1
|
López Montalbán Á, Simón Frapolli VJ, Vidal Suárez Á. Short stature in a patient with acid-labile subunit deficiency and type 1 diabetes mellitus. Med Clin (Barc) 2025; 164:255-256. [PMID: 39609241 DOI: 10.1016/j.medcli.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 11/30/2024]
Affiliation(s)
- Ángel López Montalbán
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, España.
| | - Víctor José Simón Frapolli
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, España
| | - Álvaro Vidal Suárez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, España
| |
Collapse
|
2
|
Kentistou KA, Lim BEM, Kaisinger LR, Steinthorsdottir V, Sharp LN, Patel KA, Tragante V, Hawkes G, Gardner EJ, Olafsdottir T, Wood AR, Zhao Y, Thorleifsson G, Day FR, Ozanne SE, Hattersley AT, O'Rahilly S, Stefansson K, Ong KK, Beaumont RN, Perry JRB, Freathy RM. Rare variant associations with birth weight identify genes involved in adipose tissue regulation, placental function and insulin-like growth factor signalling. Nat Commun 2025; 16:648. [PMID: 39809772 PMCID: PMC11733218 DOI: 10.1038/s41467-024-55761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. We report analyses of rare variants that impact birth weight when carried by either fetus or mother, using whole exome sequencing data in up to 234,675 participants. Rare protein-truncating and deleterious missense variants are collapsed to perform gene burden tests. We identify 9 genes; 5 with fetal-only effects on birth weight, 1 with maternal-only effects, 3 with both, and observe directionally concordant associations in an independent sample. Four of the genes were previously implicated by GWAS of birth weight. IGF1R and PAPPA2 (fetal and maternal-acting) have known roles in insulin-like growth factor bioavailability and signalling. PPARG, INHBE and ACVR1C (fetal-acting) are involved in adipose tissue regulation, and the latter two also show associations with favourable adiposity patterns in adults. We highlight the dual role of PPARG (fetal-acting) in adipocyte differentiation and placental angiogenesis. NOS3 (fetal and maternal-acting), NRK (fetal), and ADAMTS8 (maternal-acting) have been implicated in placental function and hypertension. To conclude, our analysis of rare coding variants identifies regulators of fetal adipose tissue and fetoplacental angiogenesis as determinants of birth weight, and further evidence for the role of insulin-like growth factors.
Collapse
Affiliation(s)
- Katherine A Kentistou
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Brandon E M Lim
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lena R Kaisinger
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Luke N Sharp
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kashyap A Patel
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | | | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Andrew R Wood
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Felix R Day
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., 102 Reykjavik, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ken K Ong
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - John R B Perry
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Majlessipour F, Zhu G, Baca N, Kumbaji M, Hwa V, Danielpour M. Skeletal overgrowth in a pre-pubescent child treated with pan-FGFR inhibitor. Heliyon 2024; 10:e30887. [PMID: 38841436 PMCID: PMC11152661 DOI: 10.1016/j.heliyon.2024.e30887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
Fibroblast growth factors and their receptors (FGFR) have major roles in both human growth and oncogenesis. In adults, therapeutic FGFR inhibitors have been successful against tumors that carry somatic FGFR mutations. In pediatric patients, trials testing these anti-tumor FGFR inhibitor therapeutics are underway, with several recent reports suggesting modest positive responses. Herein, we report an unforeseen outcome in a pre-pubescent child with an FGFR1-mutated glioma who was successfully treated with FDA-approved erdafitinib, a pan-FGFR inhibitor approved for treatment of Bladder tumors. While on treatment with erdafitinib, the patient experienced rapid skeletal and long bone overgrowth resulting in kyphoscoliosis, reminiscent of patients with congenital loss-of-function FGFR3 mutations. We utilized normal dermal fibroblast cells established from the patient as a surrogate model to demonstrate that insulin-like growth factor 1 (IGF-1), a factor important for developmental growth of bones and tissues, can activate the PI3K/AKT pathway in erdafitinib-treated cells but not the MAPK/ERK pathway. The IGF-I-activated PI3K/AKT signaling rescued normal fibroblasts from the cytotoxic effects of erdafitinib by promoting cell survival. We, therefore, postulate that IGF-I-activated P13K/AKT signaling likely continues to promote bone elongation in the growing child, but not in adults, treated with therapeutic pan-FGFR inhibitors. Importantly, since activated MAPK signaling counters bone elongation, we further postulate that prolonged blockage of the MAPK pathway with pan-FGFR inhibitors, together with actions of growth-promoting factors including IGF-1, could explain the abnormal skeletal and axial growth suffered by our pre-pubertal patient during systemic therapeutic use of pan-FGFR inhibitors. Further studies to find more targeted, and/or appropriate dosing, of pan-FGFR inhibitor therapeutics for children are essential to avoid unexpected off-target effects as was observed in our young patient.
