1
|
Shi L, Cai Y, Zhang Y, Liu J, Zhang M, Chen F, Shi X, Yu Y, Li P, Wu QL. Contrasting but interconnecting metatranscriptome between large buoyant and small suspended particles during cyanobacterial blooming in the large shallow eutrophic Taihu Lake. WATER RESEARCH 2024; 267:122539. [PMID: 39378731 DOI: 10.1016/j.watres.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Large cyanobacterial colonies as visible particles floating on the water surface provide different microbial niches from small particles suspended in the water column in eutrophic freshwaters. However, functional potential differences among microbes colonizing on these contrasting particles are not well understood. Here, the metatranscriptome of microbes inhabiting these two kinds of particles during cyanobacterial bloom (dominated by Microcystis spp.) was analyzed and compared. Community compositions of active bacteria associated with small suspended particles (SA, aggregates dominated by small cyanobacteria colonies, other algae and detritus, etc.) were much more diverse than those associated with large buoyant cyanobacterial colonies (LA), but functional diversity was not significantly different between them. Transcripts related to phosphorus and nitrogen metabolism from Proteobacteria, and respiration from Bacteroidetes were enriched in LA, whereas many more pathways such as photosynthesis from Cyanobacteria, cofactors, and protein metabolism from all dominant phyla were enriched in SA. Nevertheless, many transcripts were significantly correlated within and between LA and SA. These results indicated interconnection of bacteria between LA and SA. Moreover, many transcripts in SA were significantly correlated with transcripts from cyanobacterial phycobilisome in LA, indicating that bacterial metabolism in SA may influence cyanobacterial biomass in LA. Thus, the prediction of cyanobacterial blooms by bacterial activity in SA may be possible when there is no visible bloom on the water surface.
Collapse
Affiliation(s)
- Limei Shi
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuqing Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Jiayin Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Min Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Feizhou Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Sino-Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Shi
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Yang Yu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Pengfu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Sino-Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing, China; Fuxianhu Research Station for Plateau Deep Lake Ecosystem, Chinese Academy of Sciences, Chengjiang, China.
| |
Collapse
|
2
|
Pohland AC, Bernát G, Geimer S, Schneider D. Mg 2+ limitation leads to a decrease in chlorophyll, resulting in an unbalanced photosynthetic apparatus in the cyanobacterium Synechocytis sp. PCC6803. PHOTOSYNTHESIS RESEARCH 2024; 162:13-27. [PMID: 39037691 DOI: 10.1007/s11120-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Mg2+, the most abundant divalent cation in living cells, plays a pivotal role in numerous enzymatic reactions and is of particular importance for organisms performing oxygenic photosynthesis. Its significance extends beyond serving as the central ion of the chlorophyll molecule, as it also acts as a counterion during the light reaction to balance the proton gradient across the thylakoid membranes. In this study, we investigated the effects of Mg2+ limitation on the physiology of the well-known model microorganism Synechocystis sp. PCC6803. Our findings reveal that Mg2+ deficiency triggers both morphological and functional changes. As seen in other oxygenic photosynthetic organisms, Mg2+ deficiency led to a decrease in cellular chlorophyll concentration. Moreover, the PSI-to-PSII ratio decreased, impacting the photosynthetic efficiency of the cell. In line with this, Mg2+ deficiency led to a change in the proton gradient built up across the thylakoid membrane upon illumination.
Collapse
Affiliation(s)
- Anne-Christin Pohland
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz, 55128, Germany
- HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Gábor Bernát
- HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Stefan Geimer
- Cell Biology and Electron Microscopy, University of Bayreuth, Bayreuth, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz, 55128, Germany.
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Huang E, Tang J, Song S, Yan H, Yu X, Luo C, Chen Y, Ji H, Chen A, Zhou J, Liao H. Caffeic acid O-methyltransferase from Ligusticum chuanxiong alleviates drought stress, and improves lignin and melatonin biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1458296. [PMID: 39359625 PMCID: PMC11445181 DOI: 10.3389/fpls.2024.1458296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Drought stress is a major constraint on plant growth and agricultural productivity. Caffeic acid O-methyltransferase (COMT), an enzyme involved in the methylation of various substrates, plays a pivotal role in plant responses to abiotic stress. The involvement of COMTs in drought response, particularly through the enhancement of lignin and melatonin biosynthesis, remains poorly understood. In this study, LcCOMT was firstly proposed to be associated with the biosynthesis of both lignin and melatonin, as demonstrated through sequence comparison, phylogenetic analysis, and conserved motif identification. In vitro enzymatic assays revealed that LcCOMT effectively methylates N-acetylserotonin to melatonin, albeit with a higher Km value compared to caffeic acid. Site-directed mutagenesis of residues Phe171 and Asp269 resulted in a significant reduction in catalytic activity for caffeic acid, with minimal impact on N-acetylserotonin, underscoring the specificity of these residues in substrate binding and catalysis. Under drought conditions, LcCOMT expression was significantly upregulated. Overexpression of LcCOMT gene in Arabidopsis plants conferred enhanced drought tolerance, characterized by elevated lignin and melatonin levels, increased chlorophyll and carotenoid content, heightened activities of antioxidant enzymes peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD), and reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) accumulation. This study is among the few to demonstrate that COMT-mediated drought tolerance is achieved through the simultaneous promotion of lignin and melatonin biosynthesis. LcCOMT represents the first functionally characterized COMT in Apiaceae family, and it holds potential as a target for genetic enhancement of drought tolerance in future crop improvement strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Pfennig T, Kullmann E, Zavřel T, Nakielski A, Ebenhöh O, Červený J, Bernát G, Matuszyńska AB. Shedding light on blue-green photosynthesis: A wavelength-dependent mathematical model of photosynthesis in Synechocystis sp. PCC 6803. PLoS Comput Biol 2024; 20:e1012445. [PMID: 39264951 PMCID: PMC11421815 DOI: 10.1371/journal.pcbi.1012445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Cyanobacteria hold great potential to revolutionize conventional industries and farming practices with their light-driven chemical production. To fully exploit their photosynthetic capacity and enhance product yield, it is crucial to investigate their intricate interplay with the environment including the light intensity and spectrum. Mathematical models provide valuable insights for optimizing strategies in this pursuit. In this study, we present an ordinary differential equation-based model for the cyanobacterium Synechocystis sp. PCC 6803 to assess its performance under various light sources, including monochromatic light. Our model can reproduce a variety of physiologically measured quantities, e.g. experimentally reported partitioning of electrons through four main pathways, O2 evolution, and the rate of carbon fixation for ambient and saturated CO2. By capturing the interactions between different components of a photosynthetic system, our model helps in understanding the underlying mechanisms driving system behavior. Our model qualitatively reproduces fluorescence emitted under various light regimes, replicating Pulse-amplitude modulation (PAM) fluorometry experiments with saturating pulses. Using our model, we test four hypothesized mechanisms of cyanobacterial state transitions for ensemble of parameter sets and found no physiological benefit of a model assuming phycobilisome detachment. Moreover, we evaluate metabolic control for biotechnological production under diverse light colors and irradiances. We suggest gene targets for overexpression under different illuminations to increase the yield. By offering a comprehensive computational model of cyanobacterial photosynthesis, our work enhances the basic understanding of light-dependent cyanobacterial behavior and sets the first wavelength-dependent framework to systematically test their producing capacity for biocatalysis.
