1
|
Quarta A, Iannucci D, Guarino M, Blasetti A, Chiarelli F. Hypoglycemia in Children: Major Endocrine-Metabolic Causes and Novel Therapeutic Perspectives. Nutrients 2023; 15:3544. [PMID: 37630734 PMCID: PMC10459037 DOI: 10.3390/nu15163544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Hypoglycemia is due to defects in the metabolic systems involved in the transition from the fed to the fasting state or in the hormone control of these systems. In children, hypoglycemia is considered a metabolic-endocrine emergency, because it may lead to brain injury, permanent neurological sequelae and, in rare cases, death. Symptoms are nonspecific, particularly in infants and young children. Diagnosis is based on laboratory investigations during a hypoglycemic event, but it may also require biochemical tests between episodes, dynamic endocrine tests and molecular genetics. This narrative review presents the age-related definitions of hypoglycemia, its pathophysiology and main causes, and discusses the current diagnostic and modern therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti—Pescara, Gabriele D’Annunzio, 66100 Chieti, Italy; (A.Q.); (D.I.); (M.G.); (A.B.)
| |
Collapse
|
2
|
Giri D, Hawton K, Senniappan S. Congenital hyperinsulinism: recent updates on molecular mechanisms, diagnosis and management. J Pediatr Endocrinol Metab 2022; 35:279-296. [PMID: 34547194 DOI: 10.1515/jpem-2021-0369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Congenital hyperinsulinism (CHI) is a rare disease characterized by an unregulated insulin release, leading to hypoglycaemia. It is the most frequent cause of persistent and severe hypoglycaemia in the neonatal period and early childhood. Mutations in 16 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, KCNQ1, CACNA1D, FOXA2, EIF2S3, PGM1 and PMM2) that are involved in regulating the insulin secretion from pancreatic β-cells have been described to be responsible for the underlying molecular mechanisms of CHI. CHI can also be associated with specific syndromes and can be secondary to intrauterine growth restriction (IUGR), maternal diabetes, birth asphyxia, etc. It is important to diagnose and promptly initiate appropriate management as untreated hypoglycaemia can be associated with significant neurodisability. CHI can be histopathologically classified into diffuse, focal and atypical forms. Advances in molecular genetics, imaging techniques (18F-fluoro-l-dihydroxyphenylalanine positron emission tomography/computed tomography scanning), novel medical therapies and surgical advances (laparoscopic pancreatectomy) have changed the management and improved the outcome of patients with CHI. This review article provides an overview of the background, clinical presentation, diagnosis, molecular genetics and therapy for children with different forms of CHI.
Collapse
Affiliation(s)
- Dinesh Giri
- Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK.,University of Bristol, Bristol, UK
| | - Katherine Hawton
- Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | |
Collapse
|
3
|
Dastamani A, Yau D, Gilbert C, Morgan K, De Coppi P, Craigie RJ, Bomanji J, Biassoni L, Sajjan R, Flanagan SE, Houghton JAL, Senniappan S, Didi M, Dunne MJ, Banerjee I, Shah P. Variation in Glycaemic Outcomes in Focal Forms of Congenital Hyperinsulinism - The UK Perspective. J Endocr Soc 2022; 6:bvac033. [PMID: 35592516 PMCID: PMC9113085 DOI: 10.1210/jendso/bvac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 11/19/2022] Open
Abstract
Context In focal congenital hyperinsulinism (CHI), localized clonal expansion of pancreatic β-cells causes excess insulin secretion and severe hypoglycemia. Surgery is curative, but not all lesions are amenable to surgery. Objective We describe surgical and nonsurgical outcomes of focal CHI in a national cohort. Methods Patients with focal CHI were retrospectively reviewed at 2 specialist centers, 2003-2018. Results Of 59 patients with focal CHI, 57 had heterozygous mutations in ABCC8/KCNJ11 (51 paternally inherited, 6 de novo). Fluorine-18 L-3,4 dihydroxyphenylalanine positron emission tomography computed tomography scan identified focal lesions in 51 patients. In 5 patients, imaging was inconclusive; the diagnosis was established by frozen section histopathology in 3 patients, a lesion was not identified in 1 patient, and 1 declined surgery. Most patients (n = 56) were unresponsive to diazoxide, of whom 33 were unresponsive or partially responsive to somatostatin receptor analog (SSRA) therapy. Fifty-five patients underwent surgery: 40 had immediate resolution of CHI, 10 had persistent hypoglycemia and a focus was not identified on biopsy in 5. In the 10 patients with persistent hypoglycemia, 7 underwent further surgery with resolution in 4 and ongoing hypoglycemia requiring SSRA in 3. Nine (15% of cohort) patients (1 complex surgical access; 4 biopsy negative; 4 declined surgery) were managed conservatively; medication was discontinued in 8 children at a median (range) age 2.4 (1.5-7.7) years and 1 remains on SSRA at 16 years with improved fasting tolerance and reduction in SSRA dose. Conclusion Despite a unifying genetic basis of disease, we report inherent heterogeneity in focal CHI patients impacting outcomes of both surgical and medical management.