Collapse
Affiliation(s)
- Fataneh Majlessipour
- Pediatric Hematology and Oncology, Cedars-Sinai Guerin Children's and Cedars-Sinai Cancer, Los Angeles, CA, 90048, USA
| | - Gaohui Zhu
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Nicole Baca
- Pediatric Hematology and Oncology, Cedars-Sinai Guerin Children's and Cedars-Sinai Cancer, Los Angeles, CA, 90048, USA
| | - Meenasri Kumbaji
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan
| | - Moise Danielpour
- Maxine Dunitz Neurosurgical Institute at the Department of Neurosurgery, Cedars-Sinai Guerin Children's, Los Angeles, CA, 90048, USA
| |
Collapse
|
4
|
Sarver DC, Garcia-Diaz J, Saqib M, Riddle RC, Wong GW. Tmem263 deletion disrupts the GH/IGF-1 axis and causes dwarfism and impairs skeletal acquisition. eLife 2024; 12:RP90949. [PMID: 38241182 PMCID: PMC10945605 DOI: 10.7554/elife.90949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first 2 weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jean Garcia-Diaz
- Department of Orthopaedic Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
- Cell and Molecular Medicine graduate program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
- Research and Development Service, Baltimore Veterans Administration Medical CenterBaltimoreUnited States
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
5
|
Bang P, Polak M, Bossowski A, Maghnie M, Argente J, Ramon-Krauel M, Sert C, Perrot V, Mazain S, Woelfle J. Frequency and Predictive Factors of Hypoglycemia in Patients Treated With rhIGF-1: Data From the Eu-IGFD Registry. J Clin Endocrinol Metab 2023; 109:46-56. [PMID: 37579214 PMCID: PMC10735455 DOI: 10.1210/clinem/dgad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
CONTEXT The European Increlex® Growth Forum Database (Eu-IGFD) is an ongoing surveillance registry (NCT00903110) established to collect long-term safety and effectiveness data on the use of recombinant human insulin-like growth factor-1 (rhIGF-1, mecasermin, Increlex) for the treatment of children/adolescents with severe primary insulin-like growth factor-1 deficiency (SPIGFD). OBJECTIVE This analysis of Eu-IGFD data aimed to identify the frequency and predictive factors for hypoglycemia adverse events (AEs) in children treated with rhIGF-1. METHODS Data were collected from December 2008 to May 2021. Logistic regression was performed to identify predictive risk factors for treatment-induced hypoglycemia AEs. Odds ratios (ORs) are presented with 95% CIs for each factor. RESULTS In total, 306 patients were enrolled in the registry; 84.6% were diagnosed with SPIGFD. Patients who experienced ≥ 1 hypoglycemia AE (n = 80) compared with those with no hypoglycemia AEs (n = 224) had a lower mean age at treatment start (8.7 years vs 9.8 years), a more frequent diagnosis of Laron syndrome (27.5% vs 10.3%), and a history of hypoglycemia (18.8% vs 4.5%). Prior history of hypoglycemia (OR 0.25; 95% CI: [0.11; 0.61]; P = .002) and Laron syndrome diagnosis (OR 0.36; 95% CI: [0.18; 0.72]; P = .004) predicted future hypoglycemia AEs. Total hypoglycemia AEs per patient per treatment year was 0.11 and total serious hypoglycemia AEs per patient per treatment year was 0.01. CONCLUSION Hypoglycemia occurs more frequently in patients with prior history of hypoglycemia and/or Laron syndrome compared with patients without these risk factors, and these patients should be carefully monitored for this AE throughout treatment.