Collapse
Affiliation(s)
- Tobias Pfennig
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elena Kullmann
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Andreas Nakielski
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Ebenhöh
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Theoretical and Quantitative Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Gábor Bernát
- Aquatic Botany and Microbial Ecology Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Anna Barbara Matuszyńska
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Kratzl F, Urban M, Pandhal J, Shi M, Meng C, Kleigrewe K, Kremling A, Pflüger-Grau K. Pseudomonas putida as saviour for troubled Synechococcus elongatus in a synthetic co-culture - interaction studies based on a multi-OMICs approach. Commun Biol 2024; 7:452. [PMID: 38609451 PMCID: PMC11014904 DOI: 10.1038/s42003-024-06098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In their natural habitats, microbes rarely exist in isolation; instead, they thrive in consortia, where various interactions occur. In this study, a defined synthetic co-culture of the cyanobacterium S. elongatus cscB, which supplies sucrose to the heterotrophic P. putida cscRABY, is investigated to identify potential interactions. Initial experiments reveal a remarkable growth-promoting effect of the heterotrophic partner on the cyanobacterium, resulting in an up to 80% increase in the growth rate and enhanced photosynthetic capacity. Vice versa, the presence of the cyanobacterium has a neutral effect on P. putida cscRABY, highlighting the resilience of pseudomonads against stress and their potential as co-culture partners. Next, a suitable reference process reinforcing the growth-promoting effect is established in a parallel photobioreactor system, which sets the basis for the analysis of the co-culture at the transcriptome, proteome, and metabolome levels. In addition to several moderate changes, including alterations in the metabolism and stress response in both microbes, this comprehensive multi-OMICs approach strongly hints towards the exchange of further molecules beyond the unidirectional feeding with sucrose. Taken together, these findings provide valuable insights into the complex dynamics between both co-culture partners, indicating multi-level interactions, which can be employed for further streamlining of the co-cultivation system.
Collapse
Affiliation(s)
- Franziska Kratzl
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Marlene Urban
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Mengxun Shi
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Andreas Kremling
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Katharina Pflüger-Grau
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany.
| |
Collapse
|
6
|
Sławski J, Maciejewski J, Szukiewicz R, Gieczewska K, Grzyb J. Quantum Dots Assembled with Photosynthetic Antennae on a Carbon Nanotube Platform: A Nanohybrid for the Enhancement of Light Energy Harvesting. ACS OMEGA 2023; 8:41991-42003. [PMID: 37969970 PMCID: PMC10633852 DOI: 10.1021/acsomega.3c07673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
The construction of artificial systems for solar energy harvesting is still a challenge. There needs to be a light-harvesting antenna with a broad absorption spectrum and then the possibility to transfer harvested energy to the reaction center, converting photons into a storable form of energy. Bioinspired and bioderivative elements may help in achieving this aim. Here, we present an option for light harvesting: a nanobiohybrid of colloidal, semiconductor quantum dots (QDs) and natural photosynthetic antennae assembled on the surface of a carbon nanotube. For that, we used QDs of cadmium telluride and cyanobacterial phycobilisome rods (PBSr) or light-harvesting complex II (LHCII) of higher plants. For this nanobiohybrid, we confirmed composition and organization using infrared spectroscopy, X-ray photoelectron spectroscopy, and high-resolution confocal microscopy. Then, we proved that within such an assembly, there is a resonance energy transfer from QD to PBSr or LHCII. When such a nanobiohybrid was further combined with thylakoids, the energy was transferred to photosynthetic reaction centers and efficiently powered the photosystem I reaction center. The presented construct is proof of a general concept, combining interacting elements on a platform of a nanotube, allowing further variation within assembled elements.
Collapse
Affiliation(s)
- Jakub Sławski
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Jan Maciejewski
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Rafał Szukiewicz
- Faculty
of Physics and Astronomy, University of
Wrocław, Maxa Borna
9, 50-204 Wrocław, Poland
| | - Katarzyna Gieczewska
- Department
of Plant Anatomy and Cytology, Institute of Experimental Plant Biology
and Biotechnology, Faculty of Biology, University
of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Grzyb
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
7
|
Miao R, Jahn M, Shabestary K, Peltier G, Hudson EP. CRISPR interference screens reveal growth-robustness tradeoffs in Synechocystis sp. PCC 6803 across growth conditions. THE PLANT CELL 2023; 35:3937-3956. [PMID: 37494719 PMCID: PMC10615215 DOI: 10.1093/plcell/koad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/01/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Barcoded mutant libraries are a powerful tool for elucidating gene function in microbes, particularly when screened in multiple growth conditions. Here, we screened a pooled CRISPR interference library of the model cyanobacterium Synechocystis sp. PCC 6803 in 11 bioreactor-controlled conditions, spanning multiple light regimes and carbon sources. This gene repression library contained 21,705 individual mutants with high redundancy over all open reading frames and noncoding RNAs. Comparison of the derived gene fitness scores revealed multiple instances of gene repression being beneficial in 1 condition while generally detrimental in others, particularly for genes within light harvesting and conversion, such as antennae components at high light and PSII subunits during photoheterotrophy. Suboptimal regulation of such genes likely represents a tradeoff of reduced growth speed for enhanced robustness to perturbation. The extensive data set assigns condition-specific importance to many previously unannotated genes and suggests additional functions for central metabolic enzymes. Phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, and the small protein CP12 were critical for mixotrophy and photoheterotrophy, which implicates the ternary complex as important for redirecting metabolic flux in these conditions in addition to inactivation of the Calvin cycle in the dark. To predict the potency of sgRNA sequences, we applied machine learning on sgRNA sequences and gene repression data, which showed the importance of C enrichment and T depletion proximal to the PAM site. Fitness data for all genes in all conditions are compiled in an interactive web application.
