1
|
Zeng J, Fan X, Liu Y, Song Y, Cong P, Jiang X, Xu J, Xue C. Preparation, identification and application of lipid-Maillard reaction products during the drying process of squid fillets. Food Chem 2025; 479:143790. [PMID: 40086396 DOI: 10.1016/j.foodchem.2025.143790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Squid fillets are susceptible to lipid oxidation and Maillard reaction during the drying process. In this study, a novel additive agent lipid-Maillard reaction products (L-MRPs) was optimized by response surface methodology, then the main antioxidant components of L-MRPs were identified. Finally, L-MRPs was applied to the drying process of squid fillets (LMSF) by comparing with the control group. The results showed that the optimal reaction conditions were pH 10.90, lipid content 1.70 %, reaction temperature 104 °C, reaction time 105 min. The DPPH radical scavenging activity of final L-MRPs was 89.78 %. The main antioxidant components of L-MRPs were Fru-Arg (19.31 μg/g), pyrroles (762.04 μg/g) and other HCCs (293.97 μg/kg). Besides, compared to the control group, LMSF group showed lower thiobarbituric acid reactive substances value (4.58 mg/kg) and formaldehyde content (17.00 mg/kg), but more flavor compounds (455.78 μg/kg) and higher sensory scores. Finally, the potential antioxidant and flavor-enhancing mechanism of L-MRPs was proposed.
Collapse
Affiliation(s)
- Junpeng Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Xiaoming Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China.
| |
Collapse
|
2
|
Naglah AM, Almehizia AA, Al-Wasidi AS, Alharbi AS, Alqarni MH, Hassan AS, Aboulthana WM. Exploring the Potential Biological Activities of Pyrazole-Based Schiff Bases as Anti-Diabetic, Anti-Alzheimer's, Anti-Inflammatory, and Cytotoxic Agents: In Vitro Studies with Computational Predictions. Pharmaceuticals (Basel) 2024; 17:655. [PMID: 38794225 PMCID: PMC11125359 DOI: 10.3390/ph17050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In this innovative research, we aim to reveal pyrazole-based Schiff bases as new multi-target agents. In this context, we re-synthesized three sets of pyrazole-based Schiff bases, 5a-f, 6a-f, and 7a-f, to evaluate their biological applications. The data from in vitro biological assays (including antioxidant and scavenging activities, anti-diabetes, anti-Alzheimer's, and anti-inflammatory properties) of the pyrazole-based Schiff bases 5a-f, 6a-f, and 7a-f showed that the six pyrazole-based Schiff bases 5a, 5d, 5e, 5f, 7a, and 7f possess the highest biological properties among the compounds evaluated. The cytotoxicity against lung (A549) and colon (Caco-2) human cancer types, as well as normal lung (WI-38) cell lines, was evaluated. The data from the cytotoxicity investigation demonstrated that the three Schiff bases 5d, 5e, and 7a are active against lung (A549) cells, while the two Schiff bases 5e and 7a exhibited the highest cytotoxicity towards colon (Caco-2) cells. Additionally, the enzymatic activities against caspase-3 and Bcl-2 of the six pyrazole-based Schiff bases 5a, 5d, 5e, 5f, 7a, and 7f were evaluated. Furthermore, we assessed the in silico absorption, distribution, metabolism, and toxicity (ADMT) properties of the more potent pyrazole-based Schiff bases. After modifying the structures of the six pyrazole-based Schiff bases, we plan to further extend the studies in the future.
Collapse
Affiliation(s)
- Ahmed M. Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdulrahman A. Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Asma S. Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Amirah Senaitan Alharbi
- King Khalid Hospital, King Saud University Medical City, P.O. Box 7805, Riyadh 11472, Saudi Arabia;
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Wael M. Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt;
| |
Collapse
|
3
|
Ahmed NM, Lotfallah AH, Gaballah MS, Awad SM, Soltan MK. Novel 2-Thiouracil-5-Sulfonamide Derivatives: Design, Synthesis, Molecular Docking, and Biological Evaluation as Antioxidants with 15-LOX Inhibition. Molecules 2023; 28:molecules28041925. [PMID: 36838913 PMCID: PMC9963659 DOI: 10.3390/molecules28041925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
New antioxidant agents are urgently required to combat oxidative stress, which is linked to the emergence of serious diseases. In an effort to discover potent antioxidant agents, a novel series of 2-thiouracil-5-sulfonamides (4-9) were designed and synthesized. In line with this approach, our target new compounds were prepared from methyl ketone derivative 3, which was used as a blocking unit for further synthesis of a novel series of chalcone derivatives 4a-d, thiosemicarbazone derivatives 5a-d, pyridine derivatives 6a-d and 7a-d, bromo acetyl derivative 8, and thiazole derivatives 9a-d. All compounds were evaluated as antioxidants against 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), lipid peroxidation, and 15-lipoxygenase (15-LOX) inhibition activity. Compounds 5c, 6d, 7d, 9b, 9c, and 9d demonstrated significant RSA in all three techniques in comparison with ascorbic acid and 15-LOX inhibitory effectiveness using quercetin as a standard. Molecular docking of compound 9b endorsed its proper binding at the active site pocket of the human 15-LOX which explains its potent antioxidant activity in comparison with standard ascorbic acid.