Collapse
Affiliation(s)
- Peter Bang
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Michel Polak
- Department of Pediatric Endocrinology, Gynaecology, and Diabetology, Assistance Publique—Hôpitaux de Paris, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France
- IMAGINE Institute, INSERM U1016, France University of Paris Cité, 75015 Paris, France
| | - Artur Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Białystok, 15-274 Białystok, Poland
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16100 Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genova, 16132 Genova, Italy
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, 28009 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología (CIBER) de Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- IMDEA Food Institute, 28049 Madrid, Spain
| | - Marta Ramon-Krauel
- Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | | | - Sarah Mazain
- Ipsen Pharma, 92100 Boulogne-Billancourt, France
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
6
|
Sarver DC, Garcia-Diaz J, Saqib M, Riddle RC, Wong GW. Tmem263 deletion disrupts the GH/IGF-1 axis and causes dwarfism and impairs skeletal acquisition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551694. [PMID: 37577461 PMCID: PMC10418210 DOI: 10.1101/2023.08.02.551694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first two weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted GH/IGF-1 axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling a wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean Garcia-Diaz
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Cell and Molecular Medicine graduate program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Backeljauw PF, Andrews M, Bang P, Dalle Molle L, Deal CL, Harvey J, Langham S, Petriczko E, Polak M, Storr HL, Dattani MT. Challenges in the care of individuals with severe primary insulin-like growth factor-I deficiency (SPIGFD): an international, multi-stakeholder perspective. Orphanet J Rare Dis 2023; 18:312. [PMID: 37805563 PMCID: PMC10559630 DOI: 10.1186/s13023-023-02928-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/24/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Severe primary insulin-like growth factor-I (IGF-I) deficiency (SPIGFD) is a rare growth disorder characterized by short stature (standard deviation score [SDS] ≤ 3.0), low circulating concentrations of IGF-I (SDS ≤ 3.0), and normal or elevated concentrations of growth hormone (GH). Laron syndrome is the best characterized form of SPIGFD, caused by a defect in the GH receptor (GHR) gene. However, awareness of SPIGFD remains low, and individuals living with SPIGFD continue to face challenges associated with diagnosis, treatment and care. OBJECTIVE To gather perspectives on the key challenges for individuals and families living with SPIGFD through a multi-stakeholder approach. By highlighting critical gaps in the awareness, diagnosis, and management of SPIGFD, this report aims to provide recommendations to improve care for people affected by SPIGFD globally. METHODS An international group of clinical experts, researchers, and patient and caregiver representatives from the SPIGFD community participated in a virtual, half-day meeting to discuss key unmet needs and opportunities to improve the care of people living with SPIGFD. RESULTS As a rare disorder, limited awareness and understanding of SPIGFD amongst healthcare professionals (HCPs) poses significant challenges in the diagnosis and treatment of those affected. Patients often face difficulties associated with receiving a formal diagnosis, delayed treatment initiation and limited access to appropriate therapy. This has a considerable impact on the physical health and quality of life for patients, highlighting a need for more education and clearer guidance for HCPs. Support from patient advocacy groups is valuable in helping patients and their families to find appropriate care. However, there remains a need to better understand the burden that SPIGFD has on individuals beyond height, including the impact on physical, emotional, and social wellbeing. CONCLUSIONS To address the challenges faced by individuals and families affected by SPIGFD, greater awareness of SPIGFD is needed within the healthcare community, and a consensus on best practice in the care of individuals affected by this condition. Continued efforts are also needed at a global level to challenge existing perceptions around SPIGFD, and identify solutions that promote equitable access to appropriate care. Medical writing support was industry-sponsored.
Collapse
Affiliation(s)
- Philippe F Backeljauw
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Mary Andrews
- The Major Aspects of Growth in Children (MAGIC) Foundation, Warrenville, IL, USA
- The MAGIC Foundation International Coalition for Organizations Supporting Endocrine Patients (MAGIC-ICOSEP), Atlanta, GA, USA
| | - Peter Bang
- Division of Children's and Women's Health, Department of Biomedical and Clinical Sciences (BKV), Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | - Cheri L Deal
- Université de Montréal, Montréal, QC, Canada
- Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montréal, QC, Canada
| | - Jamie Harvey
- The Major Aspects of Growth in Children (MAGIC) Foundation, Warrenville, IL, USA
- The MAGIC Foundation International Coalition for Organizations Supporting Endocrine Patients (MAGIC-ICOSEP), Atlanta, GA, USA
| | - Shirley Langham
- Paediatric Endocrinology, Great Ormond Street Hospital UCL Hospitals, London, UK
| | - Elżbieta Petriczko
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Disorders, and Cardiology of Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - Michel Polak
- Department of Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mehul T Dattani
- Paediatric Endocrinology, Great Ormond Street Hospital UCL Hospitals, London, UK.