Collapse
Affiliation(s)
- Rui Miao
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, SE-17165,Sweden
| | - Michael Jahn
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, SE-17165,Sweden
- Max Planck Unit for the Science of Pathogens, 10117 Berlin,Germany
| | - Kiyan Shabestary
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, SE-17165,Sweden
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ,UK
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-Lez-Durance,France
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, SE-17165,Sweden
| |
Collapse
|
8
|
Antonaru LA, Selinger VM, Jung P, Di Stefano G, Sanderson ND, Barker L, Wilson DJ, Büdel B, Canniffe DP, Billi D, Nürnberg DJ. Common loss of far-red light photoacclimation in cyanobacteria from hot and cold deserts: a case study in the Chroococcidiopsidales. ISME COMMUNICATIONS 2023; 3:113. [PMID: 37857858 PMCID: PMC10587186 DOI: 10.1038/s43705-023-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Deserts represent an extreme challenge for photosynthetic life. Despite their aridity, they are often inhabited by diverse microscopic communities of cyanobacteria. These organisms are commonly found in lithic habitats, where they are partially sheltered from extremes of temperature and UV radiation. However, living under the rock surface imposes additional constraints, such as limited light availability, and enrichment of longer wavelengths than are typically usable for oxygenic photosynthesis. Some cyanobacteria from the genus Chroococcidiopsis can use this light to photosynthesize, in a process known as far-red light photoacclimation, or FaRLiP. This genus has commonly been reported from both hot and cold deserts. However, not all Chroococcidiopsis strains carry FaRLiP genes, thus motivating our study into the interplay between FaRLiP and extreme lithic environments. The abundance of sequence data and strains provided the necessary material for an in-depth phylogenetic study, involving spectroscopy, microscopy, and determination of pigment composition, as well as gene and genome analyses. Pigment analyses revealed the presence of red-shifted chlorophylls d and f in all FaRLiP strains tested. In addition, eight genus-level taxa were defined within the encompassing Chroococcidiopsidales, clarifying the phylogeny of this long-standing polyphyletic order. FaRLiP is near universally present in a generalist genus identified in a wide variety of environments, Chroococcidiopsis sensu stricto, while it is rare or absent in closely related, extremophile taxa, including those preferentially inhabiting deserts. This likely reflects the evolutionary process of gene loss in specialist lineages.
Collapse
Affiliation(s)
- Laura A Antonaru
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany.
- Department of Life Sciences, Imperial College London, London, UK.
| | - Vera M Selinger
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Giorgia Di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Nicholas D Sanderson
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Leanne Barker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel J Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Burkhard Büdel
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Daniel P Canniffe
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Dennis J Nürnberg
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany.
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Krupnik T, Zienkiewicz M, Wasilewska-Dębowska W, Drożak A, Kania K. How Light Modulates the Growth of Cyanidioschyzon merolae Cells by Changing the Function of Phycobilisomes. Cells 2023; 12:1480. [PMID: 37296601 PMCID: PMC10252272 DOI: 10.3390/cells12111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of this study was to examine how light intensity and quality affect the photosynthetic apparatus of Cyanidioschyzon merolae cells by modulating the structure and function of phycobilisomes. Cells were grown in equal amounts of white, blue, red, and yellow light of low (LL) and high (HL) intensity. Biochemical characterization, fluorescence emission, and oxygen exchange were used to investigate selected cellular physiological parameters. It was found that the allophycocyanin content was sensitive only to light intensity, whereas the phycocynin content was also sensitive to light quality. Furthermore, the concentration of the PSI core protein was not affected by the intensity or quality of the growth light, but the concentration of the PSII core D1 protein was. Finally, the amount of ATP and ADP was lower in HL than LL. In our opinion, both light intensity and quality are main factors that play an important regulatory role in acclimatization/adaptation of C. merolae to environmental changes, and this is achieved by balancing the amounts of thylakoid membrane and phycobilisome proteins, the energy level, and the photosynthetic and respiratory activity. This understanding contributes to the development of a mix of cultivation techniques and genetic changes for a future large-scale synthesis of desirable biomolecules.
Collapse
Affiliation(s)
- Tomasz Krupnik
- Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02096 Warsaw, Poland
| | | | | | | | | |
Collapse
|
10
|
Shimakawa G. Electron transport in cyanobacterial thylakoid membranes: Are cyanobacteria simple models for photosynthetic organisms? JOURNAL OF EXPERIMENTAL BOTANY 2023:erad118. [PMID: 37025010 DOI: 10.1093/jxb/erad118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cyanobacteria are structurally the simplest oxygenic phototrophs, which makes it difficult to understand the regulation of photosynthesis because the photosynthetic and respiratory processes share the same thylakoid membranes and cytosolic space. This review aimed to summarise the molecular mechanisms and in vivo activities of electron transport in cyanobacterial thylakoid membranes based on the latest progress in photosynthesis research in cyanobacteria. Photosynthetic linear electron transport for CO2 assimilation has the dominant electron flux in the thylakoid membranes. The capacity of O2 photoreduction in cyanobacteria is comparable to the photosynthetic CO2 assimilation, which is mediated by flavodiiron proteins. Additionally, cyanobacterial thylakoid membranes harbour the significant electron flux of respiratory electron transport through a homologue of respiratory complex I, which is also recognized as the part of cyclic electron transport chain if it is coupled with photosystem I in the light. Further, O2-independent alternative electron transports through hydrogenase and nitrate reductase function with reduced ferredoxin as the electron donor. Whereas all these electron transports are recently being understood one by one, the complexity as the whole regulatory system remains to be uncovered in near future.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
11
|
Heggerud CM, Lam KY, Wang H. Niche differentiation in the light spectrum promotes coexistence of phytoplankton species: a spatial modelling approach. J Math Biol 2023; 86:54. [PMID: 36918445 PMCID: PMC10014760 DOI: 10.1007/s00285-023-01890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 03/16/2023]
Abstract
The paradox of the plankton highlights the apparent contradiction between Gause's law of competitive exclusion and the observed diversity of phytoplankton. It is well known that phytoplankton dynamics depend heavily on light availability. Here we treat light as a continuum of resources rather than a single resource by considering the visible light spectrum. We propose a spatially explicit reaction-diffusion-advection model to explore under what circumstance coexistence is possible from mathematical and biological perspectives. Furthermore, we provide biological context as to when coexistence is expected based on the degree of niche differentiation within the light spectrum and overall turbidity of the water.