Collapse
Affiliation(s)
- Antonia Dastamani
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
| | - Daphne Yau
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Clare Gilbert
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
| | - Kate Morgan
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
| | - Paolo De Coppi
- Department of Surgery, Great Ormond Street Hospital for Children, London, UK
| | - Ross J Craigie
- Department of Paediatric Surgery, Royal Manchester Children's Hospital, Manchester, UK
| | - Jamshed Bomanji
- Nuclear Medicine Department, UCL Hospitals NHS Foundation Trust, London, UK
| | - Lorenzo Biassoni
- Nuclear Medicine Department, Great Ormond Street Hospital for Children, London, UK
| | - Rakesh Sajjan
- Nuclear Medicine Department, Royal Manchester Children's Hospital, Manchester, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital NHS Trust, Liverpool, UK
| | - Mohammed Didi
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital NHS Trust, Liverpool, UK
| | - Mark J Dunne
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Pratik Shah
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
- Genetics and Genomic Medicine Programme, University College London (UCL) Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
4
|
Wen Z, Wang J, Liang Q, Chang X, Zhang W, Niu H, He Q. Laparoscopic Surgery for Focal-Form Congenital Hyperinsulinism Located in Pancreatic Head. Front Pediatr 2022; 10:919238. [PMID: 35928676 PMCID: PMC9343681 DOI: 10.3389/fped.2022.919238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND AIMS Congenital hyperinsulinism of infancy (CHI) is a rare condition that may cause irreversible severe neurological damage in infants. For children in whom medical management fails, partial or near-total pancreatectomy is then required according to the type of lesion. Currently, open surgery of near-total pancreatic head resection is a mature technique for the treatment of focal-form CHI located in the head of the pancreas, but a minimally invasive laparoscopic procedure has not been reported yet. The aim of this study was to verify the feasibility, safety, and efficacy of laparoscopic pancreatic head resection and Roux-en-Y pancreaticojejunostomy for focal-form CHI. METHODS Two infants with persistent hypoglycemia and increased insulin levels were diagnosed with CHI and underwent laparoscopic near-total pancreatic head resection due to a suboptimal response to medical therapy and the likelihood of focal disease amenable to surgery. Clinical records, operative findings, and postoperative follow-up were collected and analyzed. RESULTS The operative duration was 300-330 min, and the intraoperative blood loss was minimal. The duration of postoperative abdominal drainage was 4-5 days. Neither intra- nor postoperative abdominal complications occurred. Oral feeding was resumed 3-4 days after the operation, and the blood glucose level was gradually stabilized to within the normal range. Normal blood glucose was observed in both patients over a follow-up period of 3-6 months. CONCLUSIONS Laparoscopic pancreatic head resection and Roux-en-Y pancreaticojejunostomy can be considered a safe and effective procedure with minimal morbidity and excellent outcomes for the treatment of focal CHI in the head of the pancreas.
Collapse
Affiliation(s)
- Zhe Wen
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jieqin Wang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qifeng Liang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaopan Chang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huilin Niu
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiao He
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Sims K. Congenital Hyperinsulinism. Neoreviews 2021; 22:e230-e240. [PMID: 33795398 DOI: 10.1542/neo.22-4-e230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hyperinsulinemic hypoglycemia (HH) is fairly common in neonates, particularly those born to diabetic mothers and those who are either large or small for gestational age. Immediate management of the disease focuses on achieving normoglycemia through frequent high-calorie feedings and/or intravenous glucose administration. Glucagon may be used for unstable infants in whom intravenous access cannot be obtained and enteral feedings cannot be administered. HH that persists despite these interventions should raise concern for congenital hyperinsulinism (CHI), prompting clinicians to perform a thorough evaluation. CHI consists of a group of genetic disorders in which inappropriate insulin secretion results in persistent hypoglycemia. Defects can occur in the various genes that regulate the pathway for insulin secretion in the pancreatic β-cells. Pharmacologic therapies are used for long-term management of the disease coupled with either curative or therapeutic surgical intervention. Because of the developing brain's high demand for glucose, these infants are at increased risk for hypoglycemic brain injury. This review will describe the pathogenesis of CHI, outlining the more common genetic mutations and associated syndromes. We will also discuss the clinical presentation, diagnosis, and management of CHI while providing insight into the overall prognosis.
Collapse
|
6
|
Congenital hyperinsulinism: management and outcome, a single tertiary centre experience. Eur J Pediatr 2020; 179:947-952. [PMID: 32002613 DOI: 10.1007/s00431-020-03581-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
Hyperinsulinemic hypoglycaemia (HH) is the most frequent cause of persistent hypoglycaemia in neonates and infants. The most severe forms of HH are inherited and referred to as congenital hyperinsulinism (CHI). Diazoxide is the mainstay of treatment, with surgery being an option in appropriate cases. To describe the management and outcome of patients with CHI within our service. Children referred to or attending HH clinic between 2009 and 2017 were identified. Clinical course, genetics and interventions were documented. A total of 39 children were identified, and seven patients with secondary and syndromic HH were excluded. Most were born with an appropriate weight for gestational age (62.5%). Diazoxide was started in all patients; however, 7 did not respond and required octreotide/continuous feeding, with 6/7 requiring surgery. Genetic mutations were detected in 12/32 (37.5%). Hyperinsulinism resolved in conservatively treated patients within 12 months in 11/32 (34.3%) compared to 14/32 (43.7%) requiring more than 12 months of medication. A total of 7 patients underwent pancreatectomy.Conclusion: Although LGA and SGA are risk factors, most babies in our cohort are born AGA. A genetic mutation does not exclude medical remission; long-term conservative treatment of CHI is feasible as surgery does not guarantee complete remission.What is Known:•Congenital hyperinsulinism (CHI) is a clinically and genetically heterogeneous disorder that is the most common cause of permanent hypoglycaemia in infants and children.•Identification of genetic mutations and the use of 18F-DOPA PET scan when feasible lead to better outcomes.What is New:•The study describes clinical criteria, management and outcome of large number of patients with CHI in single tertiary centre.•Conservative treatment is feasible without the need for surgery, with HH resolving in over 30% within 12 months, irrespective of genetic mutation.