- UCL Great Ormond Street Institute of Child Health, London, UK.
- Adolescent Endocrinology, UCL Hospitals, London, UK.
| |
Collapse
|
8
|
Xie Q, Zhang Z, Chen Z, Sun J, Li M, Wang Q, Pan Y. Integration of Selection Signatures and Protein Interactions Reveals NR6A1, PAPPA2, and PIK3C2B as the Promising Candidate Genes Underlying the Characteristics of Licha Black Pig. BIOLOGY 2023; 12:biology12040500. [PMID: 37106701 PMCID: PMC10135650 DOI: 10.3390/biology12040500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Licha black (LI) pig has the specific characteristics of larger body length and appropriate fat deposition among Chinese indigenous pigs. Body length is one of the external traits that affect production performance, and fat deposition influences meat quality. However, the genetic characteristics of LI pigs have not yet been systematically uncovered. Here, the genomic information from 891 individuals of LI pigs, commercial pigs, and other Chinese indigenous pigs was used to analyze the breed characteristics of the LI pig with runs of homozygosity, haplotype, and FST selection signatures. The results showed the growth traits-related genes (i.e., NR6A1 and PAPPA2) and the fatness traits-related gene (i.e., PIK3C2B) were the promising candidate genes that closely related to the characteristics of LI pigs. In addition, the protein–protein interaction network revealed the potential interactions between the promising candidate genes and the FASN gene. The RNA expression data from FarmGTEx indicated that the RNA expression levels of NR6A1, PAPPA2, PIK3C2B, and FASN were highly correlated in the ileum. This study provides valuable molecular insights into the mechanisms that affect pig body length and fat deposition, which can be used in the further breeding process to improve meat quality and commercial profitability.
Collapse
|
9
|
Mastromauro C, Giannini C, Chiarelli F. Short stature related to Growth Hormone Insensitivity (GHI) in childhood. Front Endocrinol (Lausanne) 2023; 14:1141039. [PMID: 37008935 PMCID: PMC10050683 DOI: 10.3389/fendo.2023.1141039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
Linear growth during childhood is the result of the synergic contribution of different factors. The best growth determinant system during each period of life is represented by the growth hormone-insulin-like growth factor axis (GH-IGF), even if several other factors are involved in normal growth. Within the broad spectrum of growth disorders, an increased importance has been placed on growth hormone insensitivity (GHI). GHI was reported for the first time by Laron as a syndrome characterized by short stature due to GH receptor (GHR) mutation. To date, it is recognized that GHI represents a wide diagnostic category, including a broad spectrum of defects. The peculiar characteristic of GHI is the low IGF-1 levels associated with normal or elevated GH levels and the lack of IGF-1 response after GH administration. Recombinant IGF-1 preparations may be used in the treatment of these patients.
Collapse
Affiliation(s)
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
- Center of Advanced Studies and Technology – CAST (ex CesSI-MeT), University of Chieti, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy
- Center of Advanced Studies and Technology – CAST (ex CesSI-MeT), University of Chieti, Chieti, Italy
| |
Collapse
|
10
|
Franzoni A, Baldan F, Passon N, Mio C, Driul D, Cogo P, Fogolari F, D'Aurizio F, Damante G. Novel IGFALS mutations with predicted pathogenetic effects by the analysis of AlphaFold structure. Endocrine 2023; 79:292-295. [PMID: 36348166 DOI: 10.1007/s12020-022-03244-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE According to the American College of Medical Genetics (ACMG) classification, variants of uncertain significance (VUS) are gene variations whose impact on the disease risk is not yet known. VUS, therefore, represent an unmet need for genetic counselling. Aim of the study is the use the AlphaFold artificial intelligence algorithm to predict the impact of novel mutations of the IGFALS gene, detected in a subject with short stature and initially classified as VUS according to the ACMG classification. METHODS A short-stature girl and her parents have been investigated. IGFALS mutations have been detected through clinical exome and confirmed by Sanger sequencing. The potential presence of co-occurring gene alterations was investigated in the proband by whole exome and CGH array. Structure of the ALS protein (encoded by the IGFALS gene) was evaluated through the AlphaFold artificial intelligence algorithm. RESULTS Two IGFALS variants were found in the proband: c.1349T > C (p.Leu450Pro) and c.1363_1365delCTC (p.Leu455del), both classified as VUS, according to ACMG. Parents' analysis highlighted the in trans position of the two variants. AlphaFold showed that the mutated positions were found the concave side a horseshoe structure of the ALS protein, likely interfering with protein-protein interactions. According to a loss of function (LoF) effect of the two variants, reduced levels of the IGF1 and IGFBP-3 proteins, as well as a growth hormone (GH) excess were detected in the proband's serum. CONCLUSIONS By using the AlphaFold structure we were able to predict two IGFALS gene mutations initially classified as VUS, as potentially pathogenetic. Our proof-of-concept showed a potential application of AlphaFold as tool to a better inform VUS interpretation of genetic tests.