Collapse
Affiliation(s)
- Christopher M Heggerud
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada.
| | - King-Yeung Lam
- Department of Mathematics, Ohio State University, Columbus, OH, USA
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Su M, Fang J, Jia Z, Su Y, Zhu Y, Wu B, Little JC, Yu J, Yang M. Biosynthesis of 2-methylisoborneol is regulated by chromatic acclimation of Pseudanabaena. ENVIRONMENTAL RESEARCH 2023; 221:115260. [PMID: 36649844 DOI: 10.1016/j.envres.2023.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Cyanobacteria can sense different light color by adjusting the components of photosynthetic pigments including chlorophyll a (Chl a), phycoerythrin (PE), and phycocyanin (PC), etc. Filamentous cyanobacteria are the main producer of 2-methylisoborneol (MIB) and many can increase their PE levels so that they are more competitive in subsurface layer where green light is more abundant, and have caused extensive odor problems in drinking water reservoirs. Here, we identified the potential correlation between MIB biosynthesis and ambient light color induced chromatic acclimation (CA) of a MIB-producing Pseudanabaena strain. The results suggest Pseudanabaena regulates the pigment proportion through Type III CA (CA3), by increasing PE abundance and decreasing PC in green light. The biosynthesis of MIB and Chl a share the common precursor, and are positively correlated with statistical significance regardless of light color (R2=0.68; p<0.001). Besides, the PE abundance is also positively correlated with Chl a in green light (R2=0.57; p=0.019) since PE is the antenna that can only transfer the energy to PC and Chl a. In addition, significantly higher MIB production was observed in green light since more Chl a was synthesized.
Collapse
Affiliation(s)
- Ming Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiao Fang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; School of Civil Engineering, Chang'an University, Xi'an, 710054, China
| | - Zeyu Jia
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China.
| | - Yuliang Su
- Zhuhai Water Environment Holdings Group Ltd., Zhuhai, 519020, China
| | - Yiping Zhu
- Shanghai Chengtou Raw Water Co. Ltd., Beiai Rd. 1540, Shanghai, 200125, China
| | - Bin Wu
- Zhuhai Water Environment Holdings Group Ltd., Zhuhai, 519020, China
| | - John C Little
- Department of Civil and Environmental Engineering, Virginia Tech., Blacksburg, VA, 24061-0246, USA
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Minagawa J, Dann M. Extracellular CahB1 from Sodalinema gerasimenkoae IPPAS B-353 Acts as a Functional Carboxysomal β-Carbonic Anhydrase in Synechocystis sp. PCC6803. PLANTS (BASEL, SWITZERLAND) 2023; 12:265. [PMID: 36678979 PMCID: PMC9865033 DOI: 10.3390/plants12020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Cyanobacteria mostly rely on the active uptake of hydrated CO2 (i.e., bicarbonate ions) from the surrounding media to fuel their inorganic carbon assimilation. The dehydration of bicarbonate in close vicinity of RuBisCO is achieved through the activity of carboxysomal carbonic anhydrase (CA) enzymes. Simultaneously, many cyanobacterial genomes encode extracellular α- and β-class CAs (EcaA, EcaB) whose exact physiological role remains largely unknown. To date, the CahB1 enzyme of Sodalinema gerasimenkoae (formerly Microcoleus/Coleofasciculus chthonoplastes) remains the sole described active extracellular β-CA in cyanobacteria, but its molecular features strongly suggest it to be a carboxysomal rather than a secreted protein. Upon expression of CahB1 in Synechocystis sp. PCC6803, we found that its expression complemented the loss of endogenous CcaA. Moreover, CahB1 was found to localize to a carboxysome-harboring and CA-active cell fraction. Our data suggest that CahB1 retains all crucial properties of a cellular carboxysomal CA and that the secretion mechanism and/or the machinations of the Sodalinema gerasimenkoae carboxysome are different from those of Synechocystis.
Collapse
Affiliation(s)
- Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology (NIBB), Aichi, Okazaki 444-8585, Japan
| | - Marcel Dann
- Division of Environmental Photobiology, National Institute for Basic Biology (NIBB), Aichi, Okazaki 444-8585, Japan
- Plant Molecular Biology, Ludwig-Maximilian University (LMU) Munich, 82152 Planegg, Germany
| |
Collapse
|
14
|
Lindberg P, Kenkel A, Bühler K. Introduction to Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:1-24. [PMID: 37009973 DOI: 10.1007/10_2023_217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Cyanobacteria are highly interesting microbes with the capacity for oxygenic photosynthesis. They fulfill an important purpose in nature but are also potent biocatalysts. This chapter gives a brief overview of this diverse phylum and shortly addresses the functions these organisms have in the natural ecosystems. Further, it introduces the main topics covered in this volume, which is dealing with the development and application of cyanobacteria as solar cell factories for the production of chemicals including potential fuels. We discuss cyanobacteria as industrial workhorses, present established chassis strains, and give an overview of the current target products. Genetic engineering strategies aiming at the photosynthetic efficiency as well as approaches to optimize carbon fluxes are summarized. Finally, main cultivation strategies are sketched.
Collapse
Affiliation(s)
- Pia Lindberg
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Amelie Kenkel
- Helmholtzcenter for Environmental Research, Leipzig, Germany
| | - Katja Bühler
- Helmholtzcenter for Environmental Research, Leipzig, Germany.
| |
Collapse
|
15
|
Fang Y, Liu D, Jiang J, He A, Zhu R, Tian L. Photoprotective energy quenching in the red alga Porphyridium purpureum occurs at the core antenna of the photosystem II but not at its reaction center. J Biol Chem 2022; 298:101783. [PMID: 35245502 PMCID: PMC8978274 DOI: 10.1016/j.jbc.2022.101783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 01/01/2023] Open
Abstract
Photosynthetic organisms have evolved light-harvesting antennae over time. In cyanobacteria, external phycobilisomes (PBSs) are the dominant antennae, whereas in green algae and higher plants, PBSs have been replaced by proteins of the Lhc family that are integrated in the membrane. Red algae represent an evolutionary intermediate between these two systems, as they employ both PBSs and membrane LHCR proteins as light-harvesting units. Understanding how red algae cope with light is not only interesting for biotechnological applications, but is also of evolutionary interest. For example, energy-dependent quenching (qE) is an essential photoprotective mechanism widely used by species from cyanobacteria to higher plants to avoid light damage; however, the quenching mechanism in red algae remains largely unexplored. Here, we used both pulse amplitude-modulated (PAM) and time-resolved chlorophyll fluorescence to characterize qE kinetics in the red alga Porphyridium purpureum. PAM traces confirmed that qE in P. purpureum is activated by a decrease in the thylakoid lumen pH, whereas time-resolved fluorescence results further revealed the quenching site and ultrafast quenching kinetics. We found that quenching exclusively takes place in the photosystem II (PSII) complexes and preferentially occurs at PSII’s core antenna rather than at its reaction center, with an overall quenching rate of 17.6 ± 3.0 ns−1. In conclusion, we propose that qE in red algae is not a reaction center type of quenching, and that there might be a membrane-bound protein that resembles PsbS of higher plants or LHCSR of green algae that senses low luminal pH and triggers qE in red algae.