Collapse
|
7
|
Ni J, Ge J, Zhang M, Hussain K, Guan Y, Cheng R, Xi L, Zheng Z, Ren S, Luo F. Genotype and phenotype analysis of a cohort of patients with congenital hyperinsulinism based on DOPA-PET CT scanning. Eur J Pediatr 2019; 178:1161-1169. [PMID: 31218401 PMCID: PMC6647509 DOI: 10.1007/s00431-019-03408-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/24/2022]
Abstract
Congenital hyperinsulinism (CHI) is a clinically, genetically, and morphologically heterogeneous disorder. 18F DOPA-PET CT scanning greatly improves its clinical outcome. Here, we presented the first Chinese 18F DOPA-PET CT scanning-based CHI cohort highlighting the variable ethic clinical phenotypes and genotypes. Fifty CHI patients were recruited. Median age at presentation was 2 days. Median fasting time was 2 h. Mean insulin level was 25.6 μIU/ml. Fifty-two percent of patients were diazoxide-unresponsive with significantly shorter fasting tolerance time and higher serum insulin level compared with the responsive patients. Seventy-four percent of patients experienced at least one adverse drug reaction. Tremendously increased focal lesions (32%) were detected and 75% of them were cured through surgery. Thirty-one nucleotide sequence changes were identified in 48% patients. Four novel variants (Q608X, Q1347X, Q289X, F1489S) in ABCC8 gene and 2 novel variants (G132A, V138E) in KCNJ11 gene were detected. Of the variants, 87.1% harbored in ABCC and KCNJ11 genes. T1042Qfs*75 in ABCC8 gene was the most common mutation.Conclusion: Highly increased portion of focal lesion was presented in Chinese CHI patients compared with that of the previous reports. Intolerance to diazoxide was much more evident in Chinese or East Asian than other populations. Certain hotspot mutations harbored in Chinese CHI patients. What is Known: • 18F DOPA-PET CT scanning can provide informative guidance for surgical procedure when medical therapy is not well responded in CHI patients. What is New: • Intolerance to diazoxide is much more evident in Chinese and East Asian CHI patients compared with the other ethnic populations. • Novel mutations were detected in ABCC8 and KCNJ11 gene. Hotspot mutations such as T1042Qfs*75, I1511K, E501K, G111R in ABCC8 gene, and R34H in KCNJ11 gene are predominantly responsible for Chinese CHI patients.
Collapse
Affiliation(s)
- Jinwen Ni
- Department of Endocrinology and Inborn Metabolic Diseases, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Jingjie Ge
- PET CT Center, Division of Nuclear Medicine, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
| | - Miaoying Zhang
- Department of Endocrinology and Inborn Metabolic Diseases, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Khalid Hussain
- Department of Pediatrics, Division of Endocrinology, Sidra Medicine OPC, C6-340 PO Box 26999, Al Luqta Street Education City North Campus, Doha, Qatar
| | - Yihui Guan
- PET CT Center, Division of Nuclear Medicine, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
| | - Ruoqian Cheng
- Department of Endocrinology and Inborn Metabolic Diseases, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Li Xi
- Department of Endocrinology and Inborn Metabolic Diseases, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Zhangqian Zheng
- Department of Endocrinology and Inborn Metabolic Diseases, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Shuhua Ren
- PET CT Center, Division of Nuclear Medicine, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
| | - Feihong Luo
- Department of Endocrinology and Inborn Metabolic Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
8
|
Abstract
Pancreatic β-cells are finely tuned to secrete insulin so that plasma glucose levels are maintained within a narrow physiological range (3.5-5.5 mmol/L). Hyperinsulinaemic hypoglycaemia (HH) is the inappropriate secretion of insulin in the presence of low plasma glucose levels and leads to severe and persistent hypoglycaemia in neonates and children. Mutations in 12 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1 and PMM2) that are involved in the regulation of insulin secretion from pancreatic β-cells have been described to be responsible for the underlying molecular mechanisms leading to congenital HH. In HH due to the inhibitory effect of insulin on lipolysis and ketogenesis there is suppressed ketone body formation in the presence of hypoglycaemia thus leading to increased risk of hypoglycaemic brain injury. Therefore, a prompt diagnosis and immediate management of HH is essential to avoid hypoglycaemic brain injury and long-term neurological complications in children. Advances in molecular genetics, imaging techniques (18F-DOPA positron emission tomography/computed tomography scanning), medical therapy and surgical advances (laparoscopic and open pancreatectomy) have changed the management and improved the outcome of patients with HH. This review article provides an overview to the background, clinical presentation, diagnosis, molecular genetics and therapy in children with different forms of HH.
