1
|
Purwa M, Rana A, Singh AK. The assembly of integrated continuous flow platform for on-demand rosiglitazone and pioglitazone synthesis. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00228k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manufacturing thiazolidinediones in a batch process is often carried out at different locations, where each successive batch collects a certain amount of intermediate followed by its transportation to another location.
Collapse
Affiliation(s)
- Mandeep Purwa
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abhilash Rana
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ajay K. Singh
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Runikhina S, Eremin D, Chusov D. Reductive Aldol-type Reactions in the Synthesis of Pharmaceuticals. Chemistry 2021; 27:15327-15360. [PMID: 34403177 DOI: 10.1002/chem.202101768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/06/2022]
Abstract
The efficient chemo-, regio- and stereoselective formation of saturated carbon-carbon fragment is the critical challenge of organic synthesis; therefore, developing new methods for formation of these bonds is paramount. The rising interest for reductive aldol-type reactions is conditioned by its versatile applications, allowing the efficient formation of carbon-carbon bonds. The review aims to highlight the advantages and disadvantage of reductive aldol-type reactions to total synthesis of pharmaceutical substances in order to summarize knowledge and encourage further investigation of the field.
Collapse
Affiliation(s)
- Sofiya Runikhina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991, Vavilova St. 28, Moscow, Russian Federation
| | - Dmitry Eremin
- University of Southern California, 1002 Childs Way, Los Angeles, CA, 90089-3502, USA
| | - Denis Chusov
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991, Vavilova St. 28, Moscow, Russian Federation
| |
Collapse
|
3
|
Sepay N, Mallik S, Saha PC, Mallik AK. Design and synthesis of a new class of 2,4-thiazolidinedione based macrocycles suitable for Fe3+sensing. NEW J CHEM 2018. [DOI: 10.1039/c8nj01536h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three 2,4-thiazolidinedione based macrocycles, which are very good Fe3+sensors in aqueous-ethanol medium, have been synthesized. X-ray crystallography, DFT calculations and MEP analysis have been used for their structural confirmation and for understanding their behavior towards Fe3+.
Collapse
Affiliation(s)
- Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Sumitava Mallik
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Pranab C. Saha
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Asok K. Mallik
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| |
Collapse
|
4
|
Deng Q, Zhang Y, Zhu H, Tu T. Robust Acenaphthoimidazolylidene Palladacycles: Highly Efficient Catalysts for the Amination of N-Heteroaryl Chlorides. Chem Asian J 2017; 12:2364-2368. [PMID: 28719728 DOI: 10.1002/asia.201700877] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/11/2017] [Indexed: 12/18/2022]
Abstract
A series of robust N-heterocyclic carbene palladacycles have been successfully developed. These showed high catalytic activity and selectivity toward the challenging amination of N-heteroaryl chlorides. Different primary and secondary amines were fully compatible with this catalytic system. Remarkably, no double amination products could be detected when primary amines were utilized in our catalytic transformation. Furthermore, the protocol has been successfully extended to synthesize rosiglitazone, a clinical drug for diabetes mellitus, highlighting its potential pharmaceutical feasibility.
Collapse
Affiliation(s)
- Qinyue Deng
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
| | - Yang Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
| | - Haibo Zhu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
| | - Tao Tu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P.R. China
| |
Collapse
|
5
|
Meng G, Zheng M, Wang M, Tong J, Ge W, Zhang J, Zheng A, Li J, Gao L, Li J. Design and synthesis of new potent PTP1B inhibitors with the skeleton of 2-substituted imino-3-substituted-5-heteroarylidene-1,3-thiazolidine-4-one: Part I. Eur J Med Chem 2016; 122:756-769. [PMID: 27526040 DOI: 10.1016/j.ejmech.2016.05.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022]
Abstract
A new series of 2-substituted imino-3-substituted-5- heteroarylidene-1,3-thiazolidine-4-ones as the potent bidentate PTP1B inhibitors were designed and synthesized in this paper. All of the new compounds were characterized and identified by spectra analysis. The biological screening test against PTP1B showed that some of these compounds have the positive inhibitory activity against PTP1B. The activity of the compounds with 5-substituted pyrrole on 5-postion of 1,3-thiazolidine-4-one are more potent than that of those compounds with 5-substituted pyridine group. Compound 14b, 14h and 14i showed IC50 values of 8.66 μM, 6.83 μM and 6.09 μM against PTP1B, respectively. Docking analysis of these active compounds with PTP1B showed the possible interaction modes of these biheterocyclic compounds with the active sites of PTP1B. The inhibition tests against oncogenetic CDC25B were also conducted on this set of compounds to evaluate the selectivity and possible anti-neoplastic activity. Compound 14b also showed the lowest IC50 of 1.66 μM against CDC25B among all the possible inhibitors, including 14g, 14h, 14i and 15c. Some pharmacological parameters including VolSurf, steric and electric descriptors of all the compounds were calculated to give some hints about the relative relationship with the biological activity. The result of this study might give some light on designing the possible anti-cancer drugs targeting at phosphatases. The most active compound 14i might be used as the lead compound for further structure modification of the new low molecular weight PTP1B inhibitors with the N-containing heterocyclic skeleton.
Collapse
Affiliation(s)
- Ge Meng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China.
| | - Meilin Zheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Mei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Jing Tong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Weijuan Ge
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiehe Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Aqun Zheng
- School of Science, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| |
Collapse
|