Collapse
Affiliation(s)
- Yuan Fang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dongyang Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Jiang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Axin He
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Rui Zhu
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Watanabe S, Matsunami N, Okuma I, Naythen PT, Fujibayashi M, Iseri Y, Hao A, Kuba T. Blue light irradiation increases the relative abundance of the diatom Nitzschia palea in co-culture with cyanobacterium Microcystis aeruginosa. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10707. [PMID: 35403347 DOI: 10.1002/wer.10707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Lake eutrophication is associated with cyanobacterial blooms. The pennate diatom Nitzschia palea (N. palea) inhibits the growth of the cyanobacterium Microcystis aeruginosa (M. aeruginosa); therefore, increasing the relative abundance of N. palea may contribute to the inhibition of Microcystis blooms. Several studies have demonstrated that blue light irradiation promotes diatom growth and inhibits cyanobacterial growth. In this study, we evaluated the effects of blue light irradiation on N. palea and M. aeruginosa abundance. Monocultures and co-cultures of N. palea and M. aeruginosa were exposed to blue light and fluorescent light at 32 μmol photons m-2 s-1. The relative abundance of N. palea under fluorescent light decreased gradually, whereas the abundance under blue light was relatively higher (approximately 74% and 98% under fluorescent light and blue light, respectively, at the end of the experiment). The inhibition efficiency of blue light on the growth rate of M. aeruginosa was related to the light intensity. The optimal light intensity was considered 20 μmol photons m-2 s-1 based on the inhibition efficiency of 100%. Blue light irradiation can be used to increase the abundance of N. palea to control Microcystis blooms. PRACTITIONER POINTS: The effects of blue light irradiation on N. palea abundance was discussed. Monocultures and co-cultures of N. palea and M. aeruginosa were exposed to blue light and to fluorescent light. The relative abundance of N. palea increased upon irradiation with blue light in co-culture with M. aeruginosa.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Department of Urban and Environmental Engineering, Kyushu University, Fukuoka, Japan
| | - Naoki Matsunami
- Department of Urban and Environmental Engineering, Kyushu University, Fukuoka, Japan
| | - Ikki Okuma
- Department of Urban and Environmental Engineering, Kyushu University, Fukuoka, Japan
| | | | - Megumu Fujibayashi
- Department of Urban and Environmental Engineering, Kyushu University, Fukuoka, Japan
| | - Yasushi Iseri
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Aimin Hao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Takahiro Kuba
- Central Water Authority Head Office, Phoenix, Mauritius
| |
Collapse
|
17
|
Meixner K, Daffert C, Dalnodar D, Mrázová K, Hrubanová K, Krzyzanek V, Nebesarova J, Samek O, Šedrlová Z, Slaninova E, Sedláček P, Obruča S, Fritz I. Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress. JOURNAL OF APPLIED PHYCOLOGY 2022; 34:1227-1241. [PMID: 35673609 PMCID: PMC9165259 DOI: 10.1007/s10811-022-02693-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 06/15/2023]
Abstract
The cyanobacterial genus Synechocystis is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the increased salinity that can be caused by recycled or brackish water used in cultivation. While overall reduced growth is expected in response to salt stress, other metabolic responses relevant to the efficiency of phototrophic production of biomass or PHB (or both) have been experimentally observed in three Synechocystis strains at stepwise increasing salt concentrations. In response to recent reports on metabolic strategies to increase stress tolerance of heterotrophic and phototrophic bacteria, we focused particularly on the stress-induced response of Synechocystis strains in terms of PHB, glycogen and photoactive pigment dynamics. Of the three strains studied, the strain Synechocystis cf. salina CCALA192 proved to be the most tolerant to salt stress. In addition, this strain showed the highest PHB accumulation. All the three strains accumulated more PHB with increasing salinity, to the point where their photosystems were strongly inhibited and they could no longer produce enough energy to synthesize more PHB.
Collapse
Affiliation(s)
- K. Meixner
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
- BEST Bioenergy and Sustainable Technologies GmbH, Inffeldgasse 21b, 8010 Graz, Austria
| | - C. Daffert
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - D. Dalnodar
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - K. Mrázová
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - K. Hrubanová
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - V. Krzyzanek
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - J. Nebesarova
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| | - O. Samek
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Z. Šedrlová
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - E. Slaninova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - P. Sedláček
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - S. Obruča
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - I. Fritz
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| |
Collapse
|
18
|
Callieri C, Cabello-Yeves PJ, Bertoni F. The "Dark Side" of Picocyanobacteria: Life as We Do Not Know It (Yet). Microorganisms 2022; 10:546. [PMID: 35336120 PMCID: PMC8955281 DOI: 10.3390/microorganisms10030546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Picocyanobacteria of the genus Synechococcus (together with Cyanobium and Prochlorococcus) have captured the attention of microbial ecologists since their description in the 1970s. These pico-sized microorganisms are ubiquitous in aquatic environments and are known to be some of the most ancient and adaptable primary producers. Yet, it was only recently, and thanks to developments in molecular biology and in the understanding of gene sequences and genomes, that we could shed light on the depth of the connection between their evolution and the history of life on the planet. Here, we briefly review the current understanding of these small prokaryotic cells, from their physiological features to their role and dynamics in different aquatic environments, focussing particularly on the still poorly understood ability of picocyanobacteria to adapt to dark conditions. While the recent discovery of Synechococcus strains able to survive in the deep Black Sea highlights how adaptable picocyanobacteria can be, it also raises more questions-showing how much we still do not know about microbial life. Using available information from brackish Black Sea strains able to perform and survive in dark (anoxic) conditions, we illustrate how adaptation to narrow ecological niches interacts with gene evolution and metabolic capacity.
Collapse
Affiliation(s)
- Cristiana Callieri
- National Research Council (CNR), Water Research Institute (IRSA), 28922 Verbania, Italy
| | - Pedro J. Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain;
| | | |
Collapse
|
19
|
LED alternating between blue and red-orange light improved the biomass and lipid productivity of Chlamydomonas reinhardtii. J Biotechnol 2021; 341:96-102. [PMID: 34537254 DOI: 10.1016/j.jbiotec.2021.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 11/22/2022]
Abstract
Light management is important for improving algae cultivation, specifically by enhancing the productivity of biomass and valued bioproducts. In this study, we present evidence that alternating blue and red-orange light can improve the algal growth kinetics and lipid production in a photobioreactor. Blue (430-445, 460-470 nm) and red-orange light (580-660 nm) from a LED were set at the light saturation point (B: 65 μmol/m2s; RO: 155 μmol/m2s) and alternated for the cultivation of the green alga Chlamydomonas reinhardtii. Growth kinetics, lipid, carbohydrate, and protein content were measured as a function of alternating illumination time. Results reveal that the first illumination light and illumination time had a significant impact on the growth kinetics and nutrient composition. When the red-orange light illumination was used at the beginning of cultivation (RO/B alternation), the biomass concentration and productivity increased 8% and 18% on average, respectively; lipid mass fraction and concentration increased 21-27% and 24-26% when 0.25-0.50 h per day of blue light illumination was used; no significant change of carbohydrate and protein content were observed. Relative to blue light alone, the improvement of growth kinetics, lipid mass fraction and concentration, and the carbohydrate concentration was significant. Under B/RO alternation (when the blue light was used first), on average, the protein content was significantly higher than RO/B alternation.