Collapse
Affiliation(s)
- Hüseyin Demirbilek
- Hacettepe University Faculty of Medicine, Department of Paediatric Endocrinology, Ankara, Turkey
| | - Khalid Hussain
- Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar
,* Address for Correspondence: Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar Phone: +974-30322007 E-mail:
| |
Collapse
|
9
|
Demirbilek H, Rahman SA, Buyukyilmaz GG, Hussain K. Diagnosis and treatment of hyperinsulinaemic hypoglycaemia and its implications for paediatric endocrinology. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2017; 2017:9. [PMID: 28855921 PMCID: PMC5575922 DOI: 10.1186/s13633-017-0048-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022]
Abstract
Glucose homeostasis requires appropriate and synchronous coordination of metabolic events and hormonal activities to keep plasma glucose concentrations in a narrow range of 3.5–5.5 mmol/L. Insulin, the only glucose lowering hormone secreted from pancreatic β-cells, plays the key role in glucose homeostasis. Insulin release from pancreatic β-cells is mainly regulated by intracellular ATP-generating metabolic pathways. Hyperinsulinaemic hypoglycaemia (HH), the most common cause of severe and persistent hypoglycaemia in neonates and children, is the inappropriate secretion of insulin which occurs despite low plasma glucose levels leading to severe and persistent hypoketotic hypoglycaemia. Mutations in 12 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1 and PMM2) constitute the underlying molecular mechanisms of congenital HH. Since insulin supressess ketogenesis, the alternative energy source to the brain, a prompt diagnosis and immediate management of HH is essential to avoid irreversible hypoglycaemic brain damage in children. Advances in molecular genetics, imaging methods (18F–DOPA PET-CT), medical therapy and surgical approach (laparoscopic and open pancreatectomy) have changed the management and improved the outcome of patients with HH. This up to date review article provides a background to the diagnosis, molecular genetics, recent advances and therapeutic options in the field of HH in children.
Collapse
Affiliation(s)
- Huseyin Demirbilek
- Department of Paediatric Endocrinology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Sofia A Rahman
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Gonul Gulal Buyukyilmaz
- Department of Paediatric Endocrinology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Khalid Hussain
- Department of Paediatric Medicine Sidra Medical & Research Center, OPC, C6-337, PO Box 26999, Doha, Qatar
| |
Collapse
|
10
|
Yorifuji T, Horikawa R, Hasegawa T, Adachi M, Soneda S, Minagawa M, Ida S, Yonekura T, Kinoshita Y, Kanamori Y, Kitagawa H, Shinkai M, Sasaki H, Nio M. Clinical practice guidelines for congenital hyperinsulinism. Clin Pediatr Endocrinol 2017; 26:127-152. [PMID: 28804205 PMCID: PMC5537210 DOI: 10.1297/cpe.26.127] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Congenital hyperinsulinism is a rare condition, and following recent advances in
diagnosis and treatment, it was considered necessary to formulate evidence-based clinical
practice guidelines reflecting the most recent progress, to guide the practice of
neonatologists, pediatric endocrinologists, general pediatricians, and pediatric surgeons.
These guidelines cover a range of aspects, including general features of congenital
hyperinsulinism, diagnostic criteria and tools for diagnosis, first- and second-line
medical treatment, criteria for and details of surgical treatment, and future
perspectives. These guidelines were generated as a collaborative effort between The
Japanese Society for Pediatric Endocrinology and The Japanese Society of Pediatric
Surgeons, and followed the official procedures of guideline generation to identify
important clinical questions, perform a systematic literature review (April 2016), assess
the evidence level of each paper, formulate the guidelines, and obtain public
comments.