Collapse
Affiliation(s)
- Alessandra Franzoni
- SOC Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale Udine, Udine, Italy
| | - Federica Baldan
- SOC Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale Udine, Udine, Italy
| | - Nadia Passon
- SOC Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale Udine, Udine, Italy
| | - Catia Mio
- Dipartimento di Area Medica, Università di Udine, Udine, Italy
| | - Daniela Driul
- SOC Clinica Pediatrica, Azienda Ospedaliero-Universitaria, Udine, Italy
| | - Paola Cogo
- Dipartimento di Area Medica, Università di Udine, Udine, Italy
- SOC Clinica Pediatrica, Azienda Ospedaliero-Universitaria, Udine, Italy
| | - Federico Fogolari
- Dipartimento di Scienze matematiche, Informatiche e Fisiche, Università di Udine, Udine, Italy
| | - Federica D'Aurizio
- SOC Istituto di Patologia Clinica Azienda Sanitaria Universitaria Friuli Centrale Udine, Udine, Italy
| | - Giuseppe Damante
- SOC Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale Udine, Udine, Italy.
- Dipartimento di Area Medica, Università di Udine, Udine, Italy.
| |
Collapse
|
11
|
Growth Hormone Deficiency. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Short stature is a common reason for a child to visit the endocrinologist, and can be a variant of normal or secondary to an underlying pathologic cause. Pathologic causes include growth hormone deficiency (GHD), which can be congenital or acquired later. GHD can be isolated or can occur with other pituitary hormone deficiencies. The diagnosis of GHD requires thorough clinical, biochemical, and radiographic investigations. Genetic testing may also be helpful in some patients. Treatment with recombinant human growth hormone (rhGH) should be initiated as soon as the diagnosis is made and patients should be monitored closely to evaluate response to treatment and for potential adverse effects.
Collapse
|
12
|
Diagnosis of Chromosome 15q-Terminal Deletion Syndrome through Elevated Fasting Serum Growth Hormone Levels. ENDOCRINES 2022. [DOI: 10.3390/endocrines3010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chromosome 15q26-qter deletion syndrome is a rare disease that causes prenatal and postnatal growth retardation, microcephaly, developmental delay, and congenital heart diseases, mainly due to haploinsufficiency of IGF1R. In addition, patients with pathogenic variants of the IGF1R show similar symptoms. We report the case of a 5-month-old girl with prenatal and postnatal growth retardation, microcephaly, and congenital heart disease. At 5 months of age, her length was 54.7 cm (−4.3 SD), her weight was 4.4 kg (−3.1 SD), and her head circumference was 37.4 cm (−2.8 SD), thus presenting severe growth retardation. Repeated pre-feeding serum GH levels were abnormally high (26.1–85.5 ng/mL), and IGF-1 levels (+0.16 to +1.2 SD) were relatively high. The 15q sub-telomere fluorescence in situ hybridization analysis revealed a heterozygous deletion in the 15q terminal region. Whole-genome single nucleotide polymorphism microarray analysis showed a terminal deletion of 6.4 Mb on 15q26.2q26.3. This is the first report showing that fasting GH levels are high in early infancy in patients with IGF1R abnormalities. In addition to relatively high IGF-1 levels, elevated fasting GH levels in early infancy may contribute to the diagnosis of IGF1R abnormalities.