Collapse
Affiliation(s)
- Naglaa M. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
- Correspondence: or ; Tel.: +20-012-4228559 or Tel./Fax: +20-202-5541601
| | - Ahmed H. Lotfallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, El-Arish 16020, Egypt
| | - Mohamed S. Gaballah
- Biochemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Moustafa K. Soltan
- Ministry of Health, Oman College of Health Sciences, Muscat 132, Oman
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Efimov IV, Kulikova LN, Miftyakhova AR, Matveeva MD, Voskressensky LG. Recent Advances for the Synthesis of N‐Unsubstituted Pyrroles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ilya V. Efimov
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Larisa N. Kulikova
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Almira R. Miftyakhova
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Maria D. Matveeva
- A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences Leninsky pr. 29 119991 Moscow Russia
| | - Leonid G. Voskressensky
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| |
Collapse
|
5
|
Ali SA, Awad SM, Said AM, Mahgoub S, Taha H, Ahmed NM. Design, synthesis, molecular modelling and biological evaluation of novel 3-(2-naphthyl)-1-phenyl-1H-pyrazole derivatives as potent antioxidants and 15-Lipoxygenase inhibitors. J Enzyme Inhib Med Chem 2020; 35:847-863. [PMID: 32216479 PMCID: PMC7170299 DOI: 10.1080/14756366.2020.1742116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress is one of the main causes of significant severe diseases. The discovery of new potent antioxidants with high efficiency and low toxicity is a great demand in the field of medicinal chemistry. Herein, we report the design, synthesis molecular modelling and biological evaluation of novel hybrids containing pyrazole, naphthalene and pyrazoline/isoxazoline moiety. Chalcones 2a–e were synthesized efficiently and were used as starting materials for synthesis of a variety of heterocycles. A novel series of pyrazoline 3a–e, phenylpyrazoline 4a–e, isoxazoline 5a–e and pyrazoline carbothioamide derivatives 6a–e were synthesized and screened for in vitro antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) and superoxide radical scavenging assay as well as 15-lipoxygenase (15-LOX) inhibition activity. Compounds 3a, 4e, 5b, 5c, 6a, 6c, and 6e showed excellent radical scavenging activity in all three methods in comparison with ascorbic acid and 15-LOX inhibition potency using quercetin as standard then were subjected to in vivo study. Catalase (CAT) activity, glutathione (GSH) and malondialdehyde (MDA) levels were assayed in liver of treated rats. Compounds 5b, 5c, and 6e showed significant in vivo antioxidant potentials compared to control group at dose of 100 mg/kg B.W. Molecular docking of compound 6a endorsed its proper binding at the active site pocket of the human 15-LOX which explains its potent antioxidant activity in comparison with standard ascorbic acid.
Collapse
Affiliation(s)
- Sahar A Ali
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ein-Helwan, Cairo, Egypt
| | - Samir Mohamed Awad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Ein-Helwan, Cairo, Egypt.,Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ahmed Mohammed Said
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Ein-Helwan, Cairo, Egypt.,Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Shahenda Mahgoub
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ein-Helwan, Cairo, Egypt
| | - Heba Taha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ein-Helwan, Cairo, Egypt
| | - Naglaa Mohamed Ahmed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Ein-Helwan, Cairo, Egypt
| |
Collapse
|
6
|
Silva VLM, Elguero J, Silva AMS. Current progress on antioxidants incorporating the pyrazole core. Eur J Med Chem 2018; 156:394-429. [PMID: 30015075 DOI: 10.1016/j.ejmech.2018.07.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
Abstract
The search of new antioxidants, as drugs candidates, is an active field of medicinal chemistry. The synthesis of compounds with antioxidant potential has increased in recent years and a high number of structurally diverse compounds have been published. This review aims to show the current state-of-the-art on the development of antioxidant compounds incorporating the pyrazole pharmacophore. It is a well-timed review driven by the increasing number of papers, on this issue, that have been published since the beginning of the 21st century (from 2000 to 2017). The aim is to look deeper into the structures already published in the literature containing the pyrazole core as the unique pharmacophore or combined with other pharmacophores and see the relationship between the presence of this five-membered nitrogen heterocycle and the behaviour of the compounds as potential antioxidant agents. An attempt was made to whenever possible establish structure-activity relationships that could help the design of new and more potent antioxidant agents containing this important pharmacophore.
Collapse
Affiliation(s)
- Vera L M Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - J Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain.
| | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Simha Pulla R, Ummadi N, Gudi Y, Venkatapuram P, Adivireddy P. Synthesis and Antimicrobial Activity of Some New 3,4-Disubstituted Pyrroles and Pyrazoles. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Reddy Simha Pulla
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - Nagarjuna Ummadi
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - Yamini Gudi
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | | | - Padmaja Adivireddy
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| |
Collapse
|
8
|
Gudi Y, Gundala S, Venkatapuram P, Adivireddy P, Chippada AR, Allagadda R. Synthesis and Antioxidant Activity of a New Class of Pyridinylcarbamoylmethyl Pyrrolyl/Pyrazolylcarboxamides. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yamini Gudi
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - Sravya Gundala
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
- Chemical Engineering Institute; Ural Federal University; Yekaterinburg 620002 Russia
| | | | - Padmaja Adivireddy
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - Appa Rao Chippada
- Department of Biochemistry; Sri Venkateswara University; Tirupati 517502 Andhra Pradesh India
| | - Rajasekhar Allagadda
- Department of Biochemistry; Sri Venkateswara University; Tirupati 517502 Andhra Pradesh India
| |
Collapse
|