Collapse
Affiliation(s)
- Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | | | - Masanori Adachi
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Shun Soneda
- Department of Pediatrics, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | - Shinobu Ida
- Department of Pediatric Gastroenterology, Nutrition and Endocrinology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Takeo Yonekura
- Department of Pediatric Surgery, Nara Hospital, Kindai University Faculty of Medicine, Nara, Japan
| | - Yoshiaki Kinoshita
- Department of Pediatric Surgery, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Kanamori
- Department of Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Hiroaki Kitagawa
- Division of Pediatric Surgery, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Masato Shinkai
- Department of Surgery, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Hideyuki Sasaki
- Department of Pediatric Surgery, Tohoku University, Miyagi, Japan
| | - Masaki Nio
- Department of Pediatric Surgery, Tohoku University, Miyagi, Japan
| | | |
Collapse
|
11
|
Gong C, Huang S, Su C, Qi Z, Liu F, Wu D, Cao B, Gu Y, Li W, Liang X, Liu M. Congenital hyperinsulinism in Chinese patients: 5-yr treatment outcome of 95 clinical cases with genetic analysis of 55 cases. Pediatr Diabetes 2016; 17:227-34. [PMID: 25639667 DOI: 10.1111/pedi.12254] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022] Open
Abstract
AIM The aim of this study is to investigate the clinical features, therapeutic outcomes, and genetic mutations of congenital hyperinsulinism (CHI) in Chinese patients. METHODS The clinical features and therapeutic outcomes of 95 CHI cases were recorded, and genetic analyses were conducted to identify mutations in ABCC8 and KCNJ11 in 55 cases. Direct sequencing was carried out in 25 of the cases with ABCC8 and KCNJ11 mutations. Additionally, 16 samples with no mutations and the remaining 30 samples were sequenced using Ion Torrent platform. RESULTS Clinical misdiagnosis occurred in 36/95 (38%) of the cases. Most (82/95; 84%) of the patients were given diazoxide therapy combined with age-dependent frequent feeding, which was effective in 54/95 (66%) cases. The side effects of diazoxide included sodium and water retention, gastrointestinal reactions, polytrichia, and thrombocytopenia. Five patients were treated with octreotide for 1-4 months, of which 80% (4/5) showed a positive response. Non-surgical therapy was effective in 71/95 (75%) cases. Of the four children who received subtotal pancreatectomy, only one had a good outcome. The remission rate of hypoglycemia was 59% for children over 2-yr-old. The CHI-related gene mutation rate was 38% for potassium channel-related genes. Early onset of CHI and a lower diazoxide response rate were associated with potassium-ATP channel gene mutations. CONCLUSION Age-dependent frequent feeding is an acceptable therapy for CHI. Non-surgical therapy may be highly effective, in part, due to the low rate of potassium channel gene mutations. Surgical outcomes are unreliable without 18F-fluoro-L-DOPA positron emission tomography. Therefore, we do not recommend operation without definitive identification of the pathologic type.
Collapse
Affiliation(s)
- Chunxiu Gong
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital Affiliated with Capital Medical University, Beijing, China
| | - Shuyue Huang
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital Affiliated with Capital Medical University, Beijing, China
| | - Chang Su
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital Affiliated with Capital Medical University, Beijing, China
| | - Zhan Qi
- Department of Pediatrics, Beijing Children's Hospital Affiliated with Capital Medical University, Beijing, China
| | - Fang Liu
- Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, China
| | - Di Wu
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital Affiliated with Capital Medical University, Beijing, China
| | - Bingyan Cao
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital Affiliated with Capital Medical University, Beijing, China
| | - Yi Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital Affiliated with Capital Medical University, Beijing, China
| | - Wenjin Li
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital Affiliated with Capital Medical University, Beijing, China
| | - Xuejun Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital Affiliated with Capital Medical University, Beijing, China
| | - Min Liu
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital Affiliated with Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Lee BH, Lee J, Kim JM, Kang M, Kim GH, Choi JH, Kim J, Kim CJ, Kim DY, Kim SC, Yoo HW. Three novel pathogenic mutations in KATP channel genes and somatic imprinting alterations of the 11p15 region in pancreatic tissue in patients with congenital hyperinsulinism. Horm Res Paediatr 2016; 83:204-10. [PMID: 25765446 DOI: 10.1159/000371445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/01/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS This study was performed to investigate the molecular pathology underlying focal and diffuse congenital hyperinsulinism (CHI). METHODS The ABCC8 and KCNJ11 genes were analyzed in 3 patients with focal CHI and in 1 patient with diffuse CHI. Immunohistochemistry, real-time PCR, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and microsatellite marker analyses of the 11p15 region were performed on both normal tissues and adenomatous hyperplasia lesions. RESULTS The 3 patients with focal CHI harbored paternally inherited ABCC8 or KCNJ11 mutations. Compound heterozygous ABCC8 mutations were identified in the patient with diffuse CHI. In the 3 patients with focal CHI, homozygous ABCC8 or KCNJ11 mutations were identified within the lesions. MLPA and real-time PCR revealed the presence of two copies of 11p15. MS-MLPA and microsatellite analyses demonstrated abnormal imprinting patterns and focal loss of maternal 11p13-15 within the lesions. In contrast, parental heterozygosity was preserved in the normal tissue. In the patient with diffuse CHI, the two ABCC8 mutations were conserved, and imprinting patterns at 11p15 were normal. CONCLUSIONS The epigenetic alteration at the 11p15 region plays a central role in developing focal CHI by paternally derived mutations of the KATP channel and maternal allelic loss at this region. MS-MLPA and microsatellite analyses are useful to investigate the molecular etiology of CHI.