Collapse
|
20
|
Xu L, Pan W, Yang G, Tang X, Martin RM, Liu G, Zhong C. Impact of light quality on freshwater phytoplankton community in outdoor mesocosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58536-58548. [PMID: 34115299 DOI: 10.1007/s11356-021-14812-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
In shallow lakes, wind wave turbulence alters underwater spectral composition, but the influence of this phenomenon on phytoplankton community structure is poorly understood. We used 100L mesocosms to investigate the influence of light quality on a natural phytoplankton community collected from Taihu Lake in China. The communities in mesocosms were exposed to sunlight filtered for white, blue, green, and red light, while wave-making pumps simulated wind wave turbulence similar to Taihu Lake. Over the course of experiment, each filtered light reduced the total phytoplankton abundance compared to white light. The mean abundance of phytoplankton in controls was 1.72, 1.78, and 7.89 times of that in the red, blue, and green light treatments. Red, blue, and green light significantly promoted the growth of cyanobacteria, green algae, and diatoms, respectively, and induced successional change of the phytoplankton species under the tested conditions. The proportion of Microcystis to total phytoplankton abundance in controls and red light shifted from 87.09% at the beginning to 37.95% and 56.30% at the end of the experiment, respectively, and maintained its dominance, whereas Microcystis lost its dominance and was replaced by Scenedesmus (53.78%) and Synedra (53.18%) in the blue and green light, respectively. Given the process of how these phytoplankton compete in designated spectrum, exploring these influences could help provide new insights into the dominance formation of toxic cyanobacteria.
Collapse
Affiliation(s)
- Lei Xu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wenwen Pan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guijun Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Xiangming Tang
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Robbie M Martin
- Department of Microbiology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Guofeng Liu
- Freshwater Fisheries Research Center, CAFS, Wuxi, 214128, China
| | - Chunni Zhong
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
21
|
Michel-Rodriguez M, Lefebvre S, Crouvoisier M, Mériaux X, Lizon F. Underwater light climate and wavelength dependence of microalgae photosynthetic parameters in a temperate sea. PeerJ 2021; 9:e12101. [PMID: 34707925 PMCID: PMC8496463 DOI: 10.7717/peerj.12101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Studying how natural phytoplankton adjust their photosynthetic properties to the quantity and quality of underwater light (i.e. light climate) is essential to understand primary production. A wavelength-dependent photoacclimation strategy was assessed using a multi-color pulse-amplitude-modulation chlorophyll fluorometer for phytoplankton samples collected in the spring at 19 locations across the English Channel. The functional absorption cross section of photosystem II, photosynthetic electron transport (PETλ) parameters and non-photochemical quenching were analyzed using an original approach with a sequence of three statistical analyses. Linear mixed-effects models using wavelength as a longitudinal variable were first applied to distinguish the fixed effect of the population from the random effect of individuals. Population and individual trends of wavelength-dependent PETλ parameters were consistent with photosynthesis and photoacclimation theories. The natural phytoplankton communities studied were in a photoprotective state for blue wavelengths (440 and 480 nm), but not for other wavelengths (green (540 nm), amber (590 nm) and light red (625 nm)). Population-detrended PETλ values were then used in multivariate analyses (partial triadic analysis and redundancy analysis) to study ecological implications of PETλ dynamics among water masses. Two wavelength ratios based on the microalgae saturation parameter Ek (in relative and absolute units), related to the hydrodynamic regime and underwater light climate, clearly confirmed the physiological state of microalgae. They also illustrate more accurately that natural phytoplankton communities can implement photoacclimation processes that are influenced by in situ light quality during the daylight cycle in temporarily and weakly stratified water. Ecological implications and consequences of PETλ are discussed in the context of turbulent coastal ecosystems.
Collapse
Affiliation(s)
- Monica Michel-Rodriguez
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 LOG, Laboratoire d'Océanologie et de Géosciences, Lille, France
| | - Sebastien Lefebvre
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 LOG, Laboratoire d'Océanologie et de Géosciences, Lille, France
| | - Muriel Crouvoisier
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 LOG, Laboratoire d'Océanologie et de Géosciences, Lille, France
| | - Xavier Mériaux
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187-LOG-Laboratoire d'Océanologie et de Géosciences, Wimereux, France
| | - Fabrice Lizon
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 LOG, Laboratoire d'Océanologie et de Géosciences, Lille, France
| |
Collapse
|
22
|
Jeong Y, Hong SJ, Cho SH, Yoon S, Lee H, Choi HK, Kim DM, Lee CG, Cho S, Cho BK. Multi-Omic Analyses Reveal Habitat Adaptation of Marine Cyanobacterium Synechocystis sp. PCC 7338. Front Microbiol 2021; 12:667450. [PMID: 34054774 PMCID: PMC8155712 DOI: 10.3389/fmicb.2021.667450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are considered as promising microbial cell factories producing a wide array of bio-products. Among them, Synechocystis sp. PCC 7338 has the advantage of growing in seawater, rather than requiring arable land or freshwater. Nonetheless, how this marine cyanobacterium grows under the high salt stress condition remains unknown. Here, we determined its complete genome sequence with the embedded regulatory elements and analyzed the transcriptional changes in response to a high-salt environment. Complete genome sequencing revealed a 3.70 mega base pair genome and three plasmids with a total of 3,589 genes annotated. Differential RNA-seq and Term-seq data aligned to the complete genome provided genome-wide information on genetic regulatory elements, including promoters, ribosome-binding sites, 5'- and 3'-untranslated regions, and terminators. Comparison with freshwater Synechocystis species revealed Synechocystis sp. PCC 7338 genome encodes additional genes, whose functions are related to ion channels to facilitate the adaptation to high salt and high osmotic pressure. Furthermore, a ferric uptake regulator binding motif was found in regulatory regions of various genes including SigF and the genes involved in energy metabolism, suggesting the iron-regulatory network is connected to not only the iron acquisition, but also response to high salt stress and photosynthesis. In addition, the transcriptomics analysis demonstrated a cyclic electron transport through photosystem I was actively used by the strain to satisfy the demand for ATP under high-salt environment. Our comprehensive analyses provide pivotal information to elucidate the genomic functions and regulations in Synechocystis sp. PCC 7338.
