotic lineages. The remaining three CSIs are specific for the PIP5Kα, PIP5Kβ, and PIP4Kγ subfamilies of proteins from vertebrate species. These molecular markers provide important means for distinguishing different PIP4K/PIP5K isozymes as well as some of their subfamilies. In addition, the distribution patterns of these markers in different isozymes provide important insights into the evolutionary divergence of PIP4K/PIP5K proteins. Our results support the view that the Holozoa clade of eukaryotic organisms shared a common ancestor exclusive of the other eukaryotic lineages and that the initial gene duplication event leading to the divergence of distinct types of PIP4K and PIP5K homologs occurred in a common ancestor of this clade. Based on the results gleaned from different studies presented here, a model for the evolutionary divergence of the PIP4K/PIP5K family of proteins is presented.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada.
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
9
|
Orf GS, Gisriel C, Redding KE. Evolution of photosynthetic reaction centers: insights from the structure of the heliobacterial reaction center. PHOTOSYNTHESIS RESEARCH 2018; 138:11-37. [PMID: 29603081 DOI: 10.1007/s11120-018-0503-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 05/24/2023]
Abstract
The proliferation of phototrophy within early-branching prokaryotes represented a significant step forward in metabolic evolution. All available evidence supports the hypothesis that the photosynthetic reaction center (RC)-the pigment-protein complex in which electromagnetic energy (i.e., photons of visible or near-infrared light) is converted to chemical energy usable by an organism-arose once in Earth's history. This event took place over 3 billion years ago and the basic architecture of the RC has diversified into the distinct versions that now exist. Using our recent 2.2-Å X-ray crystal structure of the homodimeric photosynthetic RC from heliobacteria, we have performed a robust comparison of all known RC types with available structural data. These comparisons have allowed us to generate hypotheses about structural and functional aspects of the common ancestors of extant RCs and to expand upon existing evolutionary schemes. Since the heliobacterial RC is homodimeric and loosely binds (and reduces) quinones, we support the view that it retains more ancestral features than its homologs from other groups. In the evolutionary scenario we propose, the ancestral RC predating the division between Type I and Type II RCs was homodimeric, loosely bound two mobile quinones, and performed an inefficient disproportionation reaction to reduce quinone to quinol. The changes leading to the diversification into Type I and Type II RCs were separate responses to the need to optimize this reaction: the Type I lineage added a [4Fe-4S] cluster to facilitate double reduction of a quinone, while the Type II lineage heterodimerized and specialized the two cofactor branches, fixing the quinone in the QA site. After the Type I/II split, an ancestor to photosystem I fixed its quinone sites and then heterodimerized to bind PsaC as a new subunit, as responses to rising O2 after the appearance of the oxygen-evolving complex in an ancestor of photosystem II. These pivotal events thus gave rise to the diversity that we observe today.
Collapse
Affiliation(s)
- Gregory S Orf
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
| | - Christopher Gisriel
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin E Redding
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
10
|
Danchin A, Ouzounis C, Tokuyasu T, Zucker JD. No wisdom in the crowd: genome annotation in the era of big data - current status and future prospects. Microb Biotechnol 2018; 11:588-605. [PMID: 29806194 PMCID: PMC6011933 DOI: 10.1111/1751-7915.13284] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Science and engineering rely on the accumulation and dissemination of knowledge to make discoveries and create new designs. Discovery-driven genome research rests on knowledge passed on via gene annotations. In response to the deluge of sequencing big data, standard annotation practice employs automated procedures that rely on majority rules. We argue this hinders progress through the generation and propagation of errors, leading investigators into blind alleys. More subtly, this inductive process discourages the discovery of novelty, which remains essential in biological research and reflects the nature of biology itself. Annotation systems, rather than being repositories of facts, should be tools that support multiple modes of inference. By combining deduction, induction and abduction, investigators can generate hypotheses when accurate knowledge is extracted from model databases. A key stance is to depart from 'the sequence tells the structure tells the function' fallacy, placing function first. We illustrate our approach with examples of critical or unexpected pathways, using MicroScope to demonstrate how tools can be implemented following the principles we advocate. We end with a challenge to the reader.
Collapse
Affiliation(s)
- Antoine Danchin
- Integromics, Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, Hong Kong University, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Christos Ouzounis
- Biological Computation and Process Laboratory, Centre for Research and Technology Hellas, Chemical Process and Energy Resources Institute, Thessalonica, 57001, Greece
| | - Taku Tokuyasu
- Shenzhen Institutes of Advanced Technology, Institute of Synthetic Biology, Shenzhen University Town, 1068 Xueyuan Avenue, Shenzhen, China
| | - Jean-Daniel Zucker
- Integromics, Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| |
Collapse
|
11
|
Gisriel C, Sarrou I, Ferlez B, Golbeck JH, Redding KE, Fromme R. Structure of a symmetric photosynthetic reaction center-photosystem. Science 2017; 357:1021-1025. [PMID: 28751471 DOI: 10.1126/science.aan5611] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/19/2017] [Indexed: 11/02/2022]
Abstract
Reaction centers are pigment-protein complexes that drive photosynthesis by converting light into chemical energy. It is believed that they arose once from a homodimeric protein. The symmetry of a homodimer is broken in heterodimeric reaction-center structures, such as those reported previously. The 2.2-angstrom resolution x-ray structure of the homodimeric reaction center-photosystem from the phototroph Heliobacterium modesticaldum exhibits perfect C2 symmetry. The core polypeptide dimer and two small subunits coordinate 54 bacteriochlorophylls and 2 carotenoids that capture and transfer energy to the electron transfer chain at the center, which performs charge separation and consists of 6 (bacterio)chlorophylls and an iron-sulfur cluster; unlike other reaction centers, it lacks a bound quinone. This structure preserves characteristics of the ancestral reaction center, providing insight into the evolution of photosynthesis.
Collapse
Affiliation(s)
- Christopher Gisriel
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Iosifina Sarrou
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
| | - Bryan Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin E Redding
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.,Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ 85287, USA
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA. .,Center of Applied Structural Discovery, Biodesign Institute, Tempe, AZ 85287, USA
| |
Collapse
|