1
|
Takano R, Hirose E. Optical Properties of Body Mucus Secreted from Coral Reef Sea Slugs: Measurement of Refractive Indices and Relative Absorption Spectra. Zool Stud 2024; 63:e2. [PMID: 39246701 PMCID: PMC11377269 DOI: 10.6620/zs.2024.63-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/21/2023] [Indexed: 09/10/2024]
Abstract
Sea slugs are always covered in a mucus layer that has various functions including chemical defense that often involves aposematism and mimicry. Therefore, it is necessary for sea slugs to exhibit their body colors and patterns exactly, and the optical properties of mucus should support this requirement. We examined body mucus from heterobranch sea slugs collected in the Okinawan coral reefs. The refractive indices of mucus from 32 species ranged from 1.3371 to 1.3854 and were similar or slightly greater than the refractive index of seawater (ca. 1.34), indicating that light reflectance on the mucus layer is generally small. Moreover, dissolution of mucus into seawater would form a gradient of refractive indices and enhance the reduction of reflectance. We also obtained relative absorption spectra of the mucus from 32 species. In the range of visible light, absorption spectra of mucus suggest that the mucus layer is almost transparent and is not likely to interfere with the body colors. The presence of absorption peaks and/or shoulders in the UV (ultraviolet) range (280-400 nm) indicates that the mucus layer potentially serves as a sunscreen that absorbs UV radiation in 23 species, whereas prominent UV absorption was not found in the other 9 species. In a kleptoplasty sacoglossan Plakobranchus ocellatus, the refractive indices and presence or absence of UV-absorption showed that the optical properties of the mucus varied to some extent but did not show seasonal fluctuation. The UV-absorption in the mucus may also protect kleptoplasts in kleptoplasty sacoglossans. The present results support the importance of mucus as a functional optical layer for the shell-less life of sea slugs.
Collapse
Affiliation(s)
- Ryogo Takano
- Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan. E-mail: (Hirose); (Takano)
| | - Euichi Hirose
- Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan. E-mail: (Hirose); (Takano)
| |
Collapse
|
2
|
Morelli L, Cartaxana P, Cruz S. Food shaped photosynthesis: Photophysiology of the sea slug Elysia viridis fed with two alternative chloroplast donors. OPEN RESEARCH EUROPE 2024; 3:107. [PMID: 38725452 PMCID: PMC11079582 DOI: 10.12688/openreseurope.16162.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/12/2024]
Abstract
Background Some Sacoglossa sea slugs steal and integrate chloroplasts derived from the algae they feed on into their cells where they continue to function photosynthetically, a process termed kleptoplasty. The stolen chloroplasts - kleptoplasts - can maintain their functionality up to several months and support animal metabolism. However, chloroplast longevity can vary depending on sea slug species and algal donor. In this study, we focused on Elysia viridis, a polyphagous species that is mostly found associated with the macroalga Codium tomentosum, but that was reported to eat other macroalgae, including Chaetomorpha sp. Methods We have investigated the changes in E. viridis physiology when provided with the two different food sources to evaluate to which extent the photosynthetic and photoprotective mechanisms of the algae chloroplasts matched those of the plastids once in the animal cells. To perform the study, we rely on the evaluation of chlorophyll a variable fluorescence to study the photophysiological state of the integrated kleptoplasts and high-performance liquid chromatography (HPLC) to study variations in the photosynthetic pigments. Results We observed that the photosynthetic efficiency of E. viridis is lower when fed with Chaetomorpha. Also, significant differences were observed in the non-photochemical quenching (NPQ) abilities of the sea slugs. While sea slugs fed with C. tomentosum react similarly to high-light stress as the alga, E. viridis hosting Chaetomorpha chloroplasts were unable to properly recover from photoinhibition or perform a functional xanthophyll cycle (XC). Conclusions Our results showed that, even if the sea slugs fed with the two algae show photosynthetic activities like the respective algal donors, not all the photoprotective mechanisms present in Chaetomorpha can be maintained in E. viridis. This indicates that the functionality of the kleptoplasts does not depend solely on their origin but also on the degree of compatibility with the animal species integrating them.