Collapse
Affiliation(s)
- Yujin Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seong-Joo Hong
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Sang-Hyeok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seonghoon Yoon
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Hookeun Lee
- Institute of Pharmaceutical Research, College of Pharmacy, Gachon University, Incheon, South Korea
| | | | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
23
|
Vasile NS, Cordara A, Usai G, Re A. Computational Analysis of Dynamic Light Exposure of Unicellular Algal Cells in a Flat-Panel Photobioreactor to Support Light-Induced CO 2 Bioprocess Development. Front Microbiol 2021; 12:639482. [PMID: 33868196 PMCID: PMC8049116 DOI: 10.3389/fmicb.2021.639482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/25/2021] [Indexed: 02/05/2023] Open
Abstract
Cyanobacterial cell factories trace a vibrant pathway to climate change neutrality and sustainable development owing to their ability to turn carbon dioxide-rich waste into a broad portfolio of renewable compounds, which are deemed valuable in green chemistry cross-sectorial applications. Cell factory design requires to define the optimal operational and cultivation conditions. The paramount parameter in biomass cultivation in photobioreactors is the light intensity since it impacts cellular physiology and productivity. Our modeling framework provides a basis for the predictive control of light-limited, light-saturated, and light-inhibited growth of the Synechocystis sp. PCC 6803 model organism in a flat-panel photobioreactor. The model here presented couples computational fluid dynamics, light transmission, kinetic modeling, and the reconstruction of single cell trajectories in differently irradiated areas of the photobioreactor to relate key physiological parameters to the multi-faceted processes occurring in the cultivation environment. Furthermore, our analysis highlights the need for properly constraining the model with decisive qualitative and quantitative data related to light calibration and light measurements both at the inlet and outlet of the photobioreactor in order to boost the accuracy and extrapolation capabilities of the model.
Collapse
Affiliation(s)
- Nicolò S Vasile
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandro Cordara
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Giulia Usai
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.,Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Angela Re
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
24
|
Fuente D, Lazar D, Oliver-Villanueva JV, Urchueguía JF. Reconstruction of the absorption spectrum of Synechocystis sp. PCC 6803 optical mutants from the in vivo signature of individual pigments. PHOTOSYNTHESIS RESEARCH 2021; 147:75-90. [PMID: 33245462 DOI: 10.1007/s11120-020-00799-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
In this work, we reconstructed the absorption spectrum of different Synechocystis sp. PCC 6803 optical strains by summing the computed signature of all pigments present in this organism. To do so, modifications to in vitro pigment spectra were first required: namely wavelength shift, curve smoothing, and the package effect calculation derived from high pigment densities were applied. As a result, we outlined a plausible shape for the in vivo absorption spectrum of each chromophore. These are flatter and slightly broader in physiological conditions yet the mean weight-specific absorption coefficient remains identical to the in vitro conditions. Moreover, we give an estimate of all pigment concentrations without applying spectrophotometric correlations, which are often prone to error. The computed cell spectrum reproduces in an accurate manner the experimental spectrum for all the studied wavelengths in the wild-type, Olive, and PAL strain. The gathered pigment concentrations are in agreement with reported values in literature. Moreover, different illumination set-ups were evaluated to calculate the mean absorption cross-section of each chromophore. Finally, a qualitative estimate of light-limited cellular growth at each wavelength is given. This investigation describes a novel way to approach the cell absorption spectrum and shows all its inherent potential for photosynthesis research.
Collapse
Affiliation(s)
- David Fuente
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas, Universitat Politècnica de València, Valencia, Spain.
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
- Department of Adaptation Biotechnologies, Global Change Research Centre, Academy of Science of the Czech Republic, Drásov, Czech Republic.
| | - Dusan Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Jose Vicente Oliver-Villanueva
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas, Universitat Politècnica de València, Valencia, Spain
| | - Javier F Urchueguía
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
25
|
Burlacot A, Burlacot F, Li-Beisson Y, Peltier G. Membrane Inlet Mass Spectrometry: A Powerful Tool for Algal Research. FRONTIERS IN PLANT SCIENCE 2020; 11:1302. [PMID: 33013952 PMCID: PMC7500362 DOI: 10.3389/fpls.2020.01302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 05/15/2023]
Abstract
Since the first great oxygenation event, photosynthetic microorganisms have continuously shaped the Earth's atmosphere. Studying biological mechanisms involved in the interaction between microalgae and cyanobacteria with the Earth's atmosphere requires the monitoring of gas exchange. Membrane inlet mass spectrometry (MIMS) has been developed in the early 1960s to study gas exchange mechanisms of photosynthetic cells. It has since played an important role in investigating various cellular processes that involve gaseous compounds (O2, CO2, NO, or H2) and in characterizing enzymatic activities in vitro or in vivo. With the development of affordable mass spectrometers, MIMS is gaining wide popularity and is now used by an increasing number of laboratories. However, it still requires an important theory and practical considerations to be used. Here, we provide a practical guide describing the current technical basis of a MIMS setup and the general principles of data processing. We further review how MIMS can be used to study various aspects of algal research and discuss how MIMS will be useful in addressing future scientific challenges.
Collapse
|
26
|
Luimstra VM, Schuurmans JM, Hellingwerf KJ, Matthijs HCP, Huisman J. Blue light induces major changes in the gene expression profile of the cyanobacterium Synechocystis sp. PCC 6803. PHYSIOLOGIA PLANTARUM 2020; 170:10-26. [PMID: 32141606 PMCID: PMC7496141 DOI: 10.1111/ppl.13086] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 05/18/2023]
Abstract
Although cyanobacteria absorb blue light, they use it less efficiently for photosynthesis than other colors absorbed by their photosynthetic pigments. A plausible explanation for this enigmatic phenomenon is that blue light is not absorbed by phycobilisomes and, hence, causes an excitation shortage at photosystem II (PSII). This hypothesis is supported by recent physiological studies, but a comprehensive understanding of the underlying changes in gene expression is still lacking. In this study, we investigate how a switch from artificial white light to blue, orange or red light affects the transcriptome of the cyanobacterium Synechocystis sp. PCC 6803. In total, 145 genes were significantly regulated in response to blue light, whereas only a few genes responded to orange and red light. In particular, genes encoding the D1 and D2 proteins of PSII, the PSII chlorophyll-binding protein CP47 and genes involved in PSII repair were upregulated in blue light, whereas none of the photosystem I (PSI) genes responded to blue light. These changes were accompanied by a decreasing PSI:PSII ratio. Furthermore, many genes involved in gene transcription and translation and several ATP synthase genes were transiently downregulated, concurrent with a temporarily decreased growth rate in blue light. After 6-7 days, when cell densities had strongly declined, the growth rate recovered and the expression of these growth-related genes returned to initial levels. Hence, blue light induces major changes in the transcriptome of cyanobacteria, in an attempt to increase the photosynthetic activity of PSII and cope with the adverse growth conditions imposed by blue light.