Collapse
Affiliation(s)
- Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang W, Liu L, Wen Z, Cheng J, Li C, Li X, Niu H, Wang F, Sheng H, Liu H. A compound heterozygous mutation of ABCC8 gene causing a diazoxide-unresponsive congenital hyperinsulinism with an atypical form: Not a focal lesion in the pancreas reported by ¹⁸F-DOPA-PET/CT scan. Gene 2015; 572:222-6. [PMID: 26162674 DOI: 10.1016/j.gene.2015.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/25/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Congenital hyperinsulinism (CHI) is a severe heterogeneous disorder due to dysregulation of insulin secretion from the pancreatic β-cells leading to severe hypoglycemia in infancy. 18-fluoro-l-3,4-dihydroxyphenylalanine positron emission tomography ((18)F‑DOPA‑PET)/CT is a useful tool in distinguishing between focal and diffuse disease preoperatively. But recent studies have suggested that the scanning may not be accurate as initially estimated. In this study we characterize a case of CHI with a compound heterozygous mutation of ABCC8 gene. The results of clinical investigation, gene mutation analysis, (18)F‑DOPA‑PET/CT scan, and pathological examination showed some new characteristics that have never been reported. The patient was unresponsive to medical therapy with diazoxide and received pancreatectomy twice. Genetic analysis identified a compound heterozygous mutation in ABCC8 genes. Imaging with (18)F‑DOPA‑PET/CT indicated a focal lesion in the head of the pancreas. The pathological diagnosis was an atypical form of CHI. The patient presented with a phenotype of atypical CHI unresponsive to diazoxide. It is considered that a relationship existed between the compound heterozygous mutation and the atypical form. (18)F‑DOPA‑PET/CT is a useful tool in distinguishing between focal and diffuse forms preoperatively but the accuracy is not 100%. The scan result is best combined with genetic analysis and intra-operative biopsy to confirm the histological subtypes. The combination will provide the optimal strategy for the surgical treatment of patients with CHI.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| | - Zhe Wen
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jing Cheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Cuiling Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiuzhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Huilin Niu
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fenghua Wang
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
14
|
Abstract
Persistent hyperinsulinaemic hypoglycaemia in infancy (PHHI) is a heterogeneous condition characterised by unregulated insulin secretion in response to a low blood glucose level. It is the most common cause of severe and persistent hypoglycaemia in neonates. It is extremely important to recognise this condition early and institute appropriate management to prevent significant brain injury leading to complications like epilepsy, cerebral palsy and neurological impairment. Histologically, PHHI is divided mainly into three types-diffuse, focal and atypical disease. Fluorine-18-l-3,4-dihydroxyphenylalanine positron emission tomography (18F-DOPA-PET/CT) scan allows differentiation between diffuse and focal diseases. The diffuse form is inherited in an autosomal recessive (or dominant) manner whereas the focal form is sporadic in inheritance and is localised to a small region of the pancreas. The molecular basis of PHHI involves defects in key genes (ABCC8, KCNJ11, GCK, SLC16A1, HADH, UCP2, HNF4A and GLUD1) that regulate insulin secretion. Focal lesions are cured by lesionectomy whereas diffuse disease (unresponsive to medical therapy) will require a near-total pancreatectomy with a risk of developing diabetes mellitus and pancreatic exocrine insufficiency. Open surgery is the traditional approach to pancreatic resection. However, recent advances in laparoscopic surgery have led to laparoscopic near-total pancreatectomy for diffuse lesions and laparoscopic distal pancreatectomy for focal lesions distal to the head of the pancreas.
Collapse
Affiliation(s)
- Pratik Shah
- Department of Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London; Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London
| | - Huseyin Demirbilek
- Department of Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London; Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London
| | - Khalid Hussain
- Department of Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London; Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London.
| |
Collapse
|
15
|
18F-DOPA PET and enhanced CT imaging for congenital hyperinsulinism: initial UK experience from a technologist's perspective. Nucl Med Commun 2013; 34:601-8. [PMID: 23571817 DOI: 10.1097/mnm.0b013e32836069d0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycaemia in infants and children. Histologically, there are two subgroups, diffuse and focal. The aim of this study was to evaluate the accuracy of (18)F-fluoro-L-dihydroxyphenylalanine ((18)F-DOPA) PET/computed tomography (CT) and contrast-enhanced CT in distinguishing between focal and diffuse lesions in infants with CHI who are unresponsive to medical therapy. In addition, this paper describes the detailed protocol used for imaging and analysis of (18)F-DOPA PET/CT images in our clinical practice. MATERIALS AND METHODS Twenty-two (18)F-DOPA PET/CT and contrast-enhanced CT imaging studies were carried out on 18 consecutive patients (nine boys and nine girls) with CHI (median age, 2 years and 1 month; range, 1-84 months) who had positive dominant ABCC8 mutation genetic results or negative ABCC8/t results but did not respond to first-line medical therapy with high-dose diazoxide. (18)F-DOPA was produced by the cyclotron unit of Woolfson Molecular Imaging Centre, Manchester, and transported to our centre in central London after synthesis and implementation of quality control measures. (18)F-DOPA was administered intravenously at a dose of 4 MBq/kg, and iodine contrast medium was injected intravenously at a dose of 1.5 ml/kg. Single bed position PET/CT images of the pancreas were acquired under light sedation with oral chloral hydrate. Four PET dynamic data acquisition scans were taken 20, 40, 50 and 60 min after injection for a duration of 10 min each. The results were assessed by visual interpretation and quantitative measurements of standardized uptake values (SUVs) in the head, body, and tail of the pancreas. RESULTS Of the 18 patients, 13 showed diffuse and five showed focal (18)F-DOPA PET pancreatic uptake. Three regions of interest were drawn over the head, body and tail of the pancreas to calculate the SUV(max). Using the formula - highest SUV(max)/next highest