Collapse
|
13
|
Mei H, Xie R, Li T, Chen Z, Liu Y, Sun C. Effect of Atomoxetine on Behavioral Difficulties and Growth Development of Primary School Children with Attention-Deficit/Hyperactivity Disorder: A Prospective Study. CHILDREN 2022; 9:children9020212. [PMID: 35204932 PMCID: PMC8870549 DOI: 10.3390/children9020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022]
Abstract
(1) Objective: Atomoxetine is a selective norepinephrine reuptake inhibitor used to treat attention-deficit/hyperactivity disorder (ADHD) in children over six years old. Although it is common knowledge that primary school children with ADHD often present with difficulties in the morning prior to school and in the evening, these two periods, and the family interactions they involve, are often neglected in studies of ADHD. Questionnaire–Children with Difficulties (QCD) has been widely used in China to evaluate parents’ perceptions of ADHD and patients’ daily behaviors during different times. In the long term, the efficacy and safety of atomoxetine have been well established in previous studies. Still, the short-term effects of atomoxetine treatment on serum growth parameters, such as IGF-1, IGFBP-3, and thyroid function, are not well documented. Therefore, this study was the first one using the QCD to quantify the efficacy of atomoxetine treatment in the morning prior to school and in the evening, and has investigated the possible influence on the growth parameters of Chinese primary school children with ADHD. (2) Method: This prospective study was conducted at the Department of Pediatrics at the Affiliated Hospital of Jiangnan University from August 2019 to February 2021. Changes in the children’s behavior and core ADHD symptoms following treatment were assessed using three parent-reported questionnaires, including Children with Difficulties (QCD), the Swanson, Nolan, and Pelham IV scale (SNAP-IV), and the Conners’ parents rating scales (CPRS). The height, weight, and body mass index (BMI) were measured and corrected to reflect the standard deviations (SDS) in Chinese children based on age and gender. Serum growth parameters, such as insulin-like growth factor 1 (IGF-1), insulin-like growth factor-binding protein 3 (IGFBP-3), and thyroid function, were also measured to assess the children’s growth development. Any adverse drug reactions were assessed every three weeks. (3) Result: Finally, 149 children were enrolled in this study, and they completed 12 weeks of atomoxetine treatment. The QCD results indicated that the atomoxetine treatment could significantly alleviate behavioral difficulties in primary children with ADHD, especially in the morning prior to school (p < 0.001, r = 0.66) and in the evening (p < 0.001, r = 0.73). A statically significant decrease in weight SDS (p < 0.05) was noted during treatment, but the effect size was slight (r = 0.09). The atomoxetine treatment had no significant impact on height SDS, BMI SDS, and serum growth parameters, such as the levels of IGF-1, IGFBP-3, and thyroid function. The SNAP-IV results showed a significant improvement in the core symptoms of ADHD, while the CPRS results indicated a significant improvement in controlling ADHD symptoms across two different domains, learning problems (r = 0.81) and hyperactivity (r = 0.86). No severe adverse reactions were observed in the course of treatment, and the most common adverse reactions were gastrointestinal symptoms. (4) Conclusions: Atomoxetine is an effective and safe treatment for primary school children with ADHD. In China, it may be an excellent choice to alleviate parenting stress and improve the condition of primary school children with ADHD. Moreover, our study indicated that the serum levels of IGF-1 and IGFBP-3 were within the normal range in newly diagnosed ADHD children, and atomoxetine will not affect the serum concentration of growth parameters, such as IGF-1, IGFBP-3, and thyroid function, in the short term. However, the treatment may reduce appetite, resulting in a reduction in the Children’s weight for a short period. Further observational studies to monitor the long-term effects of atomoxetine on primary school children are recommended.
Collapse
Affiliation(s)
- Huiya Mei
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Avenue, Wuxi 214122, China; (H.M.); (R.X.); (T.L.)
| | - Ruijin Xie
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Avenue, Wuxi 214122, China; (H.M.); (R.X.); (T.L.)
| | - Tianxiao Li
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Avenue, Wuxi 214122, China; (H.M.); (R.X.); (T.L.)
| | - Zongxin Chen
- The First Affiliated Hospital of Soochow University, No. 188, Shixin Avenue, Suzhou 215000, China;
| | - Yueying Liu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Avenue, Wuxi 214122, China; (H.M.); (R.X.); (T.L.)
- Correspondence: (Y.L.); (C.S.)
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL 60657, USA
- Correspondence: (Y.L.); (C.S.)
| |
Collapse
|