Collapse
Affiliation(s)
- Veerle M. Luimstra
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Wetsus – Center of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
| | - J. Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Klaas J. Hellingwerf
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Hans C. P. Matthijs
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
27
|
Stiefelmaier J, Strieth D, Di Nonno S, Erdmann N, Muffler K, Ulber R. Characterization of terrestrial phototrophic biofilms of cyanobacterial species. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Luimstra VM, Verspagen JMH, Xu T, Schuurmans JM, Huisman J. Changes in water color shift competition between phytoplankton species with contrasting light-harvesting strategies. Ecology 2020; 101:e02951. [PMID: 31840230 PMCID: PMC7079016 DOI: 10.1002/ecy.2951] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022]
Abstract
The color of many lakes and seas is changing, which is likely to affect the species composition of freshwater and marine phytoplankton communities. For example, cyanobacteria with phycobilisomes as light-harvesting antennae can effectively utilize green or orange-red light. However, recent studies show that they use blue light much less efficiently than phytoplankton species with chlorophyll-based light-harvesting complexes, even though both phytoplankton groups may absorb blue light to a similar extent. Can we advance ecological theory to predict how these differences in light-harvesting strategy affect competition between phytoplankton species? Here, we develop a new resource competition model in which the absorption and utilization efficiency of different colors of light are varied independently. The model was parameterized using monoculture experiments with a freshwater cyanobacterium and green alga, as representatives of phytoplankton with phycobilisome-based vs. chlorophyll-based light-harvesting antennae. The parameterized model was subsequently tested in a series of competition experiments. In agreement with the model predictions, the green alga won the competition in blue light whereas the cyanobacterium won in red light, irrespective of the initial relative abundances of the species. These results are in line with observed changes in phytoplankton community structure in response to lake brownification. Similarly, in marine waters, the model predicts dominance of Prochlorococcus with chlorophyll-based light-harvesting complexes in blue light but dominance of Synechococcus with phycobilisomes in green light, with a broad range of coexistence in between. These predictions agree well with the known biogeographical distributions of these two highly abundant marine taxa. Our results offer a novel trait-based approach to understand and predict competition between phytoplankton species with different photosynthetic pigments and light-harvesting strategies.
Collapse
Affiliation(s)
- Veerle M. Luimstra
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
- WetsusEuropean Centre of Excellence for Sustainable Water TechnologyOostergoweg 9Leeuwarden8911 MAThe Netherlands
| | - Jolanda M. H. Verspagen
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| | - Tianshuo Xu
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| | - J. Merijn Schuurmans
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| |
Collapse
|
29
|
Piel T, Sandrini G, White E, Xu T, Schuurmans JM, Huisman J, Visser PM. Suppressing Cyanobacteria with Hydrogen Peroxide Is More Effective at High Light Intensities. Toxins (Basel) 2019; 12:toxins12010018. [PMID: 31906135 PMCID: PMC7020451 DOI: 10.3390/toxins12010018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/01/2022] Open
Abstract
Hydrogen peroxide (H2O2) can be used as an emergency method to selectively suppress cyanobacterial blooms in lakes and drinking water reservoirs. However, it is largely unknown how environmental parameters alter the effectiveness of H2O2 treatments. In this study, the toxic cyanobacterial strain Microcystis aeruginosa PCC 7806 was treated with a range of H2O2 concentrations (0 to 10 mg/L), while being exposed to different light intensities and light colors. H2O2 treatments caused a stronger decline of the photosynthetic yield in high light than in low light or in the dark, and also a stronger decline in orange than in blue light. Our results are consistent with the hypothesis that H2O2 causes major damage at photosystem II (PSII) and interferes with PSII repair, which makes cells more sensitive to photoinhibition. Furthermore, H2O2 treatments caused a decrease in cell size and an increase in extracellular microcystin concentrations, indicative of leakage from disrupted cells. Our findings imply that even low H2O2 concentrations of 1–2 mg/L can be highly effective, if cyanobacteria are exposed to high light intensities. We therefore recommend performing lake treatments during sunny days, when a low H2O2 dosage is sufficient to suppress cyanobacteria, and may help to minimize impacts on non-target organisms.
Collapse
|
30
|
Burson A, Stomp M, Mekkes L, Huisman J. Stable coexistence of equivalent nutrient competitors through niche differentiation in the light spectrum. Ecology 2019; 100:e02873. [PMID: 31463935 PMCID: PMC6916172 DOI: 10.1002/ecy.2873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 11/26/2022]
Abstract
Niche-based theories and the neutral theory of biodiversity differ in their predictions of how the species composition of natural communities will respond to changes in nutrient availability. This is an issue of major environmental relevance, as many ecosystems have experienced changes in nitrogen (N) and phosphorus (P) due to anthropogenic manipulation of nutrient loading. To understand how changes in N and P limitation may impact community structure, we conducted laboratory competition experiments using a multispecies phytoplankton community sampled from the North Sea. Results showed that picocyanobacteria (Cyanobium sp.) won the competition under N limitation, while picocyanobacteria and nonmotile nanophytoplankton (Nannochloropsis sp.) coexisted at equal abundances under P limitation. Additional experiments using isolated monocultures confirmed that Cyanobium sp. depleted N to lower levels than Nannochloropsis sp., but that both species had nearly identical P requirements, suggesting a potential for neutral coexistence under P-limited conditions. Pairwise competition experiments with the two isolates seemed to support the consistency of these results, but P limitation resulted in stable species coexistence irrespective of the initial conditions rather than the random drift of species abundances predicted by neutral theory. Comparison of the light absorption spectra indicates that coexistence of the two species was stabilized through differential use of the underwater light spectrum. Our results provide an interesting experimental example of modern coexistence theory, where species were equal competitors in one niche dimension but their competitive traits differed in other niche dimensions, thus enabling stable species coexistence on a single limiting nutrient through niche differentiation in the light spectrum.
Collapse
Affiliation(s)
- Amanda Burson
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Present address:
School of GeographyUniversity of NottinghamNottinghamUnited Kingdom
| | - Maayke Stomp
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lisette Mekkes
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Marine Biodiversity GroupNaturalis Biodiversity CenterLeidenThe Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|