SUV(max) - a ratio was calculated. Five patients had an accumulation of F-DOPA in the pancreas and an SUV ratio greater than 1.5, indicating focal disease with an SUV(max) more than 50% higher than that of the unaffected areas of the pancreas. The remaining 13 patients had diffuse accumulation of (18)F-DOPA in the pancreas (SUV ratio<1.3). Using this ratio, a focal lesion can be distinguished from diffuse uptake and normal pancreatic uptake. The sizes of these regions of interest varied according to the age of the child. All patients diagnosed with focal lesions underwent surgery and were cured eventually. Lesions were accurately localized by PET/CT and confirmed by histological results after surgery. Three of these patients had to undergo second (18)F-DOPA scans and second surgeries after unsuccessful excision during their first surgery. Three patients with diffuse disease underwent a partial pancreatectomy, and histological results confirmed diffuse disease. One patient was cured and two remain on high-dose diazoxide therapy because of persistent hypoglycaemia. CONCLUSION (18)F-DOPA PET/CT offers excellent differentiation of focal from diffuse CHI, and the contrast-enhanced CT technique permits precise preoperative localization of the lesion and anatomical landmarks.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Congenital hyperinsulinism (CHI) is a multifaceted disease and continues to be the most common cause of persistent hypoglycemia in infants. The purpose of the review is to highlight important recent developments regarding CHI. RECENT FINDINGS Several recent studies have highlighted the advances in medical genetics, imaging techniques, histological variety, and surgical decision making regarding CHI. The advancements have resulted in the ability to often distinguish between diffuse and focal disease, thus allowing a more focused medical and surgical approach to the patient. When genetic information is combined with advanced imaging and intraoperative histological analysis, surgical results have improved. Despite medical and surgical advancements, recent studies also reveal the need for better medical options for patients and that aggressive surgery may lead to the onset of diabetes. SUMMARY Current advances have improved the overall care of the patient with CHI, although there are still improvements to be achieved. The ability to apply these advancements is best accomplished with an experienced team consisting of geneticists, radiologists, endocrinologists, pathologists, and surgeons. Utilizing a team approach results in a complete evaluation and allows a customized care plan for each patient.
Collapse
|
17
|
Laje P, States LJ, Zhuang H, Becker SA, Palladino AA, Stanley CA, Adzick NS. Accuracy of PET/CT Scan in the diagnosis of the focal form of congenital hyperinsulinism. J Pediatr Surg 2013; 48:388-93. [PMID: 23414871 PMCID: PMC3597386 DOI: 10.1016/j.jpedsurg.2012.11.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 11/12/2012] [Indexed: 01/30/2023]
Abstract
PURPOSE The purpose of the study was to determine the sensitivity of the (18)fluoro-dihydroxyphenylalanine positron emission tomography/computed tomography scan (18F-PET/CT) in the diagnosis of focal congenital hyperinsulinism (HI). METHODS A retrospective review of children with HI who underwent a preoperative 18F-PET/CT scan was performed. RESULTS Between 1/2008 and 2/2012 we performed 105 consecutive 18F-PET/CT scans on infants with HI. Fifty-three patients had focal HI. Of those fifty-three patients, eight had a preoperative 18F-PET/CT scan read as "diffuse disease". The sensitivity of the study in the diagnosis of focal HI was 85%. The location of the eight missed focal lesions was: head (3), body (2), and tail (3). The 18F-PET/CT of the missed head lesions showed homogeneous tracer uptake (n =2) or heterogeneous uptake throughout the pancreas (n=1). The 18F-PET/CT of the 2 missed body lesions and 1 missed tail lesion showed heterogeneous uptake throughout the pancreas. The 18F-PET/CT of the other 2 missed tail lesions showed lesions adjacent to and obscured by the signal of the upper renal pole, identified retrospectively by closer observation. Fifty-two of the 105 patients had diffuse HI. Two of them had 18F-PET/CT studies read as "focal disease". Therefore, the specificity of the study was 96%. Of the forty-seven 18F-PET/CT studies read as "focal disease", forty-five had true focal HI. Therefore, the positive predictive value of the study in the diagnosis of focal HI was 96%. CONCLUSION The sensitivity and specificity of 18 F-PET/CT can be affected by certain anatomic features of the pancreas, by the location of the lesion, and by the reader's experience.
Collapse
Affiliation(s)
| | | | | | | | | | | | - N. Scott Adzick
- Corresponding author. Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA. Tel.: +1 215 590 2727; fax: +1 215 590 3265. (N.S. Adzick)
| |
Collapse
|
18
|
Treglia G, Mirk P, Giordano A, Rufini V. Diagnostic performance of fluorine-18-dihydroxyphenylalanine positron emission tomography in diagnosing and localizing the focal form of congenital hyperinsulinism: a meta-analysis. Pediatr Radiol 2012; 42:1372-9. [PMID: 22885604 DOI: 10.1007/s00247-012-2459-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/05/2012] [Accepted: 06/09/2012] [Indexed: 11/25/2022]
Abstract
INTRODUCTION We performed a meta-analysis on published data on the diagnostic performance of fluorine-18 dihydroxyphenylalanine ((18)F-DOPA) positron emission tomography (PET) in diagnosing and localizing focal congenital hyperinsulinism (CHI). MATERIALS AND METHODS A comprehensive computer literature search of studies published up to 31 January 2012 regarding (18)F-DOPA PET or PET/CT in patients with CHI was performed. Pooled sensitivity and specificity, area under the ROC curve and diagnostic odds ratio (DOR) of (18)F-DOPA PET or PET/CT in diagnosing focal CHI were calculated. The localization accuracy of focal CHI was also estimated. Seven studies comprising 195 CHI patients were included. RESULTS The pooled sensitivity and specificity of (18)F-DOPA PET or PET/CT in differentiating between focal and diffuse CHI were 89% (95% confidence interval [CI]:81-95%) and 98% (95% CI:89-100%), respectively. The DOR was 74.5 (95% CI:18-307). The area under the ROC curve was 0.95. The pooled accuracy of these functional imaging methods in localizing focal CHI was 80% (95% CI:71-88%). DISCUSSION In CHI patients, (18)F-DOPA PET or PET/CT demonstrated high sensitivity and specificity in differentiating between focal and diffuse CHI. (18)F-DOPA PET or PET/CT are accurate methods of localizing focal CHI. Nevertheless, possible sources of false-negative results for focal CHI should be kept in mind.