Collapse
Affiliation(s)
- Luca Morelli
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Paulo Cartaxana
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Sónia Cruz
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| |
Collapse
|
3
|
Morelli L, Cartaxana P, Cruz S. Food shaped photosynthesis: Photophysiology of the sea slug Elysia viridis fed with two alternative chloroplast donors. OPEN RESEARCH EUROPE 2024; 3:107. [PMID: 38725452 PMCID: PMC11079582 DOI: 10.12688/openreseurope.16162.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND Some Sacoglossa sea slugs steal and integrate chloroplasts derived from the algae they feed on into their cells where they continue to function photosynthetically, a process termed kleptoplasty. The stolen chloroplasts - kleptoplasts - can maintain their functionality up to several months and support animal metabolism. However, chloroplast longevity can vary depending on sea slug species and algal donor. In this study, we focused on Elysia viridis, a polyphagous species that is mostly found associated with the macroalga Codium tomentosum, but that was reported to eat other macroalgae, including Chaetomorpha sp. METHODS We have investigated the changes in E. viridis physiology when provided with the two different food sources to evaluate to which extent the photosynthetic and photoprotective mechanisms of the algae chloroplasts matched those of the plastids once in the animal cells. To perform the study, we rely on the evaluation of chlorophyll a variable fluorescence to study the photophysiological state of the integrated kleptoplasts and high-performance liquid chromatography (HPLC) to study variations in the photosynthetic pigments. RESULTS We observed that the photosynthetic efficiency of E. viridis is lower when fed with Chaetomorpha. Also, significant differences were observed in the non-photochemical quenching (NPQ) abilities of the sea slugs. While sea slugs fed with C. tomentosum react similarly to high-light stress as the alga, E. viridis hosting Chaetomorpha chloroplasts were unable to properly recover from photoinhibition or perform a functional xanthophyll cycle (XC). CONCLUSIONS Our results showed that, even if the sea slugs fed with the two algae show photosynthetic activities like the respective algal donors, not all the photoprotective mechanisms present in Chaetomorpha can be maintained in E. viridis. This indicates that the functionality of the kleptoplasts does not depend solely on their origin but also on the degree of compatibility with the animal species integrating them.
Collapse
Affiliation(s)
- Luca Morelli
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Paulo Cartaxana
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Sónia Cruz
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| |
Collapse
|
4
|
Cartaxana P, Morelli L, Cassin E, Havurinne V, Cabral M, Cruz S. Prey species and abundance affect growth and photosynthetic performance of the polyphagous sea slug Elysia crispata. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230810. [PMID: 37650060 PMCID: PMC10465201 DOI: 10.1098/rsos.230810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Some sacoglossan sea slugs steal functional macroalgal chloroplasts (kleptoplasts). In this study, we investigated the effects of algal prey species and abundance on the growth and photosynthetic capacity of the tropical polyphagous sea slug Elysia crispata. Recently hatched sea slugs fed and acquired chloroplasts from the macroalga Bryopsis plumosa, but not from Acetabularia acetabulum. However, adult sea slugs were able to switch diet to A. acetabulum, rapidly replacing the great majority of the original kleptoplasts. When fed with B. plumosa, higher feeding frequency resulted in significantly higher growth and kleptoplast photosynthetic yield, as well as a slower relative decrease in these parameters upon starvation. Longevity of A. acetabulum-derived chloroplasts in E. crispata was over twofold that of B. plumosa. Furthermore, significantly lower relative weight loss under starvation was observed in sea slugs previously fed on A. acetabulum than on B. plumosa. This study shows that functionality and longevity of kleptoplasts in photosynthetic sea slugs depend on the origin of the plastids. Furthermore, we have identified A. acetabulum as a donor of photosynthetically efficient chloroplasts common to highly specialized monophagous and polyphagous sea slugs capable of long-term retention, which opens new experimental routes to unravel the unsolved mysteries of kleptoplasty.