Collapse
Affiliation(s)
- Giorgio Treglia
- Institute of Nuclear Medicine, Catholic University of the Sacred Heart, Largo Gemelli, 8, Rome 00168, Italy.
| | | | | | | |
Collapse
|
19
|
Pancreatic head resection preserving the main pancreatic duct for congenital hyperinsulinism of infancy. Pediatr Surg Int 2012; 28:935-7. [PMID: 22885732 DOI: 10.1007/s00383-012-3147-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Surgical intervention for congenital hyperinsulinism with an unclear focal lesion in the pancreatic head sometimes require the resection of most of the pancreas head and pancreaticojejunotomy. This report presents the case of a patient that underwent pancreatic head resection preserving the main pancreatic duct to avoid pancreaticojejunostomy.
Collapse
|
20
|
Laje P, Stanley CA, Palladino AA, Becker SA, Adzick NS. Pancreatic head resection and Roux-en-Y pancreaticojejunostomy for the treatment of the focal form of congenital hyperinsulinism. J Pediatr Surg 2012; 47:130-5. [PMID: 22244405 PMCID: PMC3595012 DOI: 10.1016/j.jpedsurg.2011.10.032] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/06/2011] [Indexed: 10/14/2022]
Abstract
PURPOSE To determine the outcome of patients who underwent pancreatic head resection and Roux-en-Y pancreaticojejunostomy to the remaining normal pancreatic body and tail for the treatment of a focal lesion in the pancreatic head causing congenital hyperinsulinism (HI). METHODS One hundred thirty-eight patients underwent pancreatic resection for focal HI between 1998 and 2010. Twenty-three patients in the group underwent pancreatic head resection and Roux-en-Y pancreaticojejunostomy. RESULTS There were 13 females and 10 males. Median age and weight at surgery were 8 weeks and 5.8 kg, respectively. Twenty-one patients had a near-total pancreatic head resection, and 2 patients had a pylorus-preserving Whipple procedure. The pancreaticojejunostomy anastomosis was performed with interrupted fine monofilament sutures such that the transected end of the pancreatic body was tucked within the end of the Roux-en-Y jejunal limb. Median hospital stay was 22 days. All patients were cured of HI. CONCLUSION We conclude that pancreatic head resection with Roux-en-Y pancreaticojejunostomy is a safe and effective procedure for the treatment of the HI patient with a large focal lesion in the pancreatic head that is not amenable to local resection alone.
Collapse
Affiliation(s)
| | | | | | | | - N. Scott Adzick
- Corresponding author. Tel.: +1 215 590 2727; fax: +1 215 590 4875. (N. Scott Adzick)
| |
Collapse
|
21
|
Haldorsen IS, Ræder H, Vesterhus M, Molven A, Njølstad PR. The role of pancreatic imaging in monogenic diabetes mellitus. Nat Rev Endocrinol 2011; 8:148-59. [PMID: 22124438 DOI: 10.1038/nrendo.2011.197] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In neonatal diabetes mellitus resulting from mutations in EIF2AK3, PTF1A, HNF1B, PDX1 or RFX6, pancreatic aplasia or hypoplasia is typical. In maturity-onset diabetes mellitus of the young (MODY), mutations in HNF1B result in aplasia of pancreatic body and tail, and mutations in CEL lead to lipomatosis. The pancreas is not readily accessible for histopathological investigations and pancreatic imaging might, therefore, prove important for diagnosis, treatment, and research into these β-cell diseases. Advanced imaging techniques can identify the pancreatic features that are characteristic of inherited diabetes subtypes, including alterations in organ size (diffuse atrophy and complete or partial pancreatic agenesis), lipomatosis and calcifications. Consequently, in patients with suspected monogenic diabetes mellitus, the results of pancreatic imaging could help guide the molecular and genetic investigation. Imaging findings also highlight the critical roles of specific genes in normal pancreatic development and differentiation and provide new insight into alterations in pancreatic structure that are relevant for β-cell disease.
Collapse
Affiliation(s)
- Ingfrid S Haldorsen
- Department of Radiology, Haukeland University Hospital, N-5021 Bergen, Norway
| | | | | | | | | |
Collapse
|