Collapse
Affiliation(s)
- Paulo Cartaxana
- ECOMARE – Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Luca Morelli
- ECOMARE – Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Elena Cassin
- ECOMARE – Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Vesa Havurinne
- ECOMARE – Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Miguel Cabral
- ECOMARE – Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sónia Cruz
- ECOMARE – Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
5
|
Mattila H, Tyystjärvi E. Red pigments in autumn leaves of Norway maple do not offer significant photoprotection but coincide with stress symptoms. TREE PHYSIOLOGY 2023; 43:751-768. [PMID: 36715646 PMCID: PMC10177003 DOI: 10.1093/treephys/tpad010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 05/13/2023]
Abstract
The reasons behind autumn colors, a striking manifestation of anthocyanin synthesis in plants, are poorly understood. Usually, not all leaves of an anthocyanic plant turn red or only a part of the leaf blade turns red. In the present study, we compared green, red and yellow sections of senescing Norway maple leaves, asking if red pigments offer photoprotection, and if so, whether the protection benefits the senescing tree. Green and senescing maple leaves were illuminated with strong white, green or red light in the absence or presence of lincomycin which blocks photosystem II (PSII) repair. Irrespective of the presence of anthocyanins, senescing leaves showed weaker capacity to repair PSII than green leaves. Furthermore, the rate of photoinhibition of PSII did not significantly differ between red and yellow sections of senescing maple leaves. We also followed pigment contents and photosynthetic reactions in individual leaves, from the end of summer until abscission of the leaf. In maple, red pigments accumulated only during late senescence, but light reactions stayed active until most of the chlorophyll had been degraded. PSII activity was found to be lower and non-photochemical quenching higher in red leaf sections, compared with yellow sections of senescing leaves. Red leaf sections were also thicker. We suggest that the primary function of anthocyanin synthesis is not to protect senescing leaves from excess light but to dispose of carbohydrates. This would relieve photosynthetic control, allowing the light reactions to produce energy for nutrient translocation at the last phase of autumn senescence when carbon skeletons are no longer needed.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Life Technologies/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Portugal
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| |
Collapse
|
6
|
Mattila H, Mishra S, Tyystjärvi T, Tyystjärvi E. Singlet oxygen production by photosystem II is caused by misses of the oxygen evolving complex. THE NEW PHYTOLOGIST 2023; 237:113-125. [PMID: 36161283 PMCID: PMC10092662 DOI: 10.1111/nph.18514] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/10/2022] [Indexed: 06/12/2023]
Abstract
Singlet oxygen (1 O2 ) is a harmful species that functions also as a signaling molecule. In chloroplasts, 1 O2 is produced via charge recombination reactions in photosystem II, but which recombination pathway(s) produce triplet Chl and 1 O2 remains open. Furthermore, the role of 1 O2 in photoinhibition is not clear. We compared temperature dependences of 1 O2 production, photoinhibition, and recombination pathways. 1 O2 production by pumpkin thylakoids increased from -2 to +35°C, ruling out recombination of the primary charge pair as a main contributor. S2 QA - or S2 QB - recombination pathways, in turn, had too steep temperature dependences. Instead, the temperature dependence of 1 O2 production matched that of misses (failures of the oxygen (O2 ) evolving complex to advance an S-state). Photoinhibition in vitro and in vivo (also in Synechocystis), and in the presence or absence of O2 , had the same temperature dependence, but ultraviolet (UV)-radiation-caused photoinhibition showed a weaker temperature response. We suggest that the miss-associated recombination of P680 + QA - is the main producer of 1 O2 . Our results indicate three parallel photoinhibition mechanisms. The manganese mechanism dominates in UV radiation but also functions in white light. Mechanisms that depend on light absorption by Chls, having 1 O2 or long-lived P680 + as damaging agents, dominate in red light.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| | - Sujata Mishra
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| | - Taina Tyystjärvi
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| |
Collapse
|
7
|
Abstract
Kleptoplasty, the process by which a host organism sequesters and retains algal chloroplasts, is relatively common in protists. The origin of the plastid varies, as do the length of time it is retained in the host and the functionality of the association. In metazoa, the capacity for long-term (several weeks to months) maintenance of photosynthetically active chloroplasts is a unique characteristic of a handful of sacoglossan sea slugs. This capability has earned these slugs the epithets "crawling leaves" and "solar-powered sea slugs." This Unsolved Mystery explores the basis of chloroplast maintenance and function and attempts to clarify contradictory results in the published literature. We address some of the mysteries of this remarkable association. Why are functional chloroplasts retained? And how is the function of stolen chloroplasts maintained without the support of the algal nucleus?
Collapse
|